Photovoltaic devices were fabricated using rhenium bis(arylimino)acenaphthene (DIAN) complex containing poly(p-phenylenevinylene). These polymers absorb strongly in the visible region at ca. 440-550 nm. In addition, this type of transition metal based polymers have been shown to exhibit large photo-sensitivity due to the presence of the rhenium complex, which has a relatively long-lived Metal-to-Ligand Charge Transfer (MLCT) character. By using this type of polymers, the metal content can be adjusted easily by simply changing the monomer feed ratio. Moreover, the excited state properties and electronic absorption properties can be modified by varying the structure of the diimine ligand coordinated to the metal. This approach allows us to fine-tune the absorption spectra of the polymers by employing different types of rhenium complex derivatives. PEDOT:PSS and PTCDI were used as the hole and electron transport layers, respectively. The ITO/PEDOT:PSS/DIAN-PPV/PTCDI/Al devices were found to exhibit photovoltaic response under the illumination of AM1 solar radiation. The short-circuit current Isc, open-circuit voltage Voc, and the fill factor FF were measured to be 38 μA/cm2, 0.93 V and 0.21 respectively. Another photovoltaic device was prepared with the structure ITO/PEDOT:PSS/DIAN-PPV:TiO2/PTCDI/Al and its photovoltaic properties were studied. The presence of TiO2 will assist the electron transport of the DIAN-PPV to the PTCDI, in which the electrons can be collected at the aluminium electrode. The short-circuit current Isc, open-circuit voltage Voc, and the fill factor FF were measured to be 51 μA/cm2, 1.18 V and 0.12 respectively. It was observed that the power conversion efficiency of photovoltaic devices related closely to the rhenium content and the structure of the rhenium complex used.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.