The laser damage thresholds for gallium nitride and gallium oxide were found after exposing each sample to a femtosecond laser pulse. Threshold fluences were determined for both single pulse and multi pulse exposures. To accurately characterize the excited carrier density criteria in which visible laser damage occurs, we simulated carrier excitation dynamics for the entire laser pulse as it interacts with the target using the Keldysh model. From this a dynamic model of the conduction band carrier concentration was determined. For the measured single shot threshold fluences, the plasma critical density criteria for damage was met.
The pulse duration dependence of single-shot laser-induced damage and ablation of HfO2/SiO2-based double- and quadlayer thin films is studied using time-resolved surface microscopy (TRSM) and ex situ imaging down to the few-cycle pulse (FCP) regime. Both samples exhibit a raised, "blister" morphology for a range of fluences between the damage and ablation thresholds. The fluence range associated with blister formation is much larger for FCPs than for 110 fs pulses, and TRSM images at early time-delays show that the density of the laser-generated plasma is much higher for 110 fs pulses for a lower fluence relative to the damage threshold. Also, for high enough fluences the excited electron density exhibits a fast decay down to a significantly high value, which remains even after the onset of mechanical damage of the layers. The pulse duration dependence suggests that as fluence is increased, the increase in absorbed energy is more gradual for FCPs, which points towards inherent differences in the way high intensity FCPs are absorbed in dielectrics relative to longer femtosecond laser pulses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.