The accumulation of microplastics (MPs) in different environmental compartments represents a real emergency with dangerous effects on all ecosystems and human health. MPs analysis by the commonly adopted methods (i.e. FT-IR or Raman spectroscopy) is time-consuming, limiting the ability to monitor and mitigate plastic pollution. In this context, hyperspectral imaging (HSI) can be considered a promising identification tool, allowing the possibility to obtain rapid classification maps of MPs in different environmental matrices. In this work, an innovative application of HSI technology in the short-wave infrared range (SWIR: 1000-2500 nm) for rapid recognition and classification of MPs in real beach sand samples, coupled with machine learning approaches, is presented and discussed. MP samples were collected during a sampling campaign at Torre Guaceto beach (southern Italy), located along the Adriatic flank of the Apulia region, belonging to a natural protected area. Different spectral preprocessing strategies were tested on the acquired hyperspectral images in order to build a classification model capable of recognizing the complex mixture of materials that constitute MPs and beach sand matrices. The results of the study demonstrated as the proposed approach represents a powerful, fast and effective alternative to the most common adopted analytical methods for MP classification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.