KEYWORDS: Data modeling, Education and training, Computed tomography, Performance modeling, 3D modeling, Tissues, Gallium nitride, Body composition, 3D image processing, 3D acquisition
PurposeTwo-dimensional single-slice abdominal computed tomography (CT) provides a detailed tissue map with high resolution allowing quantitative characterization of relationships between health conditions and aging. However, longitudinal analysis of body composition changes using these scans is difficult due to positional variation between slices acquired in different years, which leads to different organs/tissues being captured.ApproachTo address this issue, we propose C-SliceGen, which takes an arbitrary axial slice in the abdominal region as a condition and generates a pre-defined vertebral level slice by estimating structural changes in the latent space.ResultsOur experiments on 2608 volumetric CT data from two in-house datasets and 50 subjects from the 2015 Multi-Atlas Abdomen Labeling Challenge Beyond the Cranial Vault (BTCV) dataset demonstrate that our model can generate high-quality images that are realistic and similar. We further evaluate our method’s capability to harmonize longitudinal positional variation on 1033 subjects from the Baltimore longitudinal study of aging dataset, which contains longitudinal single abdominal slices, and confirmed that our method can harmonize the slice positional variance in terms of visceral fat area.ConclusionThis approach provides a promising direction for mapping slices from different vertebral levels to a target slice and reducing positional variance for single-slice longitudinal analysis. The source code is available at: https://github.com/MASILab/C-SliceGen.
KEYWORDS: Muscles, Image segmentation, Computed tomography, Magnetic resonance imaging, Education and training, Anatomy, Bone, Gallium nitride, Data modeling, Adversarial training
PurposeThigh muscle group segmentation is important for assessing muscle anatomy, metabolic disease, and aging. Many efforts have been put into quantifying muscle tissues with magnetic resonance (MR) imaging, including manual annotation of individual muscles. However, leveraging publicly available annotations in MR images to achieve muscle group segmentation on single-slice computed tomography (CT) thigh images is challenging.ApproachWe propose an unsupervised domain adaptation pipeline with self-training to transfer labels from three-dimensional MR to single CT slices. First, we transform the image appearance from MR to CT with CycleGAN and feed the synthesized CT images to a segmenter simultaneously. Single CT slices are divided into hard and easy cohorts based on the entropy of pseudo-labels predicted by the segmenter. After refining easy cohort pseudo-labels based on anatomical assumption, self-training with easy and hard splits is applied to fine-tune the segmenter.ResultsOn 152 withheld single CT thigh images, the proposed pipeline achieved a mean Dice of 0.888 (0.041) across all muscle groups, including gracilis, hamstrings, quadriceps femoris, and sartorius muscle.ConclusionsTo our best knowledge, this is the first pipeline to achieve domain adaptation from MR to CT for thigh images. The proposed pipeline effectively and robustly extracts muscle groups on two-dimensional single-slice CT thigh images. The container is available for public use in GitHub repository available at: https://github.com/MASILab/DA_CT_muscle_seg.
Metabolic health is increasingly implicated as a risk factor across conditions from cardiology to neurology, and efficiency assessment of body composition is critical to quantitatively characterizing these relationships. 2D low dose single slice computed tomography (CT) provides a high resolution, quantitative tissue map, albeit with a limited field of view. Although numerous potential analyses have been proposed in quantifying image context, there has been no comprehensive study for low-dose single slice CT longitudinal variability with automated segmentation. We studied a total of 1816 slices from 1469 subjects of Baltimore Longitudinal Study on Aging (BLSA) abdominal dataset using supervised deep learning-based segmentation and unsupervised clustering method. 300 out of 1469 subjects that have two year gap in their first two scans were pick out to evaluate longitudinal variability with measurements including intraclass correlation coefficient (ICC) and coefficient of variation (CV) in terms of tissues/organs size and mean intensity. We showed that our segmentation methods are stable in longitudinal settings with Dice ranged from 0.821 to 0.962 for thirteen target abdominal tissues structures. We observed high variability in most organ with ICC<0.5, low variability in the area of muscle, abdominal wall, fat and body mask with average ICC≥0.8. We found that the variability in organ is highly related to the cross-sectional position of the 2D slice. Our efforts pave quantitative exploration and quality control to reduce uncertainties in longitudinal analysis.
KEYWORDS: Image segmentation, Bone, Computed tomography, Tissues, Data modeling, Neural networks, Medical imaging, 3D modeling, Performance modeling, Surgery
Purpose: Muscle, bone, and fat segmentation from thigh images is essential for quantifying body composition. Voxelwise image segmentation enables quantification of tissue properties including area, intensity, and texture. Deep learning approaches have had substantial success in medical image segmentation, but they typically require a significant amount of data. Due to the high cost of manual annotation, training deep learning models with limited human label data is desirable, but it is a challenging problem.
Approach: Inspired by transfer learning, we proposed a two-stage deep learning pipeline to address the thigh and lower leg segmentation issue. We studied three datasets, 3022 thigh slices and 8939 lower leg slices from the BLSA dataset and 121 thigh slices from the GESTALT study. First, we generated pseudo labels for thigh based on approximate handcrafted approaches using CT intensity and anatomical morphology. Then, those pseudo labels were fed into deep neural networks to train models from scratch. Finally, the first stage model was loaded as the initialization and fine-tuned with a more limited set of expert human labels of the thigh.
Results: We evaluated the performance of this framework on 73 thigh CT images and obtained an average Dice similarity coefficient (DSC) of 0.927 across muscle, internal bone, cortical bone, subcutaneous fat, and intermuscular fat. To test the generalizability of the proposed framework, we applied the model on lower leg images and obtained an average DSC of 0.823.
Conclusions: Approximated handcrafted pseudo labels can build a good initialization for deep neural networks, which can help to reduce the need for, and make full use of, human expert labeled data.
Muscle, bone, and fat segmentation of CT thigh slice is essential for body composition research. Voxel-wise image segmentation enables quantification of tissue properties including area, intensity and texture. Deep learning approaches have had substantial success in medical image segmentation, but they typically require substantial data. Due to high cost of manual annotation, training deep learning models with limited human labelled data is desirable but also a challenging problem. Inspired by transfer learning, we proposed a two-stage deep learning pipeline to address this issue in thigh segmentation. We study 2836 slices from Baltimore Longitudinal Study of Aging (BLSA) and 121 slices from Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing (GESTALT). First, we generated pseudo-labels based on approximate hand-crafted approaches using CT intensity and anatomical morphology. Then, those pseudo labels are fed into deep neural networks to train models from scratch. Finally, the first stage model is loaded as initialization and fine-tuned with a more limited set of expert human labels. We evaluate the performance of this framework on 56 thigh CT scans and obtained average Dice of 0.979,0.969,0.953,0.980 and 0.800 for five tissues: muscle, cortical bone, internal bone, subcutaneous fat and intermuscular fat respectively. We evaluated generalizability by manually reviewing external 3504 BLSA single thighs from 1752 thigh slices. The result is consistent and passed human review with 5 failed thigh images, which demonstrates that the proposed method has strong generalizability.
Abdominal computed tomography CT imaging enables assessment of body habitus and organ health. Quantification of these health factors necessitates semantic segmentation of key structures. Deep learning efforts have shown remarkable success in automating segmentation of abdominal CT, but these methods largely rely on 3D volumes. Current approaches are not applicable when single slice imaging is used to minimize radiation dose. For 2D abdominal organ segmentation, lack of 3D context and variety in acquired image levels are major challenges. Deep learning approaches for 2D abdominal organ segmentation benefit by adding more images with manual annotation, but annotation is resource intensive to acquire given the large quantity and the requirement of expertise. Herein, we designed a gradient based active learning annotation framework by meta-parameterizing and optimizing the exemplars to dynamically select the 'hard cases' to achieve better results with fewer annotated slices to reduce the annotation effort. With the Baltimore Longitudinal Study on Aging (BLSA) cohort, we evaluated the performance with starting from 286 subjects and added 50 more subjects iteratively to 586 subjects in total. We compared the amount of data required to add to achieve the same Dice score between using our proposed method and the random selection in terms of Dice. When achieving 0.97 of the maximum Dice, the random selection needed 4.4 times more data compared with our active learning framework. The proposed framework maximizes the efficacy of manual efforts and accelerates learning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.