A Weyl semimetal carries topological charges at the Weyl nodes; a light beam can also carry a topological charge, when it has an orbital angular momentum (OAM). Recently there has been a lot of interest in understanding how the spin angular momentum (SAM) of light interacts with materials to induce photocurrents (circular photogalvanic effect, CPGE), but not many studies have focused on photocurrents generated by the OAM of light. Here we report a unique orbital photogalvanic effect (OPGE) in a type-II Weyl semimetal WTe2, featured by a photocurrent winding around the axis of OAM-carrying beams, whose intensity is directly proportional to the topological winding number of the light field, and can be attributed to a discretized dynamical Hall effect. In addition to obtaining evidence of OAM induced electron excitations, our measurements show promise for on-chip detection of the phase of light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.