PurposeDiffusion-weighted magnetic resonance imaging (DW-MRI) is a critical imaging method for capturing and modeling tissue microarchitecture at a millimeter scale. A common practice to model the measured DW-MRI signal is via fiber orientation distribution function (fODF). This function is the essential first step for the downstream tractography and connectivity analyses. With recent advantages in data sharing, large-scale multisite DW-MRI datasets are being made available for multisite studies. However, measurement variabilities (e.g., inter- and intrasite variability, hardware performance, and sequence design) are inevitable during the acquisition of DW-MRI. Most existing model-based methods [e.g., constrained spherical deconvolution (CSD)] and learning-based methods (e.g., deep learning) do not explicitly consider such variabilities in fODF modeling, which consequently leads to inferior performance on multisite and/or longitudinal diffusion studies.ApproachIn this paper, we propose a data-driven deep CSD method to explicitly constrain the scan–rescan variabilities for a more reproducible and robust estimation of brain microstructure from repeated DW-MRI scans. Specifically, the proposed method introduces a three-dimensional volumetric scanner-invariant regularization scheme during the fODF estimation. We study the Human Connectome Project (HCP) young adults test–retest group as well as the MASiVar dataset (with inter- and intrasite scan/rescan data). The Baltimore Longitudinal Study of Aging dataset is employed for external validation.ResultsFrom the experimental results, the proposed data-driven framework outperforms the existing benchmarks in repeated fODF estimation. By introducing the contrastive loss with scan/rescan data, the proposed method achieved a higher consistency while maintaining higher angular correlation coefficients with the CSD modeling. The proposed method is assessing the downstream connectivity analysis and shows increased performance in distinguishing subjects with different biomarkers.ConclusionWe propose a deep CSD method to explicitly reduce the scan–rescan variabilities, so as to model a more reproducible and robust brain microstructure from repeated DW-MRI scans. The plug-and-play design of the proposed approach is potentially applicable to a wider range of data harmonization problems in neuroimaging.
KEYWORDS: Functional magnetic resonance imaging, Matrices, Databases, White matter, Signal processing, Signal detection, Reliability, Quality control, Neuroimaging, Correlation coefficients
Recently, increasing evidence suggests that fMRI signals in white matter (WM), conventionally ignored as nuisance, are robustly detectable using appropriate processing methods and are related to neural activity, while changes in WM with aging and degeneration are also well documented. These findings suggest variations in patterns of BOLD signals in WM should be investigated. However, existing fMRI analysis tools, which were designed for processing gray matter signals, are not well suited for large-scale processing of WM signals in fMRI data. We developed an automatic pipeline for high-performance preprocessing of fMRI images with emphasis on quantifying changes in BOLD signals in WM in an aging population. At the image processing level, the pipeline integrated existing software modules with fine parameter tunings and modifications to better extract weaker WM signals. The preprocessing results primarily included whole-brain time courses, functional connectivity, maps and tissue masks in a common space. At the job execution level, this pipeline exploited a local XNAT to store datasets and results, while using DAX tool to automatic distribute batch jobs that run on high-performance computing clusters. Through the pipeline, 5,034 fMRI/T1 scans were preprocessed. The intraclass correlation coefficient (ICC) of test-retest experiment based on the preprocessed data is 0.52 - 0.86 (N=1000), indicating a high reliability of our pipeline, comparable to previously reported ICC in gray matter experiments. This preprocessing pipeline highly facilitates our future analyses on WM functional alterations in aging and may be of benefit to a larger community interested in WM fMRI studies.
Complex graph theory measures of brain structural connectomes derived from diffusion weighted images (DWI) provide insight into the network structure of the brain. Further, as the number of available DWI datasets grows, so does the ability to investigate associations in these measures with major biological factors, like age. However, one key hurdle that remains is the presence of scanner effects that can arise from different DWI datasets and confound multisite analyses. Two common approaches to correct these effects are voxel-wise and feature-wise harmonization. However, it is still unclear how to best leverage them for graph-theory analysis of an aging population. Thus, there is a need to better characterize the impact of each harmonization method and their ability to preserve age related features. We investigate this by characterizing four complex graph theory measures (modularity, characteristic path length, global efficiency, and betweenness centrality) in 48 participants aged 55 to 86 from Baltimore Longitudinal Study of Aging (BLSA) and Vanderbilt Memory and Aging Project (VMAP) before and after voxel- and feature-wise harmonization with the Null Space Deep Network (NSDN) and ComBat, respectively. First, we characterize across dataset coefficients of variation (CoV) and find the combination of NSDN, and ComBat causes the greatest reduction in CoV followed by ComBat alone then NSDN alone. Second, we reproduce published associations of modularity with age after correcting for other covariates with linear models. We find that harmonization with ComBat or ComBat and NSDN together improves the significance of existing age effects, reduces model residuals, and qualitatively reduces separation between datasets. These results reinforce the efficiency of statistical harmonization on the feature-level with ComBat and suggest that harmonization on the voxel-level is synergistic but may have reduced effect after running through the multiple layers of the connectomics pipeline. Thus, we conclude that feature-wise harmonization improves statistical results, but the addition of biologically informed voxel-based harmonization offers further improvement.
Changes in brain structure and connectivity in aging can be probed through diffusion weighted MRI and summarized with structural connectome matrices. Complex network analysis based on graph theory has been applied to provide measures that are correlated with neurobiological variations and can help guide quantitative study of brain function. However, the understanding of how connectomes change longitudinally is limited. In this work, we evaluate modern pipelines to obtain the connectomics data from diffusion weighted MRI scans across different sessions from control subjects (55-99 years old) in the Baltimore Longitudinal Study of Aging and Cambridge Centre for Ageing and Neuroscience. From the connectivity matrices, we compute graph theory measures to understand their brain networks and apply a linear mixed effects model to study their longitudinal changes with respect to age. With this approach, we computed 14 graph theory measures of 1469 healthy subjects (2476 scans) and found statistically significant correlations between all 14 measures and age. In this analysis: 1) the brain becomes more segregated but less integrated in aging; 2) the overall network cost increases for older subjects; 3) the small-world organizations remain stable; and 4) due to high intra-subject variance, there is not clear trend for longitudinal changes of graph theory measures of individual subjects. Therefore, while useful to investigate brain evolution in aging at the population level, improvements in the connectome reconstruction are needed to decrease single subject variability for individual inference.
Characterizing relationships between gray matter (GM) and white matter (WM) in early Alzheimer's disease (AD) would improve understanding of how and when AD impacts the brain. However, modeling these relationships across brain regions and longitudinally remains a challenge. Thus, we propose extending joint independent component analysis (jICA) into spatiotemporal modeling of regional cortical thickness and WM bundle volumes leveraging multimodal MRI. We jointly characterize these GM and WM features in a normal aging (n=316) and an age- and sex-matched preclinical AD cohort (n=81) at each of two imaging sessions spaced three years apart, training on the normal aging population in cross validation and interrogating the preclinical AD cohort. We find this joint model identifies reproducible, longitudinal changes in GM and WM between the two imaging sessions and that these changes are associated with preclinical AD and are plausible considering the literature. We compare this joint model to two focused models: (1) GM features at the first session and WM at the second and (2) vice versa. The joint model identifies components that correlate poorly with those from the focused models, suggesting the different models resolve different patterns. We find the strength of association with preclinical AD is improved in the GM to WM model, which supports the hypothesis that medial temporal and frontal thinning precedes volume loss in the uncinate fasciculus and inferior anterior-posterior association fibers. These results suggest that jICA effectively generates spatiotemporal hypotheses about GM and WM in preclinical AD, especially when specific intermodality relationships are considered a priori
KEYWORDS: Alzheimer's disease, Principal component analysis, Magnetic resonance imaging, Electroencephalography, Neuroimaging, Independent component analysis, Hemodynamics, Functional magnetic resonance imaging, Diffusion, Control systems
Prior neuroimaging studies have demonstrated isolated structural and connectivity changes in the brain due to Alzheimer’s Disease (AD). However, how these changes relate to each other is not well understood. We present a preliminary study to begin to fill this gap by leveraging joint independent component analysis (jICA). We explore how jICA performs in an analysis of T1 and diffusion weighted MRI by characterizing the joint changes of complex cortical surface and structural connectivity metrics in AD in subjects from the Baltimore Longitudinal Study of Aging. We calculate 588 region-based cortical metrics and 4,753 fractional anisotropy-based connectivity metrics and project them into a low-dimensional manifold with principal component analysis. We perform jICA on the manifold and subsequently backproject the independent components to the original data space. We demonstrate component stability with 3-fold cross validation and find differential component loadings between 776 cognitively unimpaired control subjects and 23 with AD that generalizes across folds. In addition, we perform the same analysis on the surface and connectivity metrics separately and find that the joint approach identifies both novel and similar components to the separate approaches. To illustrate the joint approach’s primary utility, we provide an example hypothesis for how surface and connectivity components may vary together with AD. These preliminary results suggest jointly varying independent cortical surface and structural connectivity components can be consistently extracted from MRI data and provide a data-driven way for generating novel hypotheses about AD that may not be captured by separate analyses.
Resting-state functional MRI (rsfMRI) provides important information for studying and mapping the activities and functions of the brain. Conventionally, rsfMRIs are often registered to structural images in the Euclidean space without considering cortical surface geometry. Meanwhile, a surface-based representation offers a relaxed coordinate chart, but this still requires surface registration for group-wise data analysis. In this work, we investigate the performance of two existing surface registration methods in a surface-based rsfMRI analysis framework: FreeSurfer and Hierarchical Spherical Deformation (HSD). To minimize registration bias, we establish shape correspondence using both methods in a groupwise manner that estimates the unbiased average of a given cohort. To evaluate their performance, we focus on neuroanatomical alignment as well as the amount of distortion that can potentially bias surface tessellation for secondary level rsfMRI data analyses. In the pilot analysis, we examine a single timepoint of imaging data from 100 subjects out of an aging cohort. Overall, HSD establishes improved shape correspondence with reduced mean curvature deviation (10.94% less on average per subject, paired t-test: p <10-10) and reduced registration distortion (FreeSurfer: average 41.91% distortion per subject, HSD: 18.63%, paired t-test: p <10-10). Furthermore, HSD introduces less distortion than FreeSurfer in the areas identified in the individual components that were extracted by surface-based independent component analysis (ICA) after spatial smoothing and time series normalization. Consequently, we show that FreeSurfer capture individual components with globally similar but locally different patterns in ICA in visual inspection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.