Breast cancer is the most common cancer diagnosed in women and causes over 40,000 deaths annually in the United States. In early-stage, HR+, HER2- invasive breast cancer, the Oncotype DX (ODX) Breast Cancer Recurrence Score Test predicts the risk of recurrence and the benefit of chemotherapy. However, this gene assay is costly and time-consuming, making it inaccessible to many patients. This study proposes a novel deep-learning approach, Deep-ODX, which performs ODX recurrence risk prediction based on routine H&E histopathology images. Deep-ODX is a multiple-instance learning model that leverages a cross-attention neural network, for instance, aggregation. We train and evaluate Deep-ODX on a whole slide image dataset collected from 151 breast cancer patients. As a result, Deep-ODX achieves 0.862 AUC on our dataset, outperforming the existing deep learning models. This study indicates that deep learning methods can predict ODX results from histopathology images, offering a potentially cost-effective prognostic solution with broader accessibility.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.