PRIMA addresses questions about the origins and growth of planets, supermassive black holes, stars, and dust. Much of the radiant energy from these formation processes is obscured and only emerges in the far infrared (IR) where PRIMA observes (24–261 um). PRIMA’s PI science program (25% of its 5-year mission) focuses on three questions and feeds a rich archival Guest Investigator program: How do exoplanets form and what are the origins of their atmospheres? How do galaxies’ black holes and stellar masses co-evolve over cosmic time? How do interstellar dust and metals build up in galaxies over time? PRIMA provides access to atomic (C, N, O, Ne) and molecular lines (HD, H2O, OH), redshifted PAH emission bands, and far-IR dust emission. PRIMA’s 1.8-m, 4.5-K telescope serves two instruments using sensitive KIDs: the Far-InfraRed Enhanced Survey Spectrometer (continuous, high-resolution spectral coverage with over an order of magnitude improvement in spectral line sensitivity and 3-5 orders of magnitude improvement in spectral survey speed) and the PRIMA Imager (hyperspectral imaging, broadband polarimetry). PRIMA opens new discovery space with 75% of the time for General Observers.
The apparent youthfulness of Venus’ surface features, given a lack of plate tectonics, is very intriguing; however, longduration seismic observations are essentially impossible given the inhospitable surface of Venus. The Venus Airglow Measurements and Orbiter for Seismicity (VAMOS) mission concept uses the fact that the dense Venusian atmosphere conducts seismic vibrations from the surface to the airglow layer of the ionosphere, as observed on Earth. Similarly, atmospheric gravity waves have been observed by the European Venus Express’s Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument. Such observations would enable VAMOS to determine the crustal structure and ionospheric variability of Venus without approaching the surface or atmosphere. Equipped with an instrument of modest size and mass, the baseline VAMOS spacecraft is designed to fit within an ESPA Grande form factor and travel to Venus predominantly under its own power. Trade studies have been conducted to determine mission architecture robustness to launch and rideshare opportunities. The VAMOS mission concept was studied at JPL as part of the NASA Planetary Science Deep Space SmallSat Studies (PSDS3) program, which has not only produced a viable and exciting mission concept for a Venus SmallSat, but has also examined many issues facing the development of SmallSats for planetary exploration, such as SmallSat solar electric propulsion, autonomy, telecommunications, and resource management that can be applied to various inner solar system mission architectures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.