Since the advent of the so-called “Newspace” approach, new actors of the space industry have replaced prudent space qualification by spectacular trial and error approaches. While such disruptive method generates emulation to reduce qualification, it remains that space industry face very challenging environmental stresses such as high mechanical requirements, operation in vacuum and radiations. The purpose of this paper is to give an overview of the application of Newspace methodology that has been applied for the demonstrator FOLC2.
Two types of multimode fibers (50μm and 400μm) are going to be used for the scalar sensor of the JUICE (Jupiter Icy Moon Explorer program) magnetometer. This optical sensor will be placed at the end of a boom and these multimode fibers will be used to transmit modulated laser light through the sensor, the light source and the detector electronics being located within the spaceship. The fibers will be exposed to very low temperatures while the optical connectors will be more protected. The simulation of the optical budget did not allow to assure that the optical power transmitted through the fibers would be OK within the entire thermal range. A 3-chambers thermal cycling test was proposed to thermally cycle in a synchronized way to different temperature plateaus, both high and low, while monitoring the transmitted optical power. Some pieces of fibers and mating connectors were stabilized to one temperature while others were at other values. The temperature ranges for each chamber were: -190ºC to 120ºC for one chamber, -160ºC to 100ºC for the second one and -80ºC to +45ºC for the third one. The light source used for the test was developed by the institute of experimental physics at TUG Graz using exactly the same lasers that will be used for JUICE. The stability of the setup was assured using a reference path. This paper presents the main challenges for this test and the results obtained.
A set of optical fiber assemblies has been developed and successfully qualified for its use on a European space science mission to the icy moons of Jupiter (Jupiter Icy Moons Explorer, JUICE), to be launched in 2022. The paper gives an overview of the design challenges, the test methods used for failure detection and screening of the optical fiber cable assemblies as well as the further testing performed in the frame of a lot acceptance qualification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.