Achieving high degree of tunability in photonic devices has been a focal point in the field of integrated photonics for several decades, enabling a wide range of applications from telecommunication and biochemical sensing to fundamental quantum photonic experiments. We introduce a novel technique to engineer the thermal response of photonic devices resulting in large and deterministic wavelength shifts across various photonic platforms, such as amorphous Silicon Carbide (a-SiC), Silicon Nitride (SiN) and Silicon-On-Insulator (SOI). In this paper, we demonstrate bi-directional thermal tuning of photonic devices fabricated on a single chip. Our method can be used to design high-sensitivity photonic temperature sensors, low-power Mach-Zehnder interferometers and more complex photonics circuits.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.