PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
SPIE publishes accepted journal articles as soon as they are approved for publication. Journal issues are considered In Progress until all articles for an issue have been published. Articles published ahead of the completed issue are fully citable.
The prevalence of type 2 diabetes mellitus (T2DM) has been steadily increasing over the years. We aim to predict the occurrence of T2DM using mammography images within 5 years using two different methods and compare their performance.
Approach
We examined 312 samples, including 110 positive cases (developed T2DM after 5 years) and 202 negative cases (did not develop T2DM) using two different methods. In the first method, a radiomics-based approach, we utilized radiomics features and machine learning (ML) algorithms. The entire breast region was chosen as the region of interest for extracting radiomics features. Then, a binary breast image was created from which we extracted 668 features and analyzed them using various ML algorithms. In the second method, a complex convolutional neural network (CNN) with a modified ResNet architecture and various kernel sizes was applied to raw mammography images for the prediction task. A nested, stratified five-fold cross-validation was done for both parts A and B to compute accuracy, sensitivity, specificity, and area under the receiver operating curve (AUROC). Hyperparameter tuning was also done to enhance the model’s performance and reliability.
Results
The radiomics approach’s light gradient boosting model gave 68.9% accuracy, 30.7% sensitivity, 89.5% specificity, and 0.63 AUROC. The CNN method achieved an AUROC of 0.58 over 20 epochs.
Conclusion
Radiomics outperformed CNN by 0.05 in terms of AUROC. This may be due to the more straightforward interpretability and clinical relevance of predefined radiomics features compared with the complex, abstract features learned by CNNs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Image Perception, Observer Performance, and Technology Assessment
TOPICS: Breast, Digital breast tomosynthesis, Imaging systems, Breast density, Anatomy, Diagnostics, Tomography, Systems modeling, Spherical lenses, Quantum modeling
Digital phantoms are one of the key components of virtual imaging trials (VITs) that aim to assess and optimize new medical imaging systems and algorithms. However, these phantoms vary in their voxel resolution, appearance, and structural details. We investigate whether and how variations between digital phantoms influence system optimization with digital breast tomosynthesis (DBT) as a chosen modality.
Methods
We selected widely used and open-access digital breast phantoms created with different methods and generated an ensemble of DBT images to test acquisition strategies. Human observer performance was evaluated using localization receiver operating characteristic (LROC) studies for each phantom type. Noise power spectrum and gaze metrics were also employed to compare phantoms and generated images.
Results
Our LROC results show that the arc samplings for peak performance were ∼2.5deg and 6 deg in Bakic and XCAT breast phantoms, respectively, for the 3-mm lesion detection task and indicate that system optimization outcomes from VITs can vary with phantom types and structural frequency components. In addition, a significant correlation (p<0.01) between gaze metrics and diagnostic performance suggests that gaze analysis can be used to understand and evaluate task difficulty in VITs.
Conclusion
Our results point to the critical need to evaluate realism in digital phantoms and ensure sufficient structural variations at spatial frequencies relevant to the intended task. Standardizing phantom generation and validation tools may help reduce discrepancies among independently conducted VITs for system or algorithmic optimizations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Biomedical Applications in Molecular, Structural, and Functional Imaging
Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods. By comparing complete PLI to dMRI within the ferret optic chiasm (OC), we may investigate the potential of this PLI technique as a dMRI validation tool and gain insight into the microstructural and orientational sensitivity of this imaging method in different tissue thicknesses.
Approach
Post-mortem ferret brain tissue samples (whole brain, n=1 and OC, n=3) were imaged with both dMRI and complete backscattering Mueller matrix PLI. The specimens were sectioned and then reimaged with PLI. Region of interest and correlation analyses were performed on scalar metrics and orientation vectors of both dMRI and PLI in the coherent optic nerve and crossing chiasm.
Results
Optical retardance and dMRI fractional anisotropy showed similar trends between metric values and were strongly correlated, indicating a bias to macroscale architecture in retardance. Thick tissue displays comparable orientation between the diattenuation angle and dMRI fiber orientation distribution glyphs that are not evident in the retardance angle.
Conclusions
We demonstrate that backscattering Mueller matrix PLI shows potential as a tool for microstructural dMRI validation in thick tissue specimens. Performing complete polarimetry can provide directional characterization and potentially microscale anisotropy information not available by conventional PLI alone.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The color of Papanicolaou-stained specimens is a crucial feature in cytology diagnosis. However, the quantification of color using digital images is challenging due to the variations in the staining process and characteristics of imaging equipment. The dye amount estimation of stained specimens is helpful for quantitatively interpreting the color based on a physical model. It has been realized with color unmixing and applied to staining with three or fewer dyes. Nevertheless, the Papanicolaou stain comprises five dyes. Thus, we employ multispectral imaging with more channels for quantitative analysis of the Papanicolaou-stained cervical cytology samples.
Approach
We estimate the dye amount map from a 14-band multispectral observation capturing a Papanicolaou-stained specimen using the actual measured spectral characteristics of the single-stained samples. The estimated dye amount maps were employed for the quantitative interpretation of the color of cytoplasmic mucin of lobular endocervical glandular hyperplasia (LEGH) and normal endocervical (EC) cells in a uterine cervical lesion.
Results
We demonstrated the dye amount estimation performance of the proposed method using single-stain images and Papanicolaou-stain images. Moreover, the yellowish color in the LEGH cells is found to be interpreted with more orange G (OG) and less Eosin Y (EY) dye amounts. We also elucidated that LEGH and EC cells could be classified using linear classifiers from the dye amount.
Conclusions
Multispectral imaging enables the quantitative analysis of dye amount maps of Papanicolaou-stained cytology specimens. The effectiveness is demonstrated in interpreting and classifying the cytoplasmic mucin of EC and LEGH cells in cervical cytology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Differentiating primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is crucial because their prognosis and treatment differ substantially. Manual examination of their histological characteristics is considered the golden standard in clinical diagnosis. However, this process is tedious and time-consuming and might lead to misdiagnosis caused by morphological similarity between their histology and tumor heterogeneity. Existing research focuses on radiological differentiation, which mostly uses multi-parametric magnetic resonance imaging. By contrast, we investigate the pathological differentiation between the two types of tumors using whole slide images (WSIs) of postoperative formalin-fixed paraffin-embedded samples.
Approach
To learn the specific and intrinsic histological feature representations from the WSI patches, a self-supervised feature extractor is trained. Then, the patch representations are fused by feeding into a weakly supervised multiple-instance learning model for the WSI classification. We validate our approach on 134 PCNSL and 526 GBM cases collected from three hospitals. We also investigate the effect of feature extraction on the final prediction by comparing the performance of applying the feature extractors trained on the PCNSL/GBM slides from specific institutions, multi-site PCNSL/GBM slides, and large-scale histopathological images.
Results
Different feature extractors perform comparably with the overall area under the receiver operating characteristic curve value exceeding 85% for each dataset and close to 95% for the combined multi-site dataset. Using the institution-specific feature extractors generally obtains the best overall prediction with both of the PCNSL and GBM classification accuracies reaching 80% for each dataset.
Conclusions
The excellent classification performance suggests that our approach can be used as an assistant tool to reduce the pathologists’ workload by providing an accurate and objective second diagnosis. Moreover, the discriminant regions indicated by the generated attention heatmap improve the model interpretability and provide additional diagnostic information.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.