Open Access
24 November 2017 Data reduction pipeline for the CHARIS integral-field spectrograph I: detector readout calibration and data cube extraction
Timothy D. Brandt, Maxime Rizzo, Tyler Groff, Jeffrey Chilcote, Johnny P. Greco, N. Jeremy Kasdin, Mary Anne Limbach, Michael Galvin, Craig Loomis, Gillian Knapp, Michael W. McElwain, Nemanja Jovanovic, Thayne Currie, Kyle Mede, Motohide Tamura, Naruhisa Takato, Masahiko Hayashi
Author Affiliations +
Abstract
We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response and reconstructs the data cube using one of three extraction algorithms: aperture photometry, optimal extraction, or χ2 fitting. We measure and apply both a detector flatfield and a lenslet flatfield and reconstruct the wavelength- and position-dependent lenslet point-spread function (PSF) from images taken with a tunable laser. We use these measured PSFs to implement a χ2-based extraction of the data cube, with typical residuals of ∼5% due to imperfect models of the undersampled lenslet PSFs. The full two-dimensional residual of the χ2 extraction allows us to model and remove correlated read noise, dramatically improving CHARIS’s performance. The χ2 extraction produces a data cube that has been deconvolved with the line-spread function and never performs any interpolations of either the data or the individual lenslet spectra. The extracted data cube also includes uncertainties for each spatial and spectral measurement. CHARIS’s software is parallelized, written in Python and Cython, and freely available on github with a separate documentation page. Astrometric and spectrophotometric calibrations of the data cubes and PSF subtraction will be treated in a forthcoming paper.
CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Timothy D. Brandt, Maxime Rizzo, Tyler Groff, Jeffrey Chilcote, Johnny P. Greco, N. Jeremy Kasdin, Mary Anne Limbach, Michael Galvin, Craig Loomis, Gillian Knapp, Michael W. McElwain, Nemanja Jovanovic, Thayne Currie, Kyle Mede, Motohide Tamura, Naruhisa Takato, and Masahiko Hayashi "Data reduction pipeline for the CHARIS integral-field spectrograph I: detector readout calibration and data cube extraction," Journal of Astronomical Telescopes, Instruments, and Systems 3(4), 048002 (24 November 2017). https://doi.org/10.1117/1.JATIS.3.4.048002
Received: 26 May 2017; Accepted: 27 October 2017; Published: 24 November 2017
Lens.org Logo
CITATIONS
Cited by 50 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Sensors

Calibration

Spectrographs

Point spread functions

Signal to noise ratio

Iterated function systems

Photometry

Back to Top