The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a high-contrast imaging system installed at the 8-m Subaru Telescope on Maunakea, Hawaii. Due to its unique evolving design, SCExAO is both an instrument open for use by the international scientific community, and a testbed validating new technologies, which are critical to future high-contrast imagers on Giant Segmented Mirror Telescopes (GSMTs). Through multiple international collaborations over the years, SCExAO was able to test the most advanced technologies in wavefront sensors, real-time control with GPUs, low-noise high frame rate detectors in the visible and infrared, starlight suppression techniques or photonics technologies. Tools and interfaces were put in place to encourage collaborators to implement their own hardware and algorithms, and test them on-site or remotely, in laboratory conditions or on-sky. We are now commissioning broadband coronagraphs, the Microwave Kinetic Inductance Detector (MKID) Exoplanet Camera (MEC) for high-speed speckle control, as well as a C-RED ONE camera for both polarization differential imaging and IR wavefront sensing. New wavefront control algorithms are also being tested, such as predictive control, multi-camera machine learning sensor fusion, and focal plane wavefront control. We present the status of the SCExAO instrument, with an emphasis on current collaborations and recent technology demonstrations. We also describe upgrades planned for the next few years, which will evolve SCExAO —and the whole suite of instruments on the IR Nasmyth platform of the Subaru Telescope— to become a system-level demonstrator of the Planetary Systems Imager (PSI), the high-contrast instrument for the Thirty Meter Telescope (TMT).
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is an extremely modular high- contrast instrument installed on the Subaru telescope in Hawaii. SCExAO has a dual purpose. Its position in the northern hemisphere on a 8-meter telescope makes it a prime instrument for the detection and characterization of exoplanets and stellar environments over a large portion of the sky. In addition, SCExAO’s unique design makes it the ideal instrument to test innovative technologies and algorithms quickly in a laboratory setup and subsequently deploy them on-sky. SCExAO benefits from a first stage of wavefront correction with the facility adaptive optics AO188, and splits the 600-2400 nm spectrum towards a variety of modules, in visible and near infrared, optimized for a large range of science cases. The integral field spectrograph CHARIS, with its J, H or K-band high-resolution mode or its broadband low-resolution mode, makes SCExAO a prime instrument for exoplanet detection and characterization. Here we report on the recent developments and scientific results of the SCExAO instrument. Recent upgrades were performed on a number of modules, like the visible polarimetric module VAMPIRES, the high-performance infrared coronagraphs, various wavefront control algorithms, as well as the real-time controller of AO188. The newest addition is the 20k-pixel Microwave Kinetic Inductance Detector (MKIDS) Exoplanet Camera (MEC) that will allow for previously unexplored science and technology developments. MEC, coupled with novel photon-counting speckle control, brings SCExAO closer to the final design of future high-contrast instruments optimized for Giant Segmented Mirror Telescopes (GSMTs).
The Infrared Doppler (IRD) instrument is a fiber-fed high-resolution NIR spectrometer for the Subaru telescope covering the Y,J,H-bands simultaneously with a maximum spectral resolution of 70,000. The main purpose of IRD is a search for Earth-mass planets around nearby M-dwarfs by precise radial velocity measurements, as well as a spectroscopic characterization of exoplanet atmospheres. We report the current status of the instrument, which is undergoing commissioning at the Subaru Telescope, and the first light observation successfully done in August 2017. The general description of the instrument will be given including spectrometer optics, fiber injection system, cryogenic system, scrambler, and laser frequency comb. A large strategic survey mainly focused on late-type M-dwarfs is planned to start from 2019.
KEYWORDS: Sensors, Calibration, Spectrographs, Point spread functions, Signal to noise ratio, Photometry, Iterated function systems, Spectral resolution, Gemini Planet Imager, K band
We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response and reconstructs the data cube using one of three extraction algorithms: aperture photometry, optimal extraction, or χ2 fitting. We measure and apply both a detector flatfield and a lenslet flatfield and reconstruct the wavelength- and position-dependent lenslet point-spread function (PSF) from images taken with a tunable laser. We use these measured PSFs to implement a χ2-based extraction of the data cube, with typical residuals of ∼5% due to imperfect models of the undersampled lenslet PSFs. The full two-dimensional residual of the χ2 extraction allows us to model and remove correlated read noise, dramatically improving CHARIS’s performance. The χ2 extraction produces a data cube that has been deconvolved with the line-spread function and never performs any interpolations of either the data or the individual lenslet spectra. The extracted data cube also includes uncertainties for each spatial and spectral measurement. CHARIS’s software is parallelized, written in Python and Cython, and freely available on github with a separate documentation page. Astrometric and spectrophotometric calibrations of the data cubes and PSF subtraction will be treated in a forthcoming paper.
One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has ‘high’ and ‘low’ resolution operating modes. The high-resolution mode is used to characterize targets in J, H, and K bands at R70. The low-resolution prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS has completed commissioning and is open for science observations.
The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically, the relative alignment of the lenslet array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2 as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being delivered to the Subaru telescope in April 2016. This paper is a report on the laboratory performance of the spectrograph, and its current status in the commissioning process so that observers will better understand the instrument capabilities. We will also discuss the lessons learned during the testing process and their impact on future high-contrast imaging spectrographs for wavefront control.
SCExAO is the premier high-contrast imaging platform for the Subaru Telescope. It offers high Strehl ratios at near-IR wavelengths (y-K band) with stable pointing and coronagraphs with extremely small inner working angles, optimized for imaging faint companions very close to the host. In the visible, it has several interferometric imagers which offer polarimetric and spectroscopic capabilities. A recent addition is the RHEA spectrograph enabling spatially resolved high resolution spectroscopy of the surfaces of giant stars, for example. New capabilities on the horizon include post-coronagraphic spectroscopy, spectral differential imaging, nulling interferometry as well as an integral field spectrograph and an MKID array. Here we present the new modules of SCExAO, give an overview of the current commissioning status of each of the modules and present preliminary results.
The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) being built for the Subaru telescope. CHARIS will take spectra of brown dwarfs and hot Jovian planets in the coronagraphic image provided by the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) and AO188 adaptive optics systems.1, 2 The system is designed to detect objects five orders of magnitude dimmer than their parent star down to an 80 milliarcsecond inner working angle. For characterization, CHARIS has a high-resolution prism providing an average spectral resolution of R82, R69, and R82 in J, H, and K bands respectively. The so-called discovery mode uses a second low-resolution prism with an average spectral resolution of R19 spanning 1.15-2.37 microns (J+H+K bands). This is unique compared to other high contrast IFS designs. It augments low inner working angle performance by reducing the separation at which we can rely on spectral differential imaging. The principal challenge for a high-contrast IFS is quasi-static speckles, which cause undue levels of spectral crosstalk. CHARIS has addressed this through several key design aspects that should constrain crosstalk between adjacent spectral features to be below 1%. Sitting on the Nasmyth platform, the alignment between the lenslet array, prism, and detector will be highly stable, key for the performance of the data pipeline. Nearly every component has arrived and the project is entering its final build phase. Here we review the science case, the resulting design, status of final construction, and lessons learned that are directly applicable to future exoplanet instruments.
Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope’s ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.
We describe the expected scientific capabilities of CHARIS, a high-contrast integral-field spectrograph (IFS) currently under construction for the Subaru telescope. CHARIS is part of a new generation of instruments, enabled by extreme adaptive optics (AO) systems (including SCExAO at Subaru), that promise greatly improved contrasts at small angular separation thanks to their ability to use spectral information to distinguish planets from quasistatic speckles in the stellar point-spread function (PSF). CHARIS is similar in concept to GPI and SPHERE, on Gemini South and the Very Large Telescope, respectively, but will be unique in its ability to simultaneously cover the entire near-infrared J, H, and K bands with a low-resolution mode. This extraordinarily broad wavelength coverage will enable spectral differential imaging down to angular separations of a few λ/D, corresponding to ~0".1. SCExAO will also offer contrast approaching 10-5 at similar separations, ~0".1–0".2. The discovery yield of a CHARIS survey will depend on the exoplanet distribution function at around 10 AU. If the distribution of planets discovered by radial velocity surveys extends unchanged to ~20 AU, observations of ~200 mostly young, nearby stars targeted by existing high-contrast instruments might find ~1–3 planets. Carefully optimizing the target sample could improve this yield by a factor of a few, while an upturn in frequency at a few AU could also increase the number of detections. CHARIS, with a higher spectral resolution mode of R ~ 75, will also be among the best instruments to characterize planets and brown dwarfs like HR 8799 cde and κ and b.
Princeton University is designing and building an integral field spectrograph (IFS), the Coronagraphic High Angular
Resolution Imaging Spectrograph (CHARIS), for integration with the Subaru Corona Extreme Adaptive Optics
(SCExAO) system and the AO188 adaptive optics system on the Subaru Telescope. CHARIS and SCExAO will
measure spectra of hot, young Jovian planets in a coronagraphic image across J, H, and K bands down to an 80
milliarcsecond inner working angle. Here we present the current status of the mechanical design of the CHARIS
instrument.
Princeton University is building the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS),
an integral field spectrograph (IFS) for the Subaru telescope. CHARIS is funded by the National Astronomical
Observatory of Japan and is designed to take high contrast spectra of brown dwarfs and hot Jovian planets in
the coronagraphic image provided by the Coronagraphic Extreme Adaptive Optics (SCExAO) and the AO188
adaptive optics systems. The project is now in the build and test phase at Princeton University. Once laboratory
testing has been completed CHARIS will be integrated with SCExAO and AO188 in the winter of 2016. CHARIS
has a high-resolution characterization mode in J, H, and K bands. The average spectral resolution in J, H, and
K bands are R82, R68, and R82 respectively, the uniformity of which is a direct result of a new high index
material, L-BBH2. CHARIS also has a second low-resolution imaging mode that spans J,H, and K bands with
an average spectral resolution of R19, a feature unique to this instrument. The field of view in both imaging
modes is 2.07x2.07 arcseconds. SCExAO+CHARIS will detect objects five orders of magnitude dimmer than
their parent star down to an 80 milliarcsecond inner working angle. The primary challenge with exoplanet
imaging is the presence of quasi-static speckles in the coronagraphic image. SCExAO has a wavefront control
system to suppress these speckles and CHARIS will address their impact on spectral crosstalk through hardware
design, which drives its optical and mechanical design. CHARIS constrains crosstalk to be below 1% for an
adjacent source that is a full order of magnitude brighter than the neighboring spectra. Since CHARIS is on the
Nasmyth platform, the optical alignment between the lenslet array and prism is highly stable. This improves the
stability of the spectra and their orientation on the detector and results in greater stability in the wavelength
solution for the data pipeline. This means less uncertainty in the post-processing and less overhead for on-sky
calibration procedures required by the data pipeline. Here we present the science case, design, and construction
status of CHARIS. The design and lessons learned from testing CHARIS highlights the choices that must be
considered to design an IFS for high signal-to-noise spectra in a coronagraphic image. The design considerations
and lessons learned are directly applicable to future exoplanet instrumentation for extremely large telescopes
and space observatories capable of detecting rocky planets in the habitable zone.
We report the current status of the Infrared Doppler (IRD) instrument for the Subaru telescope, which aims at detecting
Earth-like planets around nearby M darwfs via the radial velocity (RV) measurements. IRD is a fiber-fed, near infrared
spectrometer which enables us to obtain high-resolution spectrum (R~70000) from 0.97 to 1.75 μm. We have been
developing new technologies to achieve 1m/s RV measurement precision, including an original laser frequency comb as
an extremely stable wavelength standard in the near infrared. To achieve ultimate thermal stability, very low thermal
expansion ceramic is used for most of the optical components including the optical bench.
Princeton University is building an integral field spectrograph (IFS), the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), for integration with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system and the AO188 adaptive optics system on the Subaru telescope. CHARIS and SCExAO will measure spectra of hot, young Jovian planets in a coronagraphic image across J, H, and K bands down to an 80 milliarcsecond inner working angle. SCExAO’s coronagraphs and wavefront control system will make it possible to detect companions five orders of magnitude dimmer than their parent star. However, quasi-static speckles in the image contaminate the signal from the planet. In an IFS this also causes uncertainty in the spectra due to diffractive cross-contamination, commonly referred to as crosstalk. Post-processing techniques can subtract these speckles, but they can potentially skew spectral measurements, become less effective at small angular separation, and at best can only reduce the crosstalk down to the photon noise limit of the contaminating signal. CHARIS will address crosstalk effects of a high contrast image through hardware design, which drives the optical and mechanical design of the assembly. The work presented here sheds light on the optical and mechanical considerations taken in designing the IFS to provide high signal-to-noise spectra in a coronagraphic image from and extreme adaptive optics image. The design considerations and lessons learned are directly applicable to future exoplanet instrumentation for extremely large telescopes and space observatories capable of detecting rocky planets in the habitable zone.
High-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the optical design for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 138 × 138 spatial elements over a 2.07 arcsec × 2.07 arcsec field of view (FOV). CHARIS will operate in the near infrared (λ = 1.15 - 2.5μm) and will feature two spectral resolution modes of R ~ 18 (low-res mode) and R ~ 73 (high-res mode). Taking advantage of the Subaru telescope adaptive optics systems and coronagraphs (AO188 and SCExAO), CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS will undergo CDR in October 2013 and is projected to have first light by the end of 2015. We report here on the current optical design of CHARIS and its unique innovations.
Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exo-planets on the Subaru telescope. The IFS will provide spectral information for 140x140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (λ = 0.9-2.5μm) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.
Ground-based telescopes equipped with adaptive-optics (AO) systems and specialized science cameras are now capable of directly detecting extrasolar planets. We present the expected scientific capabilities of CHARIS, the Coronagraphic High Angular Resolution Imaging Spectrograph, which is being built for the Subaru 8.2 m telescope of the National Astronomical Observatory of Japan. CHARIS will be implemented behind the new extreme adaptive optics system at Subaru, SCExAO, and the existing 188-actuator system AO188. CHARIS will offer three observing modes over near-infrared wavelengths from 0.9 to 2.4 μm (the y-, J-, H-, and K-bands), including a low-spectral-resolution mode covering this entire wavelength range and a high-resolution mode within a single band. With these capabilities, CHARIS will offer exceptional sensitivity for discovering giant exoplanets, and will enable detailed characterization of their atmospheres. CHARIS, the only planned high-contrast integral field spectrograph on an 8m-class telescope in the Northern Hemisphere, will complement the similar instruments such as Project 1640 at Palomar, and GPI and SPHERE in Chile.
The High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO), is a coronographic simultaneous differential
imager for the new 188-actuator AO system at the Subaru Telescope Nasmyth focus. It is designed primarily to search
for faint companions, brown dwarves and young giant planets around nearby stars, but will also allow observations of
disks around young stars and of emission line regions near other bright central sources. HiCIAO will work in
conjunction with the new Subaru Telescope 188-actuator adaptive optics system. It is designed as a flexible,
experimental instrument that will grow from the initial, simple coronographic system into more complex, innovative
optics as these technologies become available. The main component of HiCIAO is an infrared camera optimized for
spectral simultaneous differential imaging that uses a Teledyne 2.5 μm HAWAII-2RG detector array operated by a
Sidecar ASIC. This paper reports on the assembly, testing, and "first light" observations at the Subaru Telescope.
We present an upgrade plan of the infrared camera and spectrograph for the Subaru Telescope (IRCS1-4) to introduce the high resolution spectroscopic mode (a resolving power; R=λ/Δλ > 70,000) in the infrared bands
(1.4-5.5 μm). To realize the compact and stable cooled instrument, we are developing the immersion grating5 with Si whose refractive index is ~ 3.4. The optics design is significantly compact (600mm × 250mm × 250mm) using the Si immersion grating, and it can be easily located beside or inside the IRCS main dewar. The IRCS
has been operating for 8 years with an extremely stable condition, and it is combined with the next generation adaptive optics system (AO1886) and the laser guide star system (LGS7) of the Subaru Telescope. The quick integration of the new high resolution spectrograph unit (HRU) can be expected by using the existing stable
instrument. The total performance with the designed optics is so good that the optical design could meet the required specifications. The image quality shows a strehl ratio of > 0.88 for the entire bands, and 24 scannings of the gratings can cover the 1.4-5.5 μm. We plan to fabricate the Si immersion grating for the actual astronomical
use in 2009, and the HRU will be built around 2011. It will be the first high sensitive infrared spectrograph with high spectral resolution capability in the northern hemisphere and with the laser guide star AO system.
Direct exploration of exoplanets is one of the most exciting topics in astronomy. Our current efforts in this field are concentrated on the Subaru 8.2m telescope at Mauna Kea, Hawaii. Making use of the good observing site and the excellent image quality, the infrared coronagraph CIAO (Coronagraphic Imager with Adaptive Optics) has been used for various kinds of surveys, which is the first dedicated cold coronagraph on the 8-10m class telescopes. However, its contrast is limited by the low-order adaptive optics and a limited suppression of the halo speckle noise.
HiCIAO is a new high-contrast instrument for the Subaru telescope. HiCIAO will be used in conjunction with the new adaptive optics system (188 actuators and/or its laser guide star - AO188/LGSAO188) at the Subaru infrared Nasmyth platform. It is designed as a flexible camera comprising several modules that can be configured into different modes of operation. The main modules are the AO module with its future extreme AO capability, the warm coronagraph module, and the cold infrared camera module. HiCIAO can combine coronagraphic techniques with either polarization or spectral simultaneous differential imaging modes. The basic concept of such differential imaging is to split up the image into two or more images, and then use either different planes of polarization or different spectral filter band-passes to produce a signal that distinguishes faint objects near a bright central object from scattered halo or residual speckles.
In this contribution, we will outline the HiCIAO instrument, its science, and performance simulations. The optical and mechanical details are described by Hodapp et al. (2006)1. We also present a roadmap of Japanese facilities and future plans, including ASTRO-F (AKARI), SPICA, and JTPF, for extrasolar planet explorations.
Subaru Telescope of National Astronomical Observatory of Japan is now finishing the commissioning of telescope and instruments at the summit of Mauna Kea, Hawaii. There will be an announcement for open usage in near future. The proposal management system of the Subaru Telescope (PMSS) which accept and retrieve proposals for open use of the Subaru Telescope is now constructed on the Subaru Telescope Network, the super computer system of the Subaru Telescope. The PMSS is developed on the object oriented data model, a Use Case Model, and a prototyping has been completed.
This article describes results of the first light observations of the Orion nebular an dL1551 IRS 5 carried out with the Subaru telescope in January 1999. The new RI images of the Orion nebula, taken under the seeing conditions of 0.2 inch-0.5 inch, cover the area of 5 by 5 feet centered on the Trapezium cluster, revealing details of the BN/KL region, the bright bar, and other conspicuous features as well as several new H2 emission sources. There are more than 500 stars detected; most of them are not visible in optical images and are embedded in the molecular cloud behind the nebula. Their K'-band luminosity function confirmed the bump around 12 mag with a tail toward the fainter end of 17 mag. Some of these most faint stars may be good candidates for young brown dwarfs. The J-band image of L1551 IRS 5 revealed a pair of twisted jets emanating possibly from each of the binary protostars. The two jets are spatially resolved for the first time from the ground, with wiggly and knotty appearance similar to the R-band image taken with the Hubble Space Telescope, suggesting that the appearance is intrinsic to them and is not caused due to the spatial variation of extinction. Successive grism spectroscopy proved that the jet emission predominantly arises from the (Fe II) lines.
We present a conceptual design of a future Japanese IR astronomical satellite: the HIII/L2 mission. We propose a 'warm launch' cooled telescope; the telescope is to be launched at ambient temperature and is to be cooled in orbit to 4.5K by a modest cryogenic cooler with the help of radiative cooling. Since liquid helium and hence a heavy vacuum vessel are not longer required, the warm launch design reduces the weight of the satellite dramatically. We propose to launch this satellite into a halo orbit around S- E L2, one of the Sun-Earth Lagrangian liberation points. The S-E L2 is an ideal orbit for IR astronomy, since (1) radiative cooling can become very effective, and (2) by the Japanese H-IIA launching vehicle. This mission focuses on high-resolution mid- to far-IR observations with unprecedented sensitivity, since the large aperture reduces confusion noise and the cooled optics suppresses instrumental background radiation. The HII/L2 mission is an ideal observatory-type platform to make follow-up observations to the ASTRO-F/IRIS survey mission. The target launch year is 2010.
The Subaru Telescope introduces a tip-tilt and chopping mechanism for an IR secondary mirror, which is of ULE light weight type, 1.3 m in diameter and 180 kg in weight. Performance targets of the tip-tilt and chopping mechanism are 30 Hz control band width with 0.01' resolution for tip- tilt and 30' amplitude with frequency of 5 Hz for chopping. To archive these targets, a system combining 6-point dynamic drive mechanism and 15-point passive support mechanism against for gravity are developed and compact actuators of electric magnet type for the drive mechanism are employed. Test with a dummy mirror shows that the performance target are achieved. This paper describes the design and test results of the tip-tilt and chopping mechanism.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.