PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Ion beam figuring (IBF) using inert gas (e.g. Ar) and (Reactive) ion beam etching [(R)IBE] gain growing interest in precision optical surface processing, RIBE mainly for proportional transfer of 3D-resist masks structures in hard optical materials and IBF for finishing and nanometer precision surface figuring in high performance optics technology. Ion beam and plasma jet etching techniques related to different optical surface figuring requirements have been developed at IOM during the last decade. Some of these techniques have been proven to be mature for application in industrial production. The developmental work include material related process tuning with respect to enhance the processing speed and to improve surface roughness and waviness, further various processing algorithms related to different surface figure requirements and processing related equipment modification. Plasma jet assisted chemical etching is under development with respect to efficient machining techniques for precision asphere fabrication. The paper gives an overview of precision engineering techniques for optical surface processing focusing on the status of ion beam and plasma techniques. The status of the proportional transfer of 3D micro-optical resist structures (e.g. micro-lens arrays, blazed fresnel lens structures) into hard optical and optoelectronic materials by (reactive) ion beam etching will be summarized.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Axel Schindler, Thomas Haensel, Dieter Flamm, Wilfried Frank, Georg Boehm, Frank Frost, Renate Fechner, Frieder Bigl, Bernd Rauschenbach, "Ion beam and plasma jet etching for optical component fabrication," Proc. SPIE 4440, Lithographic and Micromachining Techniques for Optical Component Fabrication, (9 November 2001); https://doi.org/10.1117/12.448043