Paper
4 July 2000 Using differential confocal microscopy to detect the phase transition of the membrane of giant unilamellar liposomes
Author Affiliations +
Abstract
Giant unilamellar lipsomes (diameter $GTR 10 (mu) m) are important for cell-membrane research and controlled drug delivery. Mechanical properties of unilamellar lipsomes in different physiological conditions are crucial for their applications. For example, liquid-gel phase transition of the bilayer membrane under different temperatures determines the stability and activity of liposomes. Bending rigidity is the most closely related mechanical property to phase transition. Owing to the flexible nature of bilayer membranes, accurate measurements of the bending rigidity of membranes are difficult. Here we report an all-optical technique to directly measure the bending modulus of unilamellar lipsomes. We use differential confocal microscopy, a far-field optical profilmetry with 2-nm depth resolution to monitor the thermal fluctuations and the deformation of unilamellar lipsomes. From the amplitude changes of thermal fluctuations along with temperature we can directly determine the phase-transition temperature of the membrane structure. We then employ optical force to induce sub-micrometer deformation of the unilamellar lipsomes. From the deformation we can obtain their bending rigidity with simple calculation. We find the bending modulus decreases from 8-11 pico-erg to 0.5 to 0.9 pico-erg as the liposomes are heated across the phase-transition temperature. All measurements are done without contacting the samples and the shapes of the liposomes remain the same after the experiments.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Chau-Hwang Lee, Wan-Chen Lin, and Jyh-Yang Wang "Using differential confocal microscopy to detect the phase transition of the membrane of giant unilamellar liposomes", Proc. SPIE 4082, Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, (4 July 2000); https://doi.org/10.1117/12.390535
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Confocal microscopy

Temperature metrology

Objectives

Reflectivity

Microscopes

Optical testing

Optical microscopes

Back to Top