Chapter 1
Introduction

This chapter introduces the fundamentals of diffractive optics, the similarities
and differences between diffractive and refractive optics, the advantages of
diffractive optics, and current challenges in this field. A quick review of the
theoretical formulation of diffraction is presented, along with different
theoretical approximations and their validity regimes.

1.1 Fundamentals of Diffractive Optics
1.1.1 Introduction

Diffraction was first observed by Francesco Maria Grimaldi in the year 1665.
It was Grimaldi who first coined the term diffraction.! The study of
diffraction was continued by Sir Isaac Newton,” James Gregory,” Thomas
Young, etc.* Later, Augustin-Jean Fresnel used Huygens’ wave principle to
explain the diffraction phenomenon. Much later, scientists such as Poincareé,
Sommerfeld, Kirchhoff, and Kottler, to name a few, added to the knowledge
of the field.> Sommerfeld himself defined diffraction by what it was not,
stating that diffraction could be considered to be any bending of rays not
caused by refraction or reflection. Optical elements, surfaces, or interfaces
change the behavior of light, or, in other words, change the basic properties of
light, such as its amplitude, phase, direction, and polarization. These changes
are brought about through the optical processes of refraction, reflection,
interference, and diffraction. However, the amount of control and the ease of
fabricating an element that exploits one or more of these processes vary. This
book is about how to design diffractive elements that will modify some or all
of these properties to create a desired behavior. The elements can be either
reflective or transmissive in nature.

Diffraction, or, more correctly, diffractive optics, are now commonly used
in many experimental and commercial systems.® The reasons for this are
several: our use of light has gone far beyond illumination and communication.
These, as well as the many other applications, such as imaging and sensing,
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require light to be manipulated in complicated ways, yet in compact systems.
Diffractive optical elements (DOEs) are able to address both of these
requirements simultaneously. With diffractive optics, as the name suggests,
the main phenomenon used is diffraction rather than refraction. In this first
chapter, we look at the transition between these effects. We examine the
specific circumstances in which optics can be considered refractive or
diffractive. This is important because the manner of describing them will be
quite different. Most optical elements will exhibit a combination of refractive
and diffractive properties. However, the dimensions of the eclement will
determine the dominating phenomenon. By dimensions, we mean both the
overall dimensions as well as the feature sizes. When feature sizes approach
several wavelengths, an extended scalar theory is required, while for
subwavelength features, a rigorous vector theory will be required to describe
the element and its effect on light.’

In this book, we focus on elements that can be described by geometric
optics and the scalar theory. No special software is required, and because
feature sizes are relatively large, fabrication, too, is often simple. However,
more importantly, scalar theory suffices in many situations and allows one to
achieve fairly complex operations. The user will be introduced to different
techniques that can be used to design and fabricate diffractive elements for
specific applications. Special attention has been taken to present practical
guidelines for fabrication. Since fabrication often requires the use of
sophisticated, expensive equipment and consumables, it is prudent to carry
out detailed simulations before actually fabricating. We also present well-
commented programs in MATLAB® for direct use.

1.1.2 Refractive and diffractive optics

Diffraction is present in almost all phenomena involving light, although it
may not always be dominant. Consider the case of focusing light with the aid
of a refractive lens. Assuming the lens to be aberration-free, the smallest spot
size obtained at the focal plane is called a diffraction-limited spot. This is
because using conventional means it is impossible to focus light to a spot
smaller than the diffraction-limited spot due to diffraction at the edges of the
lens. With a refractive lens, image parameters are calculated based on
geometric laws instead of diffractive principles as most of the incident light
undergoes refraction, while only a small fraction of the input light undergoes
diffraction. This is true with slits of dimensions much larger than the incident
wavelength, as well. When the slit opening is large, it is a refraction-
dominated system, and when it is smaller (with respect to the wavelength), it is
a diffraction-dominated system, as shown in Fig. 1.1.

Diffraction can be qualitatively explained using Huygens’ wave principle.
Let us consider a plane wave. By Huygens’ principle, every point on a
wavefront acts as a source of secondary wavelets generating another plane
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Figure 1.1 Diffraction of light in slits with different widths: (a)—(c) decreasing slit widths
show increasing domination of diffraction.
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Figure 1.2 Diffraction of a plane wavefront with a Gaussian intensity profile at a single-slit
aperture.

wavefront. However, when part of the wavefront is blocked by a slit, the
wavefront bends at the edges, as shown in Fig. 1.2.

In refraction, light can be thought of as traveling in straight lines in a
medium of constant refractive index. Snell’s law applies at interfaces (surfaces
where the refractive index changes) and can be used to determine the new
direction. Refractive elements, in general, consist of a single bulk unit, whose
shape and refractive index determine its imaging properties. Diffractive
elements, unlike their refractive counterparts, are made of many different
zones. The final image is a coherent superposition of light diffracted from the
various zones. Every point on the aperture contributes to the intensity at one
location of the output. Of course, refraction will also take place. The resulting
behavior will, therefore, be a combination of both effects. For example, the
0™ diffraction order of a reflection grating is nothing but the light that obeys
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geometric optics laws. It should be clear that although diffraction is an
interference effect, these two effects are distinguished from each other by the
number of interacting beams. Most interferometers, for example, will create
two beams that interfere later in the optical path. In diffraction, an infinite
number of beams play a role.

The well-known Fresnel lens was invented by Augustin-Jean Fresnel in
1822 to replace the heavy, conventional spherical lenses used in lighthouses.’
Fresnel converted the bulk conventional spherical lens shown in Fig. 1.3(a) into
a thin Fresnel lens by arranging different sections of the conventional lens in a
plane, as shown in Fig. 1.3(b). The curvature of the material at the glass—air
interface and the refractive index of the glass material govern the light-bending
profile; hence, the inactive glass material present in the conventional lens can be
removed without altering the function of the device. In this example, the Fresnel
lens has been made by sectioning the original lens into three horizontal parts. It
behaves almost like the conventional lens except for extra diffraction effects
occurring at the boundaries between its different sections. What is important is
that the Fresnel lens is still a refractive optical element with dimensions of 7 and
d much greater than \, the wavelength of the incident light. However, if the
same element were to be designed with feature sizes closer to the wavelength of
light, then the resulting element would be predominantly diffractive.® In the
latter case, even though the function of the lens remains the same, wavefront
control is achieved by diffraction rather than refraction.

From the above discussion, it seems that it is relatively easy to design a
diffractive element from the shape information of an equivalent refractive
optical element (ROE), assuming that such an element exists. Let us study this
concept in some more detail.

In refractive optics, the bending of light occurs due to the geometry of the
structure and the index of refraction, while in diffractive optics, bending of
light occurs due to the features and the aperture edges. Given a particular
intensity distribution across an aperture, it is possible to design the features

(a) Plano-convex lens

(b) Fresnel lens d

Figure 1.3 Scheme showing the generation of a Fresnel lens from a conventional plano-
convex lens: (a) conventional lens and (b) Fresnel lens. If t and d > \, the lens is refractive. If
t and d are on the order of, or less than, the wavelength, the element is diffractive.
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Figure 1.4 (a) Refractive prism and (b) generation of a Fresnel prism from it. (c) Blazed
diffraction grating with dimensions on the order of the wavelength.

that will fill the aperture to obtain a desired intensity distribution at an output
plane. The first DOEs were modified versions of refractive elements with
feature sizes on the order of the incident wavelength. To understand the above
statement, let us consider the conversion of a prism into a diffraction grating.
In the refractive regime, a prism can be used to disperse light or change the
direction of an incident monochromatic light. A similar element in the
diffractive regime is a grating.

The construction of a diffraction grating from a prism is shown in Fig. 1.4.
The base angle of the prism and its refractive index are given by « and n,,
respectively. The refractive bulk prism is converted into a thin element using
Fresnel’s technique, as shown in Figs. 1.4(a) and (b). Figure 1.4(c) shows a
diffraction grating, which is similar to Fig. 1.4(b), except that the feature sizes
are closer to the wavelength of light with a period A and thickness 7. A Fresnel
prism is a refraction-dominated system, while a diffraction grating is a
diffraction-dominated one. A major difference arising because of this is the
fact that the former will bend the incident beam into one direction, while the
latter will generate multiple orders. The shape of the diffraction grating will
determine the number of orders and will be discussed in more detail in later
chapters. In order to force most of the diffracted light into a single diffraction
order, the diffraction grating must be blazed (i.e., have a triangular shape)
with a height or thickness ¢ given by

A
t:7<ng_1), (1.1)

which corresponds to a phase difference of 21.” Hence, the relationship between
a of the prism and A of the grating for normal incidence of light is given by
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) A
a = tan~! {m} . (1.2)

Equation (1.2) shows that the geometrical profile of the prism is related to the
period of the diffraction grating.

The deviation angle B of the prism with a base angle of a and refractive
index n, can be calculated using trigonometry as

B =sin"!(ngsina) — . (1.3)

In order to become familiar with the terms and the language of diffractive
optics, we briefly introduce the amplitude grating here. Many of the concepts
will directly hold true for a phase grating as well. The second chapter provides
a much more detailed look at gratings and methods by which to design and
simulate their behavior.

Imagine a structure comprising a number of reflective slits surrounded by
opaque regions, as shown in Fig. 1.5. The slits are periodically spaced with a
distance A. This structure defines a basic diffraction grating. Light is incident
at an angle of B; with respect to the grating normal, which is indicated as
vertical dashed lines in the figure. The question is what determines the angle(s)
B, of the beam after incidence on this surface? Since we have chosen reflective
slits, the light will travel back into the region of incidence, but we will not call
this reflection as the resulting intensity is due to the superposition of many
beams. For a more detailed description, we refer readers to a number of books
that discuss Huygens’ principle (every point in the slit acts a secondary source)
and scalar diffraction.' > Suffice to say that the multitudes of beams from each
slit interact with each other and result in an intensity pattern in the far field.
This pattern is not uniform, and the goal is to determine the locations of the
intensity peaks.

To arrive at the pattern, we look at two rays 4B and A’B’ that both
originated from the wavefront 4A4’. In other words, at the plane AA4’, both
rays started with the same phase. For the diffracted wave shown in the figure,
to represent an actual wave, BB’ should be a wavefront. That is, the path

Incident light

_-v Diffracted
light

Opaque regions |:| Reflective regions

Figure 1.5 Schematic of light diffraction in a reflective amplitude grating.
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length difference between AB and A’B’ must be equal to a multiple of the
wavelength A, as described in

nlA’B’ — I’leB = n’l)\o, (14)

where, n; and n, are the refractive indices seen by the incident and reflected
rays, respectively. Since both are in the same medium, n; =n,. With this
information, and comparing the triangles 44'B’ and BB’ A, the equation can
be rewritten as

A(sin B; — sin B,) = mh,, (1.5)

where, A = \¢/n;, and m is the order number. The implication of the order
parameter m is that Eq. (1.5) is satisfied for different values of B,. Therefore,
the equation could be more accurately be written as

A(sin B; — sin B,,,) = mN\, (1.6)

where, B, represents the m'™ diffraction order. Thus, a picture of what is
happening after diffraction from the grating slowly emerges. Unlike specular
reflection, where the reflected light travels in one direction only, or scattered
light disperses into a solid angle from a surface, several ‘diffraction’ orders
exist. One could think of this as reflection occurring in a finite number of
preferred directions. If the grating had been a transmissive one, then
refraction would occur in more than one direction. The condition m =0
represents the classical optics case. For example, in the above grating, the
condition m =0 results in B;=,, which is the law of reflection. For a
transmission grating, m = 0 would reduce the equation to Snell’s law. While
the equation allows us to predict the possible directions of travel, it gives us no
information about how much light travels in each order. This means that we
cannot predict the efficiency of the diffractive structure. Obviously, efficiency
is important, and later chapters will include further equations that can be used
during the design stage to maximize it. The convention used to name the
various orders of a grating is indicated in Fig. 1.6. The figure can be used for
either a transmission or reflection grating. Angles are always measured from
the grating normal. The sign of the angle depends on the direction of rotation
of the ray from the normal (indicated by =+ signs in the figure). On the other
hand, the sign of the order parameter m depends on the direction from the 0"
order. For example, for the reflected m = +1 order in the figure, angle B; is
positive but would have been negative if the ray happened to lie on the other
side of the normal.

For simplicity, normal incidence is considered, and for the 1 diffraction
order, Eq. (1.6) can be simplified. The diffraction angle B; of the I*
diffraction order of the diffraction grating with a period of A is given by
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Figure 1.6 Orders of a grating.

B, =sin~! <%> (1.7)

By substituting Egs. (1.1) and (1.2) in (1.7), B; can be expressed as
By =sin~'[(n, — 1) tanal. (1.8)

From Egs. (1.3) and (1.8), for cases where the base angle of prism « and the
refractive index 7, are small, or where the period of the diffraction grating A is
large, Egs. (1.3) and (1.8) reduce to a simpler equation:

B =B=(ng—1a. (1.9)

This is an interesting result. When the period of the diffraction grating is large,
it behaves more like a refractive element; however, its behavior is different
when A approaches N. To quantitatively understand this, a few typical cases
are considered with n, = 1.1, 1.5, and 1.9. The deviation angles 8 of a prism
and diffraction angles B; of a grating were calculated using Egs. (1.3) and
(1.4), respectively, and plotted against base angles « of a prism, as shown in
Fig. 1.7.

For smaller values of «, there is good overlap between B and ;.
Therefore, for DOEs with small diffraction angles, it is possible to derive the
profile blueprint from a ROE with an equivalent function. Examples of some
other elements that can be achieved in a similar way are the axicon,” circular
grating,'® ring lens,'! and diffractive ring lens.'> We must however, always
keep in mind that in any optical element, both refraction and diffraction
coexist. The dominating effect, dictated by the feature sizes, decides whether
the element is diffractive or refractive.

Several researchers have studied the transition between refractive and
diffractive elements quite extensively.'>'* As discussed, this can be done by
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Figure 1.7 Plot of deviation angle B of a prism (solid line) and diffraction angle B4 of
a grating (dashed line) versus variations in the base angle o of the prism for n,=1.1, 1.5,
and 1.9.

changing the feature sizes of an element and studying its behavior as the size
changes. In particular, the dispersive nature will vary depending on the feature
size. Again, let us take the examples of a lens and a prism. In the latter case,
we will compare a 1D (diffractive) grating and a (refractive) prism, as both
result in an off-axis deflection of the incident beam.'* In both cases, the
refractive index and, hence, the wavelength plays a role in the amount of
deflection. It is shown in Ref. 14 that the nature of dispersion is quite different
for the refractive and diffractive cases, with the latter experiencing much
greater dispersion for the same angle of deflection. Even more interesting is
the negative sign of the grating dispersion compared to that of the prism. In
other words, when light bends, different wavelengths bend by different
amounts, and the direction of bending is determined by the base optical
behavior of the element. The opposite signs of the dispersion of refraction and
diffraction have been used from very early on to provide some amount of
achromatization.'> Recent publications show that this concept is still being
manipulated for achromatization.'®!” In the refractive case, dispersion caused
by the material dominates, whereas, the structure of the element controls the
diffractive dispersion. Given these two very different causes, diffraction and
refraction cannot be balanced in a single element. Researchers are now
studying harmonic DOEs that lie somewhere between these two distinct
effects.'® In conclusion, it is clear that the structure of a DOE can be deduced
from the structure of a ROE that performs a similar optical operation.

1.1.3 Scalar diffraction formulation

Diffraction is a phenomenon that is observable due to the wave nature of light.
The effects of diffraction are more noticeable when light interacts with an
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interface or an optical element whose dimensions are close to that of the incident
wavelength. Diffraction theory allows one to calculate how wavefronts change
and how they travel after interaction with such an element. A complete analysis
of a diffractive system can be carried out using the vector diffraction
equations.'®?® Vector diffraction formulation can be used to understand the
behavior of DOEs with features both superwavelength as well as subwavelength.
This formulation can determine not only the intensity and phase profiles at
different planes, but also the state of polarization at these planes. However, the
formulation is quite difficult to implement and also to simulate. For most of the
analysis, which does not involve DOEs with features smaller than or equal to
the wavelength of light, and does not need to explain the polarization state of the
diffracted field, the simpler scalar diffraction formulation is sufficient. The focus
of this text book is only on superwavelength DOEs; therefore, the discussion is
limited only to the scalar diffraction formulation. Few models have been
developed that can explain the polarization state of a diffracted field using only
scalar diffraction formulation.?' The scalar diffraction formulation is described
in numerous text books.*> With the assumption that the features of the DOE are
larger than the wavelength of the source, and for spherical wavefronts, the scalar
diffraction formula based on Huygens—Fresnel theory is given by

E(u,v) :)\ijJJA(x,y)%(Zikr)dxdy, (1.10)

where (x, y) is the diffraction plane, and (u, v) is the observation plane. The
radius r can be given by

r=4/22+Wu—x)?2+(—-y)> (1.11)

For smaller angles, spherical wavefronts can be approximated as
parabolic wavefronts, which results in the Fresnel approximation formula.
Now the radius can be approximated as

=P () e

The Fresnel diffraction formula is given by

ki) k
E(u,y) = S J J {A(x,y) exp[jz(xz +y2)] }
J Yo (1.13)

X exp [—ji—: (xu + yv)] dxdy.

It can be seen that the Fresnel diffraction formula is relatively simpler
to solve (as is simulating the diffraction field) compared to the prior
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Huygens—Fresnel approximation. However, this approximation will fail in the
region closer to the diffraction plane and for large diffraction angles.
Equation (1.13) is valid only when

2 >>1[(x—u)2+(y—v)2]2 . (1.14)
4)\ max

Equation (1.13) for large values of z reduces to just a Fourier transform
operation, which is called the far-field approximation. This approximation,
also known as the Fraunhofer approximation, is valid only for very large

distances given by

k 2 2
o KEEHY) (1.15)
2

At these distances, the radius of the spherical wavefront is large, so a section
of the spherical wavefront can be approximated to be a plane wavefront.
A summary of the approximations of the scalar diffraction formulation is shown
in Fig. 1.8. In this book, only the Fresnel and Fraunhofer approximations are
used for analysis of DOEs. The scalar diffraction integrals can be thought of as
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Figure 1.8 Depiction of the validity of different approximations of the scalar diffraction
formula.
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scalar diffraction propagators. In other words, they are a means to find the
diffraction amplitude and phase at any plane, given these values at an earlier
plane. These integral equations are used in their analog continuous form
only when analytic solutions for the diffraction problem being studied exist.
For all other cases, different techniques can be used to solve them to
determine the diffraction field at some plane. While the similarity to a
Fourier transform (FT) is clear when studying Fraunhofer diffraction, even
diffraction at closer planes can use the FT concept, as is obvious from
Eq. (1.13). (Further details are provided in Chapter 4.) Therefore, one
common method to solve scalar diffraction integral equations uses
discretized Fourier transforms (DFTs). One particularly efficient and fast
algorithm that implements a DFT is known as the fast Fourier transform
(FFT). This algorithm carries out the FT operation for N discrete samples in
O(N log N) steps, rather than the O(N?) steps of a standard FT operation.
Algorithms that carry out a DFT with O(N?) steps can also be used. These
algorithms have other benefits; for example: the size of the matrices (arrays)
used does not need to be powers of 2; there is more freedom in choosing
matrix sizes (hence, more freedom in fixing resolution at the diffraction
plane); they can tackle problems that cannot be handled by the FFT
algorithm, etc. While these benefits may seem attractive, they come at the
price of longer computation times. In addition to techniques that use the FT
as a basis for a diffraction solution, other beam propagation techniques such
as wavelets,?? finite element methods,?® etc.,”*2° can be used.

1.2 Software for Designing Diffractive Optics

In the preface, the importance of diffractive optics was discussed. Given its
many uses, clearly, the ability to design and simulate DOE:s is critical. Most
researchers use their own programming scripts to do this. And, of course, the
goal of this book is to help such a researcher. For the sake of completeness,
however, we mention other resources® >’ that are available.

The company Wyrowski Photonics UG?” markets a software package
called VirtualLab Fusion.?® Its diffractive optics toolbox can be used for the
generation of micro- and diffractive optical elements. With this software, a
variety of DOEs such as beam shapers, splitters, and diffusers can be
designed. It also has a grating toolbox with which rigorous analysis of grating
can be carried out. VirtualLab Fusion can then be used to analyze imaging in
systems containing gratings and diffractive or hybrid lenses.

GSolver,” on the other hand, is a software that allows rigorous analysis
of all types of diffractive gratings. It provides a vector solution for complex
periodic grating structures.

DiffractMOD™ is used to model a wide range of devices including
diffractive optics, such as diffractive optical elements, subwavelength periodic
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structures, and photonic bandgap crystals. It is based on rigorous coupled-
wave analysis (RCWA) and can handle both metallic and dielectric materials,
allowing for the inclusion of plasmonic effects as well.

Even software like OSLO®' and Zemax* that typically are used for
modeling and designing refractive optics allow some amount of diffractive
modeling. They do so without using any of the diffraction equations and,
therefore, can most easily deal with relatively simple periodic diffractive
elements. Diffraction is included, taking into account the fact that a diffractive
surface introduces additional ray bending over what a refractive element
would achieve.

While a variety of software tools exist, the authors believe that much of
the required modeling can be done by the users themselves, with software such
as MATLARB, Scilab, Python, or C. This is especially true for scalar diffractive
optics. The advantage, apart from cost, is that design and simulation
programs can be tuned exactly to the users’ requirements.

1.3 Concluding Remarks

A brief history of diffraction and the similarities and differences between
DOEs and ROEs are presented in the previous sections with a glimpse of the
fundamental scalar diffraction formula. In this concluding section, the scope
of research and development in diffractive optics is summarized followed by
the contents of the following chapters.

DOEs in general are smaller and thinner compared to their refractive
equivalents.>® Additionally, DOEs can be engineered to nanometer accuracy
due to the remarkable growth in the field of micro/nanolithography and
fabrication techniques.** DOEs can be fabricated with feature sizes from few
hundreds of nanometers to few millimeters. Extremely fine features smaller
than the diffraction limit of light can be achieved using extreme ultraviolet
lithography,®® electron beam lithography,®®?” and focused ion beam
lithography.*®3° The transfer of smaller features to glass and hard substrates
can be carried out using sophisticated etching processes;***' therefore,
elements that can withstand higher optical powers can be fabricated. DOEs
can also be designed and implemented for other parts of the electromagnetic
spectrum, such as x rays, etc.*>** Hence, DOEs can replace refractive optics
in various applications.**

In many optical setups with refractive optical elements,*’ some elements
are paired without any relative motion between them. In such cases, it is often
convenient to replace these eclements with one DOE with equivalent
functionality (of the replaced elements).*® Multiple functions such as beam
re-orientation, focusing, and splitting have been reported.*’** Hence, it is
possible to convert bulky optical systems into lightweight, compact systems
with high-quality beam profiles in less space. In the case of DOEs, the
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resolution of the element can be less than 10 nm, which is at least three orders
of magnitude higher than that of conventional spatial light modulators; in
addition, DOEs are lighter. Clearly, one can obtain a resolution better than
that of refractive elements while maintaining a compact optics configuration.
Besides the above advantages, some beam profiles, such as vortex beams,
chiral beams, etc.,*>* cannot be generated using ROEs. Therefore, it is
possible to revolutionize the field of optical instrumentation by replacing
ROEs with equivalent lightweight DOEs and DOE- based optical instru-
ments. Recent research reports the fabrication of DOEs on the tip of optical
fiber, where the patterned fiber can be attached directly to a fiber laser to
achieve high-power beam shaping.>® These results could be useful for a wide
variety of biomedical applications such as laser-based surgery,** endoscopy,>
laparoscopy,>® etc.
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