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Preface

The field of optics can generally be divided into four subfields or disciplines,
namely, geometrical, wave, statistical, and quantum optics. Geometrical or
ray optics is by far the oldest and most mature subfield, having been studied
since the time of Fermat and Newton. Geometrical optics models light as a
ray and is accurate in the asymptotic limit as the wavelength goes to zero. As a
result, geometrical optics does not accurately predict phenomena such as
diffraction (although it can be extended to include such phenomena via the
geometrical theory of diffraction and the uniform theory of diffraction). Wave
optics—developed by giants like Fresnel, Young, Maxwell, Rayleigh, and
Sommerfeld—includes diffraction, interference, and all other wave phenom-
ena and is the second most mature discipline. The most popular application of
wave optics theory is Fourier optics, so much so that the two are now
synonymous. Both geometrical and wave optics are extensively used in optical
design and have been the subject of numerous theoretical and computational
textbooks.

Statistical optics, as it is commonly defined, extends both geometrical and
wave optics to include random optical sources, propagation through or
scattering from random media, and detector noise. Major contributors to the
discipline include Wolf, Goodman, Tatarskii, and Ishimaru. Indeed, Wolf
(co-authored with Mandel) and Goodman, respectively, are the authors of
what are universally considered the definitive texts on the subject: Optical
Coherence and Quantum Optics and Statistical Optics, now in its second
edition. These books present the theoretical foundations of statistical optics
and classical optical coherence in excellent physical detail.

Quantum optics arose as a discipline around the time of the first lasers in
the 1960s. It includes all aspects of geometrical, wave, and statistical optics
and accurately predicts the interaction of individual photons with atoms, the
inner workings of lasers, squeezed light states, photoelectric detection, etc.
Significant contributors to quantum optics include some of the most brilliant
minds in physics—Einstein, Schrödinger, Bohr, Heisenberg, Born, and
Mandel. Applications that employ statistical and quantum optics theory are
legion: in the case of the former, adaptive optics, optical communications,
optical tweezing, directed energy, and remote sensing, and in the latter, lasers,
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quantum communications, and quantum computing. This list is by no means
all-inclusive.

While some of the technologies and applications listed above are well
established, many are still in development, and consequently, active areas of
research. Statistical optics is a little more mature in this regard. In recent
years, statistical optics and classical optical coherence theory have been
applied to engineer and synthesize random fields for use in specific
applications, many of which are mentioned above. Indeed, techniques to
physically generate optical fields with prescribed correlation or coherence
properties can be found throughout the published literature. Two recent
papers in Progress in Optics entitled “Generation of partially coherent beams”
(Prog. Opt. 2017, 62, 157–223) and “Applications of optical coherence
theory” (Prog. Opt. 2020, 65, 43–104) provide excellent summaries of these
topics. As novel technologies and applications increasingly exploit optical
coherence, accurate simulation of stochastic optical fields becomes critically
important. Recent books on statistical optics have started to include sections
on simulating random optical fields. Nevertheless, unlike geometrical and
wave optics, currently there is no text (to my knowledge) devoted to this topic.

This book aims to be the first by presenting current approaches for
simulating random optical fields with prescribed statistical properties. In
particular, this text demonstrates how to generate optical fields, which are
sample functions drawn from a random process described by a correlation
function. These random fields can then be used in simulations of optical
systems, propagation through random or complex media, scattering from
surfaces, etc., which are described in other computational optics texts, like
Computational Fourier Optics (SPIE Press, 2011), Optics Using MATLAB®

(SPIE Press, 2017), Numerical Simulation of Optical Wave Propagation (SPIE
Press, 2010), Computational Methods for Electromagnetic and Optical Systems
(CRC Press, 2011), and Computational Photonics (Wiley, 2010).

The secondary purpose of this book is as a teaching tool, augmenting the
theoretical concepts presented in Wolf’s and Goodman’s classic texts.
Traditionally, students of optics begin with geometrical and wave optics,
which are taught assuming deterministic optical fields. The transition to the
concept of a random optical field can be difficult to grasp, especially when
the mathematics requires understanding and applying random process theory.
On the other hand, by generating realizations of the random optical field, the
statistical optics problem simplifies to a deterministic geometrical or wave
optics problem with which students are more familiar. In the context of
statistical optics, this simulation is a single random experiment, and statistical
moments are computed from the outcomes of many such independent
experiments. It has been my experience that this Monte Carlo approach to
statistical optics provides a significant amount of insight into the underlying
physical phenomena, which greatly exceeds that from theory alone.
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This book is intended for senior undergraduate- and graduate-level students
studying optical physics and engineering as well as researchers or engineers
working in optics. The topics covered in this text require a working knowledge
of differential and integral calculus, probability and statistics, random
processes, linear systems, and MATLAB® programming. It is impossible to
include all the background information on a topic as broad as statistical optics
and keep the text at a manageable length. Therefore, this book includes
extensive reference lists where many of these details can be found.

This textbook is organized into six chapters and three appendices.
Chapter 1 briefly reviews scalar diffraction theory—including the plane wave
spectrum, Rayleigh–Sommerfeld, Fresnel, and Fraunhofer diffraction—before
discussing the foundational principles of scalar statistical optics. We begin with
the first-order or single-point statistics of polarized thermal and pseudo-thermal
light, presenting the probability density functions (PDFs) and statistical
moments of the instantaneous field and irradiance. We then proceed to
second-order (two-point) statistics of the optical field and review key concepts
such as the mutual coherence function, cross-spectral density (CSD) function,
the coherent-modes representation of the CSD function, the superposition rule,
and the van Cittert–Zernike theorem. We close the chapter with a review of
second-order irradiance statistics of thermal light sources, including the
covariance of irradiance, integrated irradiance, and intensity interferometry
also known as the Hanbury Brown and Twiss effect.

In Chapter 2, we present several methods for generating random scalar
fields given a CSD function. These simulation techniques include coherent
modes, pseudo-modes, and the superposition rule. Step-by-step instructions
are provided for implementing each of these techniques, and we generate
multiple random sources using these algorithms. All of the MATLAB scripts
are explained in detail prior to analyzing the results, and the source code is
provided in Appendix C and electronically as part of this book (see
supplemental material ).

Chapter 3 generalizes the theory presented in Chapter 1 to vector or
electromagnetic random fields. In this chapter, we begin by reviewing vector
diffraction theory, the polarization ellipse, Jones vectors, Stokes parameters,
and the Poincaré sphere. We then proceed to the first-order statistics of
partially polarized thermal light and discuss such concepts as the coherency
matrix, the degree of polarization, the polarization state of random fields, and
the PDFs of the Stokes parameters. This is followed, quite naturally, by a
review of the second-order moments of the optical field. The topics presented
here are the beam coherence-polarization matrix (BCPM), the CSD matrix
(CSDM), the electromagnetic coherent-modes representation, bimodal
expansions of the CSDM, and the electromagnetic superposition rule. Lastly,
we conclude the chapter with a brief summary of second-order irradiance
statistics of partially polarized thermal light sources.
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Chapter 4 discusses several methods for generating random electromag-
netic fields, including bimodal expansions, vector pseudo-modes, and the
electromagnetic superposition rule. Like in Chapter 2, step-by-step instruc-
tions are provided for implementing each of these techniques, and we generate
example electromagnetic random sources using these algorithms. All of the
MATLAB scripts are explained in detail.

In Chapter 5, we apply the concepts and algorithms from the prior chapters
to analyze and simulate classical statistical optics experiments and instruments, as
well as applications that utilize random light. Included in this chapter are detailed
simulations of the double-slit or Young’s experiment, aMichelson interferometer,
beam and polarization control with stochastic fields, the Hanbury Brown and
Twiss experiment, and imaging with partially coherent light.

Chapter 6 describes how to simulate nonstationary or pulsed random
fields. Nonstationary partially coherent sources, especially those with space-
time or spatiotemporal coupling, have recently gained interest for potential
use in optical trapping, optical tweezing, and atomic optics. They are
currently at the forefront of beam-control research. What makes simulating
nonstationary random fields especially interesting is the ability to observe the
time evolution of the source. This can provide significant insight into how
random fields behave. We begin this chapter with a summary of the germane
theory—including reviews of the BCPM, coherent modes and bimodal
expansions of the BCPM, pseudo-modes, and the superposition rule—before
generating three example thermal, nonstationary sources. As part of these
simulations, we create movies showing the temporal evolution of these
random fields, which are included with the MATLAB code that accompanies
this book. We discuss the fields’ physical behaviors in the text.

Lastly, besides the MATLAB source code in Appendix C, the appendices
cover two topics that are generally useful when simulating optical propaga-
tion, be it deterministic or random. The first, in Appendix A, explains how to
simulate wave propagation through optical systems (described by a ray-
tracing ABCD matrix) by evaluating the Collins formula, also known as the
generalized Huygens–Fresnel integral, using fast Fourier transforms. In the
appendix, we derive the sampling constraints for two forms (specifically, the
Fourier transform and convolution form) of the Collins formula and present
an example where we simulate wave propagation through an astigmatic
optical system. In Appendix B, we describe how to simulate fields with high
spatial frequency content (spatially broadband fields) via Fresnel spatial
filtering. Fields of this type include point sources (deterministic) and spatially
incoherent fields (stochastic). We first present the theory underpinning Fresnel
spatial filtering and then apply the technique to simulate propagation of a
spatially incoherent source.

It has become somewhat of a cliché but is nonetheless true: No one writes
a book alone. There are many people that deserve my thanks for making it
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possible. First, I would like to acknowledge my Master’s research advisor
Prof. Michael Havrilla. His insistence on linking the mathematics to physical
understanding has motivated all of my work in electromagnetics and optics.
Second, I would like to thank my doctoral advisor Dr. Jason Schmidt. He is
the most knowledgeable person in numerical wave propagation that I know,
and his lessons on the subject heavily influenced this work. These two
individuals are the most responsible for giving me the knowledge to write this
book, and I am eternally grateful.

Other people that played major roles in this effort are Dr. Santasri Bose-
Pillai, Dr. Jack McCrae, and Prof. Steven Fiorino at the Center for Directed
Energy of the Air Force Institute of Technology (AFIT) and Dr. Mark
Spencer at the Directed Energy Directorate of the Air Force Research
Laboratory (AFRL). The latter two have been extremely generous providing
financial support for my research. They made many of the simulation topics
covered in this book possible. I would also like to thank Prof. David Voelz at
New Mexico State University and Prof. Olga Korotkova at the University of
Miami for many fruitful research collaborations. I look forward to many
more in the future.

Last and certainly not least, I am incredibly grateful for my family—
Cristina, Elissa, and Anna. Your patience and understanding while I spent
seven days a week for nine months writing this book have been incredible.

Milo Hyde
3 May 2022
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Chapter 1

Scalar Partially Coherent
Sources: Theoretical
Foundations

1.1 Review of Scalar Diffraction Theory

Statistical optics is fundamentally the study of random or stochastic
electromagnetic fields. Like all other electromagnetic fields, random fields are
solutions toMaxwell’s equations. Maxwell’s equations are a set of four first-order
partial differential equations. The unknowns in the equations are the electric and
magnetic fields, which consist of three field or vector components each.

In general, Maxwell’s equations couple the components of the electric and
magnetic fields together. However, in many scenarios of practical interest, the
coupling is weak and can be neglected. This allows each field component to be
treated independently, in essence, approximating the vector electromagnetic
field as a scalar wave.1,2 Here, we review the key concepts of this analysis
better known as scalar diffraction theory.

1.1.1 Maxwell’s Equations and the Scalar Wave Equation

We begin this summary with Maxwell’s equations:3–7

∇� Eðr, tÞ ¼ �Mðr, tÞ � m
∂
∂t
Hðr, tÞ

∇�Hðr, tÞ ¼ Jðr, tÞ þ ε
∂
∂t
Eðr, tÞ

∇ ·Eðr, tÞ ¼ reðr, tÞ
ε

∇ ·Hðr, tÞ ¼ rmðr, tÞ
m

,

(1.1)

where E and H are the electric and magnetic fields, re and J are the electric
charge and current densities, rm and M are the magnetic charge and current
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Uðr, vÞ ¼ expðjkzÞ
jlz

ZZ
`

�`

Uðr0, vÞ exp
�
jk
2z

jr� r0j2
�
d2r0

¼ expðjkzÞ
jlz

exp
�
jk
2z

r2
�ZZ

`

�`

Uðr0, vÞ

� exp
�
jk
2z

r02
�
exp

�
� jk

z
r · r0

�
d2r0,

(1.27)

where the two expressions are the convolution and Fourier transform forms of
the Fresnel integral, respectively.1 For large z, i.e., z . 2D2∕l, where D is the
diameter or width of jU j, the inner quadratic phase factor in Eq. (1.27) can be
neglected, simplifying the Fresnel integral to

Uðr, vÞ ¼ expðjkzÞ
jlz

exp
�
jk
2z

r2
�ZZ

`

�`

Uðr0, vÞ exp
�
� jk

z
r · r0

�
d2r0: (1.28)

This relation is known as the Fraunhofer, or far-zone propagation integral,
and is equivalent to the spatial Fourier transform of U at z ¼ 0.1

1.2 First-Order Field and Irradiance Statistics

In this section, we discuss the first-order statistics of thermal and pseudo-
thermal light, both of which are defined below. Here, the term first order
means at a single point in space and time. The primary goal of this book is to
generate field realizations for use in wave-optics simulations that are
physically representative of thermal or pseudo-thermal light. It is therefore
important to understand the statistics of these random sources.

1.2.1 Thermal and Pseudo-Thermal Light

The term thermal light describes any light source in which the primary
mechanism of light generation is spontaneous emission.2,23 Examples of
thermal sources include stars, incandescent bulbs, gas discharge lamps, and
light emitting diodes (LEDs). The light generated by these sources comes from
the electrical or thermal excitation of large numbers of random and
independent atoms or molecules, which then relax, emitting photons in the
process. Pseudo-thermal light is light that has the same statistical properties as
thermal radiation; however, the primary light generation mechanism is not
spontaneous emission. The most common example of a pseudo-thermal
source is laser light scattered from a moving diffuser or rough surface.

At a single time instance, both thermal and pseudo-thermal sources
produce spatial irradiance patterns known as speckle patterns—specifically,
fully developed speckle patterns.2,32–38 Speckle is formed from the random
constructive and destructive interference of light resulting in a random
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that we essentially stipulated dc ≪ D by assuming the source-plane field was
quasi-homogeneous.

Assuming that Eq. (1.95) holds, the spectral density and SDoC become

Sðr, zÞ ≈ S̃ð0Þ
ðlzÞ2 m̃

�
k
z
ra

�

mðr1, r2, zÞ ≈
exp

h
jk
2z ðr21 � r22Þ

i
S̃ð0Þ S̃

�
k
z
rd

�
:

(1.96)

This result physically states that the observed spectral density is proportional
to the Fourier transform of the source-plane m, and, ignoring the quadratic
phase factor, that the observed SDoC is proportional to the Fourier transform
of the source-plane S. In other words, the source’s shape determines the
observation-plane coherence function, and the source’s coherence function
determines the beam’s shape in the observation plane. Figure 1.8 depicts this
relationship.

This finding, mathematically expressed in Eq. (1.94), is called the
generalized VCZT2,34 and is the other fundamental theorem in statistical optics
along with the Wiener–Khintchine theorem. A profound implication of the
VCZT is that light emitted from an incoherent object gains spatial coherence as
it propagates. Applications that use the VCZT are legion: measuring stellar
diameters;2,23,24,134,135 synthetic aperture imaging,2,23,24,134,136 including
recently the supermassive black hole M87;137 generating partially coherent
sources;69–71,138–141 and pulse/beam shaping,72,142–144 just to name a few.

1.4 Second-Order Irradiance Statistics

When experimenting or in applications dealing with light (all wavelengths
shorter than long-wave infrared), we can only sense the light’s irradiance or
intensity and have no direct access to the optical field. In addition, because

Figure 1.8 Depiction of the generalized van Cittert-Zernike theorem (VCZT).
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Chapter 2

Simulating Random Scalar
Fields

In Chapter 1, we reviewed scalar diffraction theory and the statistics
of random light. We observed that the second-order field moments,
particularly the mutual coherence function (MCF) and cross-spectral
density (CSD) function, obey propagation laws, which are fourfold
superposition integrals. Focusing on the CSD function, the propagation law
takes the form

Wðr1, v1, r2, v2Þ ¼
Z Z Z Z

`

�`

Wðr01, v1, r02, v2Þ

� Gðr1, v1; r01ÞG�ðr2, v2; r02Þd2r01d2r02,
(2.1)

where G is the impulse response, or Green’s function, modeling the physical
system. In most cases, Eq. (2.1) cannot be evaluated analytically and we must
turn to a numerical method.

One such numerical approach is to evaluate Eq. (2.1) directly,1–3 which
is a daunting task. In the most general case, this requires us to store
the source-plane CSD function and G—both six-dimensional functions—
and then compute a very large matrix-vector product. Even in cases where
the superposition integral can be computed using fast Fourier transforms
(FFTs), we still must store the source-plane CSD function and compute a
four-dimensional FFT. Needless to say, direct computation of Eq. (2.1) is
not easy.

Another numerical approach is to use the coherent-modes expansion or
the superposition rule (pseudo-modes) to split the fourfold integral in Eq. (2.1)
into the product of two identical double integrals:

55



realization of an inhomogeneous speckle field provides little insight into the
characteristics of the ensemble. Nonetheless, when observed or measured over
the ensemble of realizations, the statistics are equivalent to those of a fully
developed speckle field.

Nearly all speckle-related research assumes random fields that have
homogeneous coherence functions.41,55–61 This is because speckle fields of this
type occur naturally, i.e., practically any time spatially coherent light scatters
from a random interface with roughness on the order of l. On the other hand,
inhomogeneous speckle fields, like Figs. 2.9(e) and (f), are artificial and must
be deliberately generated.62

2.2 Superposition Rule: Pseudo-Modes

In the previous section, we discussed three coherent-modes simulation
approaches: the random-index, mode-amplitude, and sum-of-modes methods.
Here, we present the pseudo-modes (PM) equivalents of the first two; the sum-
of-modes equivalent is presented in Section 2.3.

The pseudo-modes for a given CSD function are much easier to find than
its coherent-modes expansion. Therefore, the methods presented in the next
two sections can be used to simulate nearly any random light source. On the
other hand, pseudo-modes are not orthogonal, unique, nor discrete. This
generally means that a much larger number of pseudo-modes are required to
represent a light source than coherent modes.

We discussed pseudo-modal expansions of CSD functions63 in Section
1.3.5. Recall that the superposition rule forms the basis for the derivation of
pseudo-modes:

Wðr1, r2Þ ¼
Z Z Z

`

�`

pðvÞHðr1, vÞH�ðr2, vÞd3v, (2.36)

where p and H are nonnegative and kernel functions, respectively.64 In the
pseudo-modes interpretation of Eq. (2.36), H is the pseudo-mode and p is the
weight function. The random-index PM analogue views p as the joint PDF of
the random vector v. The source randomly emits pseudo-modes Hðr, vÞ, with
v drawn from pðvÞ.15,27,65–69 The mode-amplitude analogue views p as the
effective amplitude of a pseudo-mode. The source radiates a particularHðr, vÞ
only once, weighted by

ffiffiffiffiffiffiffiffiffi
pðvÞp

.27,70–72 Incoherently summing over v yields the
CSD function in Eq. (2.36).

Although these two PM approaches are nearly identical to the
corresponding coherent-modes methods, pseudo-modes differ from coherent
modes in two key aspects that affect implementation: pseudo-modes are not
orthogonal nor are they discrete. As stated above, both of these mean that
many more pseudo-modes are required to accurately represent a random
source.
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P ≥ ceil
�
L
D

�
¼ ceilð2LfmaxÞ

¼ 2L
p

�
2sW

�
Dp

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
� ln ε

p
þ Dp

2
g

�
¼ 800:

(2.57)

Listings 2.9 and 2.10 present the MATLAB code for generating a Lajunen
and Saastamoinen self-focusing NUC source using the PM random-index and
mode-amplitude methods, respectively. These scripts are essentially the same
as Listings 2.7 and 2.8, except for the source particulars (source parameters,
pseudo-modeH, and weight function p) as well as the number of modes N and
grid points P. Therefore, we do not provide detailed breakdowns of the code
as we have in past simulation examples.

Results

The results of the self-focusing NUC source simulations are shown in
Figs. 2.18–2.20. Starting with Fig. 2.18, we can clearly see the Gaussian shape
and off-axis focus in the field realizations. Figure 2.19 shows the source-plane
spectral density results. Like the BGCSM S results, the PM random-index and
mode-amplitude S are numerically identical to theory. This is because the beam
shape s is the only part of H that impacts the source-plane spectral density.
Lastly, Fig. 2.20 displays the CSD function results: (g) shows the x2 ¼
�x1 þ 2gx slices through ReðWÞ. These slices run along the anti-diagonal
“spurs” in (a), (c), and (e). Artifacts are visible in the random-index method
results shown in Figs. 2.20(c) and (d). As was the case for the BGCSM
simulations, the speckle contrast provides a good estimate for the magnitude of
these errors.

2.3 Superposition Rule: Thermal and Pseudo-Thermal Light

In the previous section, we explored two pseudo-modes simulation techniques
that were direct analogues of the random-index and mode-amplitude
coherent-modes methods. Both of these methods produced optical field
realizations consistent with a desired CSD function. However, since the fields
were not thermal, other moments, such as the mean field and covariance of
irradiance, were generally nonphysical. If our primary interest is the second-
order field moments, this drawback means little and it makes sense to use the
coherent-modes (if known) or pseudo-modes methods described in prior
sections. If, on the other hand, it is important that the optical field realization
be thermal, the random-index and mode-amplitude methods simply cannot be
used.
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ffiffiffiffiffiffiffiffiffi
pðvÞp

and HðL∕2, vÞ with respect to v, find fv,max, and N ≥ ceilðDp∕DvÞ ¼
ceilð2Dpfv,maxÞ, where Dp is the width of

ffiffiffi
p

p
. Note that

ffiffiffi
p

p
decreases fv,max by

about the same amount as it increases Dp; therefore, N is approximately equal
to the PM random-index and mode-amplitude methods. Lastly, the procedure
for finding the number of grid points P is also the same: Fourier transform
Hðr, Dp∕2Þ with respect to r, find fmax, and P ≥ ceilðL∕DÞ ¼ ceilð2LfmaxÞ. The
number of grid points P for this method is generally greater than the PM
random-index and mode-amplitude methods because of the larger Dp.

We have yet to assign a name to this technique. While the PM sum-of-
modes moniker seems quite natural and obvious, the field is rarely computed as
a pure sum of modes, unlike its coherent-modes analogue. Indeed, the
technique is almost always implemented as a matrix-vector product computed
using an FFT, and variants of the method (known by several names) have been
used for the past several decades to generate seismic data,81,86,87 rough
surfaces,88–92 random optical fields,34,93–97 speckle,49,50 and turbulent phase
screens.33,98–102 Although closely related methods predate the actual superposi-
tion rule, for our purposes, the name superposition-rule method is apropos and
captures its essence.

The procedure for the superposition-rule method is as follows:

Algorithm 2.6. Superposition-rule method

1. Identify W with known pseudo-mode (impulse response) H and weight
function p.

2. Determine the number of pseudo-modes (grid points in the v domain)
N required to approximate the source by applying the sampling
criterion to

ffiffiffi
p

p
and H with respect to v.

3. Determine the number of grid points P required to discretize H by
applying the sampling criterion with respect to r.

4. Generate a field realization U using Eq. (2.66).

5. Perform the desired operation on U. This operation could be
propagating U through an optical system, complex media, etc. Note
that the operation’s impulse response G must be properly sampled.

6. Compute trial moments.

7. Repeat steps 4–6 at least M times [see Eq. (2.19)].

8. Average the trial moments.

2.3.2 Schell-Model Sources

Like all the other methods we have discussed, we begin with a planar SM
source. Recall that for SM sources,

Hðr, vÞ ¼ sðrÞ expðjv ·rÞ, (2.67)
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Chapter 3

Electromagnetic Partially
Coherent Sources:
Theoretical Foundations

3.1 Review of Electromagnetic Theory

In Chapter 1, we reviewed important concepts in scalar diffraction theory and
statistical optics. While incredibly insightful and an accurate approximation
(in many practical scenarios), scalar statistical optics misses important
physical phenomena, such as partial polarization and coherence-induced
polarization changes. Here, we generalize the scalar concepts discussed in
Chapter 1 to account for light being an electromagnetic wave.

Following the outline of Chapter 1, we begin with a brief review of
electromagnetic diffraction theory. Using the electromagnetic form of the
plane wave spectrum, we derive the Rayleigh–Sommerfeld electromagnetic
diffraction integrals for both the electric and magnetic fields. We discuss the
paraxial near-field and non-paraxial far-field approximations to these integrals
and their affect on polarization. Moving away from diffraction, we conclude
the section by examining polarization in a more general context. We review the
polarization ellipse, Jones vectors and matrices, Stokes parameters, Mueller
matrices, and finally, the Poincaré sphere, as these concepts will be useful in our
subsequent analyses of random electromagnetic beams.

3.1.1 Electromagnetic Plane Wave Spectrum

Let us return to the vector wave equation and derive a general expression for
the electromagnetic field at any location in the half-space z ≥ 0:

∇2Eðr, tÞ ¼ εrmr

c2
∂2

∂t2
Eðr, tÞ, (3.1)

where c ¼ 1∕ ffiffiffiffiffiffiffiffiffiffiε0m0
p

is the speed of light in vacuum and εr and mr are the
relative permittivity and permeability of the medium; they are related to the
index of refraction by n ¼ ffiffiffiffiffiffiffiffiffiεrmr

p
.1–7
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propagating in the z direction) are changing rapidly (on the order of the
coherence time) and independently of each other. We know from the analysis
presented in this section that the polarization state depends on the relationship
between the x and y electric field components. Thus, the polarization state of
light emitted by this source varies rapidly, where S1 � S2 � S3 � 0 when
measured over a realistic detector integration time. Light in this state is called
unpolarized or randomly polarized.

Both Jones vectors (generalized to the coherency matrix) and Stokes
parameters can accommodate stochastic sources by averaging over vector
field realizations. We review this analysis in the following sections.

3.2 First-Order Field and Irradiance Statistics

Like in Chapter 1, we begin our discussion of stochastic light with the first-
order statistics of thermal and pseudo-thermal electromagnetic fields. By first
order, we again mean at a single point in space and time. For this topic, we
will generalize Jones vectors and Stokes parameters to include stochastic
electromagnetic fields. We will also find the probability density functions
(PDFs) for partially polarized light and the elements of the Stokes vector.

3.2.1 Partially Polarized Thermal and Pseudo-Thermal Light

Recall that in Section 1.2.2, we obtained the PDFs of irradiance for polarized
and unpolarized thermal and pseudo-thermal light. We were able to easily
derive the latter from the former because, for unpolarized thermal light (called
natural light), the two basis polarization states (the x and y linear states, for
instance) are independent and identically distributed.11,33,34,51,52 Thus, the PDF
of irradiance for unpolarized light is the sum of two independent exponential
random variables. This PDF is easy to compute using a random variable
transformation.

For the general case of partially polarized light, however, the two basis
polarization states (hereafter, assumed to be the x and y linear states) are not
independent. The simplest way to deal with the correlation between the x and
y states is through the coherency matrix introduced by Wiener53 and Wolf.54

The coherency matrix is defined as the ensemble (or time) average of the outer
product of the Jones vector, namely,

Jðr, tÞ ¼

�

Exðr, tÞ
Eyðr, tÞ

��
Exðr, tÞ
Eyðr, tÞ

�
†
�

¼
"

hjExðr, tÞj2i hExðr, tÞE�
yðr, tÞi

hE�
xðr, tÞEyðr, tÞi hjEyðr, tÞj2i

#

¼
�
Jxx Jxy

J�
xy Jyy

�
,

(3.58)
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pSi
ðSiÞ ¼ ½hS0i2ð1� P2Þ þ hSii2��1∕2

� exp
� �2jSij
hS0i2ð1� P2Þ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS0i2ð1� P2Þ þ hSii2

q
� sgnðSiÞhSii

i
,

(3.96)

where i ¼ 1, 2, 3.

3.3 Second-Order Field Statistics

Continuing to follow the outline of Chapter 1, we now discuss second-order
moments of the electromagnetic field. As a reminder, by “second order” we
mean the average behavior of the field at two points in space and time, i.e., r1,
r2, t1, and t2. We begin by presenting the two-point generalization of the
coherency matrix, better known as the beam coherence-polarization matrix
(BCPM). We then introduce its Fourier transform, i.e., the cross-spectral
density matrix (CSDM), and spend the remainder of the section discussing
important concepts applicable to the CSDM. Lastly, we discuss important
CSDM models, which we simulate in Chapter 4.

3.3.1 Beam Coherence-Polarization Matrix

The first theoretical treatment of the second-order properties of random
electromagnetic fields was presented by Emil Wolf in 1954.67 Wolf’s
general theory uses four 3� 3 correlation or coherence matrices formed
from hEðr1, t1ÞE†ðr2, t2Þi, hHðr1, t1ÞH†ðr2, t2Þi, hEðr1, t1ÞH†ðr2, t2Þi, and
hHðr1, t1ÞE†ðr2, t2Þi. These are called the electric, magnetic, and mixed
coherence matrices, respectively, and each satisfies a pair of wave equations in
free space.11,67,68

For beam-like or paraxial fields, Wolf’s general treatment simplifies
considerably. From Section 3.1.1, we know that for paraxial light the field is
approximately transverse electromagnetic (TEM) to the direction of propaga-
tion (hereafter assumed to be z). Thus, only the transverse (x and y)
components of the field are significant, and Wolf’s 3� 3 matrices reduce to
2� 2 matrices. In addition, the magnetic field H is proportional to E [see
Eq. (3.24)]. Consequently, only the electric coherence matrix is necessary.

The first group to present this theory was Gori et al.,69,70 who defined the
BCPM as a “two-point” generalization of the coherency matrix and a vector
generalization of the mutual coherence function (MCF). In their treatment,
Gori et al. assumed that the field was wide-sense stationary (WSS). The
BCPM was subsequently generalized to nonstationary or pulsed fields by
Voipio et al.,71,72 which is the form we present below:
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Wabðr1, r2Þ ¼
a1

2sa

exp
�
� r21
4s2

a

�
b2

2sb

exp
�
� r22
4s2

b

�

� Bab

1
H2mð0Þ

exp
�
�ðr21 � r22Þ2

d4ab

�
H2m

�
r21 � r22
d2ab

� (3.145)

• Electromagnetic cosh-Gauss non-uniformly correlated beam:96

Wxx, yyðr1, r2Þ ¼ exp
�
� r21 þ r22

4s2

��
exp
�
� ½fðr1Þ � fðr2Þ�2

2d4



� exp
�
� ½fðr1Þ þ fðr2Þ�2

2d4


cosð2f0Þ

�

Wxyðr1, r2Þ ¼ exp
�
� r21 þ r22

4s2

�
exp
�
� ½fðr1Þ þ fðr2Þ�2

2d4


sinð2f0Þ,

(3.146)

where f is a real-valued function ( f ¼ r2 in Ref. [96]) and f0 is the
phase difference between the x and y field components.

This concludes our summary of popular CSDM models. In the next
chapter, we will generate electromagnetic field realizations using a few of these
CSDMs.

3.4 Second-Order Irradiance Statistics

In the last section of Chapter 1, we presented a summary of the Hanbury
Brown and Twiss (HBT) effect for fully polarized (scalar) fields. Here, we
derive an expression for the normalized covariance of irradiance bI for
partially polarized, Gaussian-distributed fields. We do not, however,
generalize the integrated irradiance statistics nor the intensity interferometry
equations. The primary reason for this is that most intensity interferometry
applications involve either polarized or natural light sources.34,151,152 We
discussed the former in Chapter 1. For the latter, the light emitted by the
source and subsequently measured by the detectors is unpolarized. We can
infer how this affects the scalar, normalized covariance of integrated
irradiance bI [see Eq. (1.124)] from bI without concern that the detectors
integrate the irradiance. If the source emits partially polarized light, the bI lies
between these two extremes. In the brief summary to follow, we return to
the space-time domain and make use of the beam coherence-polarization
matrix (BCPM). We note that this same analysis has been performed in the
space-frequency domain using the CSDM. These references are included in
the citations below.
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Chapter 4

Simulating Random
Electromagnetic Fields

As explained at the beginning of Chapter 2, using the cross-spectral density
(CSD) function or the cross-spectral density matrix (CSDM) directly in
optical simulations is computationally onerous because of the high dimension-
ality of these functions. Take, for instance, the propagation equation for the
CSDM of a wide-sense stationary (WSS) electromagnetic field:

Wðr1, r2, vÞ ¼
Z Z Z Z

`

�`

Kðr1, v; r01ÞWrðr01, r02, vÞ

� K†ðr2, v; r02Þd2r01d2r02,
(4.1)

where K is the free-space dyadic Green’s function1–4 and Wr is the 2� 2
“transverse” CSDM defined as

Wrðr1, r2, vÞ ¼
��

Exðr1, vÞ
Eyðr1, vÞ

��
Exðr2,vÞ
Eyðr2,vÞ

�
†
�
: (4.2)

Evaluating the fourfold superposition integral in Eq. (4.1) yields the exact, full
3� 3 CSDM at any location in the half-space z ≥ 0.5

In most cases, Eq. (4.1) does not permit a closed-form answer, and
evaluating the integrals numerically requires storing and then computing a
series of extremely large matrix-vector products. The matrices representing the
components of K are ten dimensional, with every combination of observation
points (x1, y1, z1 and x2, y2, z2) column-wise and every combination of source
points (x01, y

0
1 and x02, y

0
2) row-wise. The input and output CSDMs are

composed of four, four-dimensional and nine, six-dimensional functions,
respectively. Even in the case of paraxial propagation, the kernel is eight
dimensional and the input and output CSDMs are four dimensional.
Computing the superposition integral using fast Fourier transforms (FFTs)
results in tremendous memory and run-time savings; however, we still must
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and 4.11(e) and (f), respectively. Like similar artifacts observed in the results in
Chapter 2, these will lessen with more trials.

4.2 Superposition Rule: Pseudo-Modes

In the last section, we presented the bimodal-expansion algorithm, which was,
in effect, a generalized version of the sum-of-modes method (see Section
2.1.1). The primary limitation of this algorithm, and the other coherent-
modes-based methods, is that the coherent-modes representations forWxx and
Wyy must be known, either numerically39 or in closed form, and few are.

On the other hand and as was the case for scalar fields, the superposition
rule can be used to generate field realizations consistent with any genuine
CSDM. In this section, we describe how to simulate random sources using

(a) (b)

(c)

Figure 4.5 EGSM source Stokes parameter S0 results: (a) theory, (b) bimodal-expansion,
and (c) all results S0ðx, 0Þ.
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4.3 Superposition Rule: Thermal and Pseudo-thermal Light

In the last two sections, we developed simulation techniques to generate
random electromagnetic fields using coherent-modes and pseudo-modes
expansions. Both produced fields with accurate second-order moments.
Nevertheless, we must know, at a minimum, the scalar coherent-modes
representations forWxx andWyy to use the former, and although the latter can
be used to generate fields consistent with any genuine cross-spectral density
matrix (CSDM), the fields themselves are not thermal.

In this section, we generalize the superposition-rule method from Section 2.3
to generate thermal electromagnetic field realizations consistent with any
genuine CSDM. Like the scalar algorithm, the electromagnetic superposition-
rule method generates field realizations via matrix-vector products, which can
often be computed using fast Fourier transforms (FFTs). After developing the

(a) (b)

(c)

Figure 4.26 Electromagnetic Lajunen and Saastamoinen self-focusing NUC source
Stokes parameter S0 results: (a) theory, (b) PM mode-amplitude, and (c) all results S0ðx, 0Þ.
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Chapter 5

Application Examples

So far this book has followed the basic outline where we first reviewed key
theoretical concepts in statistical optics, and then presented methods for
generating optical field realizations with the proper (or desired) statistics.
Here, we apply those concepts from previous chapters to analyze and then
simulate classical statistical optics experiments and instruments, as well as
applications that utilize random light. We begin this chapter with the
double-slit or Young’s experiment followed by the Michelson interfero-
meter. We then present beam shaping and polarization control with
stochastic light, before simulating Hanbury Brown and Twiss’ famous
intensity interferometry experiment from the 1950s. We close the chapter
with imaging and partially coherent light.

5.1 Young’s Experiment

One of the most influential experiments in the history of both classical and
modern physics is the double-slit experiment, also known as Young’s
experiment.1–3 In this section, we simulate Young’s experiment assuming a
scalar partially coherent, both temporally and spatially, wide-sense stationary
(WSS) light source. The geometry of the experiment is shown in Fig. 5.1. The
field emitted from an LED propagates a distance f1 and is incident on a
spherical lens of focal length f1. Immediately thereafter, the light passes
through two rectangular holes in an opaque screen (dimensions annotated
in the figure) and then through another spherical lens of focal length f2.
We observe the irradiance a distance f2 from the screen or f1 þ f2 from the
source plane.

5.1.1 Theory

The field, immediately before the first spherical lens, is predicted by the
Fresnel diffraction integral, namely,

265



coherence). For x . 0.5mm, the fringe amplitudes for the theoretical and
simulated hIi are clearly less than the theoretical S and continue to decrease as
x increases.

5.2 Michelson Interferometer

Another incredibly influential experiment—certainly the most famous null
result—in the history of physics was the Michelson–Morley experiment.23 In
1887, A. Michelson and E. Morley used what is now known as a Michelson
interferometer to measure the speed of light along two perpendicular paths in
an attempt to detect Earth’s movement through the aether. The null result of
this experiment is credited with providing the first evidence against the
existence of the aether and for the universality of the speed of light and special
relativity.

(a) (b)

(c)

Figure 5.5 Observation-plane spectral density for L ¼ 4lcf 1∕ð3DÞ: (a) theory [see
Eq. (5.11)], (b) simulation, and (c) all results Sðx, 0Þ.
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5.3 The van Cittert–Zernike Theorem

In this section, we demonstrate beam shaping using spatial coherence. Both
techniques described below apply the generalized van Cittert–Zernike theorem
(VCZT)5,6,10,11 for beam control. Figure 5.11 shows the simple geometry
employed by both beam-shaping methods. A spatially random field in the
z ¼ 0 plane (i.e., the source plane) is immediately incident upon a spherical
lens of focal length f. We observe the spectral density in the focal plane of the
lens z ¼ f. Our goal in the first method is to design the random source, such
that it emits a beam with the desired ensemble-averaged shape (spectral
density) in the z ¼ f plane (the Celtic cross image shown in Fig. 5.11).36–38

Indeed, the image shown in Fig. 1.1(b) was generated using this technique.
For the second method, we design an electromagnetic random source that

emits a field with customizable polarization ellipse parameters (S0, P, c, and
x) in the z ¼ f plane (the sequence of four images in Fig. 5.11).39,40 Note that
the desired beam shapes/images in Fig. 5.11 do not have much practical use.

(a) (b)

(c)

Figure 5.10 Michelson interferometer observation-plane irradiance hIi color image (white-
light fringes): (a) theory, (b) simulation, and (c) measurement obtained with permission from
Prof. Olivier Granier.33
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Results

Figure 5.16 shows a field realization for the Ea pseudo-mode given in
Eq. (4.43). The other pseudo-modes, Eb and Ec, look identical. Note that the
pseudo-modes’ magnitudes are spatially shifted sinc functions. Thus, Wxx,
Wyy, and Wxy from Eq. (5.63), and subsequently the Stokes parameters in
Eq. (5.64) and polarization ellipse parameters in Eq. (5.66), are formed from
the incoherent sums of many shifted sincs. The phase in Fig. 5.16(b) is badly
aliased and nonphysical; however, it is irrelevant in our simulation since the
phases of Hx and Hy [see Eq. (5.69)] negate each other when computing the
Stokes parameters. The phase differences between the x and y electric field
components, required for S2, S3, c, and x, are accurate, as that information is
carried in the pseudo-modes’ v-dependent complex amplitudes.

Figures 5.17–5.20 show the S0, P, c, and x results, respectively. The
figures are organized in the following manner: (a) shows the desired
polarization ellipse parameter, (b) and (c) show the theoretical and simulated
results, and (d) displays the pixel-value histograms of (a–c). The results are
generally as expected: sharp features in (a) are lost in (b) and (c) due to the
finite size of the SLM. This observation holds for P, c, and x even though
they are nonlinearly related to the Stokes parameters and pxx, pyy, and pxy.
The S0 histograms in Fig. 5.17(d) are consistent with the scalar beam-shaping
result in Fig. 5.13(d). The histograms for the other polarization ellipse
parameters are harder to interpret because of the aforementioned nonlinear
relationships between P, c, and x and ultimately pxx, pyy, and pxy.

5.4 The Hanbury Brown and Twiss Effect

In Section 1.4, we discussed the second-order irradiance moments of thermal
scalar fields. We also presented the classical theory underpinning the Hanbury
Brown and Twiss (HBT) effect. In this section, we simulate R. Hanbury
Brown and R. Q. Twiss’ experiment from their 1958 paper in the Proceedings

(a) (b)

Figure 5.16 Polarization control Eax field realization: (a) jEax j and (b) argðEaxÞ.
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good match to theory and therefore show that our procedure for simulating
HBT’s experiment is sound.

5.5 Imaging with Partially Coherent Light

For our final application example, we simulate imaging with partially
coherent light. Consider the geometry in Fig. 5.23. A rough (on the order of a
wavelength) object or target is illuminated with narrowband, partially
coherent light. The light scattered from the object propagates a distance zo
to the entrance pupil of the imaging system. Light emerges from the system
forming an image of the target at a distance zi from the exit pupil.

In an imaging system, the entrance and exit pupils are the object-space
and image-space images of the most wavefront-limiting element contained in
the system.4,75 As described by Goodman and Gaskill,4,45 with knowledge of
the pupils, the contents of the imaging system are generally immaterial. We
can model the imager as a “black box” terminated at the entrance and exit
pupil planes.

5.5.1 Theory

Following Goodman, Gaskill, and many others,4,5,11,43–45,76 the field in the
image plane is approximately (neglecting constant and quadratic phase terms)

UiðriÞ �
Z Z

`

�`

1
jMjUo

�
ro
M

�
hðri � roÞd2ro, (5.86)

where M is the transverse magnification and Uo is the light scattered from the
object. The kernel h is the amplitude spread function and is given by

hðri � roÞ ¼
1

ðlziÞ2
Z Z

`

�`

PðrpÞ exp
�
�j

k
zi
ðri � roÞ ⋅ rp

�
d2rp, (5.87)

where P is the generalized pupil function, i.e.,

Figure 5.23 Geometry of an imaging system.
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Chapter 6

Pulsed Partially Coherent
Fields

For a majority of this book and in all the simulations, we have assumed that the
random field is wide-sense stationary (WSS). Implied from its definition (see
Section 1.3.1), a WSS field must be “on” for all time and is delta-correlated in
frequency v. Indeed, not having to consider correlation between temporal
frequency components is why, to this point, we have generated all random fields
in the v domain using the cross-spectral density (CSD) function or cross-
spectral density matrix (CSDM). Simulating only sources that have been
radiating for all time clearly excludes important physical phenomena, such as
temporally shaped or pulsed fields. In addition, simulating nonstationary
sources allows one to model real-time optical systems and fast detectors.

In this chapter, we describe how to simulate nonstationary, or pulsed,
random fields. These fields can be simulated in the frequency or time domains;
however, here we focus on the latter. Simulating the time evolution of thermal
(or pseudo-thermal) sources provides insights into how random fields actually
behave and can therefore be a valuable pedagogical tool. These insights are
generally not available from v-domain simulations.

We begin with a brief summary of the pertinent theory, which primarily
concerns the beam coherence-polarization matrix (BCPM) G from Chapter 3.
Continuing to follow the general outline of Chapter 3, we then present
coherent-modes and bimodal expansions of G before concluding with the
superposition rule. Like for WSS fields in Chapters 2 and 4, all of these
theoretical concepts can be adapted to simulate nonstationary sources.
Nonetheless, only simulation techniques derived from the superposition rule
are widely applicable, and of those, only the “superposition-rule method”
produces thermal (physically representative) field realizations. Consequently,
we focus on simulating pulsed random fields using that method. We conclude
this chapter by generating three nonstationary sources: a pulsed Schell-model
(SM) beam, a non-uniformly correlated (NUC) beam, and a space-time
coupled beam.
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6.2 Superposition Rule: Thermal and Pseudo-Thermal Light

In this section, we generate three nonstationary random sources using the
superposition-rule method. All three have Ha of the form

Haðr, t; v, vtÞ ¼ saðr, tÞ expð�jvctÞ exp½jv · f ðr, tÞ� exp½�jvtgðr, tÞ�: (6.25)

sa is the field’s deterministic space-time pulse shape; expð�jvctÞ is the
sinusoidal oscillation of the field at mean, carrier, or optical frequency vc; and
f and g are arbitrary functions. If f and g are functions of both position and
time (as shown), then the field possesses random space-time (spatiotemporal)
coupling.37,38 Note that this is physically different from the deterministic
spatiotemporal coupling induced (potentially) via sa.

39–41

Regarding expð�jvctÞ, typically, vc ≫ Dv (where Dv is the field’s
bandwidth), and therefore, simulating the actual sinusoidal oscillation of
the field is prohibitively expensive. In addition, the bandwidths of the fastest
detectors are many orders of magnitude smaller than vc � 1014 Hz.
Consequently, we cannot measure the field’s oscillation, and simulating it
makes even less sense. Because of these factors, we neglect the expð�jvctÞ
term and simulate only the time-changing complex envelope of the field.

Ignoring the “carrier” term has physical consequences that we must account
for, if the simulation is to yield accurate results. In particular, we need to
modify the diffraction integrals in Chapter 1 to propagate the field’s complex
envelope. Let us return to the time-domain form of the Rayleigh–Sommerfeld
diffraction integral in Eq. (1.21), reproduced here for convenience:

Uðr, tÞ ¼ 1
2pvp

ZZ
`

�`

z
jr� r0j2

∂
∂t
U
�
r0, t� jr� r0j

vp

�
d2r0 r ≫ l, (6.26)

where vp ¼ 1∕ ffiffiffiffiffiffiεmp
is the phase velocity in the propagation medium, which we

set equal to c hereafter. For paraxial propagation,

jr� r0j �
	
zþ jr�r0j2

2z “phase” terms

z “amplitude” terms
(6.27)

in Eq. (6.26), respectively. After some simple algebra, Eq. (6.26) becomes

Uðr, z, tÞ � 1
2pcz

ZZ
`

�`

∂
∂t
U
�
r0, t̄� r02

2zc
þ r · r0

cz

�
d2r0, (6.28)

where t̄ ¼ t� z∕c� r2∕ð2czÞ is the time it takes light to propagate from the
source to the observation point. If U is narrowband (Dv∕vc ≪ 1, a condition
called quasi-monochromatic), we can write U in terms of its complex envelope
Ue, such that5,13
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theoretical and simulated hIð0, 0, tÞi. Figures 6.13 and 6.14 are organized in
the same manner: (a) and (b) display the real and imaginary parts of the
theoretical MCF [see Eq. (6.46)], (c) and (d) show the same for the simulated
MCF, and (e) plots the slices through ReðGÞ that run along the anti-diagonal
“spurs” in (a) and (c). Overall, there is good agreement between the theoretical
and simulated results in these figures, implying that we have successfully
generated the desired NUC pulsed beam. The minor artifacts visible in some
of the simulated images will fade with more trials.

6.2.3 Spatiotemporal Coupling: Twisted Space-Time Beams

For our last example, we generate a random, scalar nonstationary source with
spatiotemporal coupling. Recently, there has been great interest in generating
fields with spatiotemporal coupling for possible use in beam control
applications, such as optical trapping, optical tweezing, and atomic optics.
In the last decade, space-time-coupled beams that possess transverse (to the
direction of propagation) angular momentum54–62 and anomalous propaga-
tion and refractive behaviors41,63–67 have been demonstrated. Here, we
generate a twisted space-time beam, which is a nonstationary partially
coherent field with a stochastic twist68,69 coupling its spatial and temporal
dimensions.70,71 Like the others cited above, a twisted space-time beam carries
transverse angular momentum and, as we demonstrate below, rotates or
tumbles as it propagates.

To generate this beam, we again follow the steps of Algorithm 2.6. Step 1
is to identify the MCF, p, and H. The MCF for a twisted space-time beam is

Gðr1, t1,r2, t2Þ¼A2exp
�
�y21þy22

4s2
y

�
exp

�
�x21þx22

4s2
x

�
exp

�
�ðx1�x2Þ2

2d2s

�

�exp
�
�ðt1�TcÞ2þðt2�TcÞ2

4T2

�
exp

�
�ðt1�t2Þ2

2d2t

�
exp½�jvcðt1�t2Þ�

�expf�jm½x1ðt2�TcÞ�x2ðt1�TcÞ�g,

(6.50)

which has a very similar form to a GSM pulsed beam [see Eq. (6.34)]. Indeed,
all of the above parameters have the same physical significance as a GSM
pulsed beam, with the major exception of m, which is known as the twist
parameter. The twist parameter must satisfy jmjdtds ≤ 1; consequently, m → 0
in the limit of fully coherent light, i.e., dt, ds → `.15,16,69 Referring back to the
general form of H given in Eq. (6.25), a twisted space-time beam has a weight
function p, beam shape s, f, and g with the following forms:72,73
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Appendix A

Numerical Diffraction Using
the Collins Formula

In Chapters 2 and 4, we described how to generate field realizations U given
any genuine cross-spectral density (CSD) function or cross-spectral density
matrix (CSDM). We spent a significant amount of time discussing how to
properly sample U so that it was represented accurately on a discrete grid.

After generating U, a common next step in wave-optics simulations is to
propagate or otherwise pass U through a linear optical system modeled by a
Green’s function or impulse response G, such that

Uðr, vÞ ¼
ZZ

`

�`

Uðr0, vÞGðr, v; r0Þd2r0: (A.1)

What is clear in Eq. (A.1) is that a properly sampled input U does not
guarantee an accurate output U. We must also consider G, and in general, it
must be properly sampled in both the input and output planes. We encountered
similar sampling requirements when we generated fields using the pseudo-
modes methods in Sections 2.2 and 4.2.

One of the most common G is free-space propagation. Paraxially, this
Green’s function is known as the Fresnel impulse response and is shown in
Eq. (1.27). Simple analysis begets two forms for the Fresnel diffraction integral:
one in the form of a superposition (convolution, since the Fresnel impulse
response is space invariant) integral like Eq. (A.1) and the other in the form of a
spatial Fourier transform. Although mathematically equivalent, the sampling
requirements for the convolution and Fourier transform versions of the Fresnel
diffraction integral are different, and both have been extensively studied.1–7

For diffraction in general paraxial systems, G is given by the Collins
formula.1,8 Like the Fresnel diffraction integral, the Collins formula (for optical
systems with certain symmetries) can be expressed as either a convolution
integral or a spatial Fourier transform.9,10 The purpose of this appendix is to
derive the sampling criteria for both forms of the Collins formula. We start with
a general overview of the Collins diffraction integral and specialize it to an x-y
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Appendix B

Simulating Spatially
Incoherent Sources

Many thermal light sources, e.g., the sun, incandescent bulbs, and LEDs, have
extremely small spatial correlation or coherence widths (on the order of l).1–4

Such sources are well modeled as being spatially incoherent; i.e., we can
approximate their complex degree of coherences (CDoCs) or spectral degree
of coherences (SDoCs) using a Dirac delta function. Because of their ubiquity
in nature, incoherent light sources are critically important in the study and
understanding of statistical optics. Indeed, they form the basis of the van Cittert–
Zernike theorem (VCZT)2–8 and, consequently, all applications derived from it
(see Section 1.3.7).

When it comes to simulating spatially incoherent sources, we run into a
problem: A spatially incoherent source has infinite spatial frequency content.
Stated another way, it is not possible to represent a Dirac delta function on a
discrete grid. Even if we were to model a spatially incoherent source as a
matrix of independent circular complex Gaussian (CCG) random numbers,
the correlation radius of our simulated field would equal the grid spacing.
Quite simply, this means that in a wave-optics simulation, a spatially band-
limited version of an incoherent source must ultimately suffice.

In this appendix, we present a method to simulate spatially incoherent or
“near” incoherent sources. Much like simulating point sources in coherent
wave-optics simulations,9–13 the method presented here reduces the source’s
spatial bandwidth via filtering, such that the field emitted by the filtered (or
spatially bandlimited) source, after propagating a distance z, has the same
cross-spectral density (CSD) function over a specified region of interest as
the field emitted by the incoherent source. In the analysis below, we assume
frequency v domain fields and omit the v dependence of quantities, such as
the CSD function, for brevity. Furthermore, we stipulate that all random
fields are wide-sense stationary (WSS). We begin by assuming that our source
is scalar and quasi-homogeneous; we specialize the result to a spatially incoherent
source in the end.
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Appendix C

MATLAB® Code

Listings

2.1 GSM random-index method simulation example 426
2.2 GSM mode-amplitude method simulation example 427
2.3 GSM sum-of-modes method simulation example 429
2.4 Im-Bessel random-index method simulation example 430
2.5 Im-Bessel mode-amplitude method simulation example 432
2.6 Im-Bessel sum-of-modes method simulation example 433
2.7 BGCSM source PM random-index method simulation example 434
2.8 BGCSM source PM mode-amplitude method simulation example 436
2.9 Self-focusing NUC source PM random-index method

simulation example 437
2.10 Self-focusing NUC source PM mode-amplitude method

simulation example 438
2.11 MGSM source superposition-rule method simulation example 439
2.12 Self-focusing NUC source superposition-rule method simulation

example—direct evaluation of matrix-vector product 440
2.13 Self-focusing NUC source superposition-rule method simulation

example—FFT approach 441
4.1 EGSM bimodal-expansion simulation example 443
4.2 EMGSM PM mode-amplitude simulation example using the

pseudo-modes in Eq. (4.43) 446
4.3 Electromagnetic self-focusing NUC source PM mode-amplitude

simulation example using the pseudo-modes in Eq. (4.36) 448
4.4 EHGCSM source superposition-rule method simulation example 450
4.5 EGPSM source superposition-rule method simulation example 452
5.1 Young’s experiment simulation example 454
5.2 Michelson interferometer simulation example 456
5.3 Scalar beam shaping example 459
5.4 Polarization control example 461
5.5 Simulation of Hanbury Brown and Twiss’ experiment from

Ref. [1] 463
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