1 Mathematical Preliminaries

We shall go through in this first chapter all of the mathematics needed for reading the rest of this
book.

The reader is expected to have taken a one-year course in differential and integral calculus.
1.1 Mean-Value Theorems of Integral Calculus

First mean-value theorem of integral calculus
Let f(x) be continuouson [a,b] and g(x) >0 (or g(x) < 0)in [a,b].
Then,

b b
fﬂ@mmm=fuofmmw,

where x; isin [a,b].

Proof

We shall prove the case for g(x) > 0; the case for g(x) < 0 is entirely analogous.

Since f(x) is continuouson [a, b], itis bounded, i.e., there exist m and M such that m <
f(x) <M forall x in [a,b].

We further have mg(x) < f(x)g(x) < Mg(x) forall x in [a,b] since g(x) > 0 forall x in
[a, b].

Hence,

b b b
mfg(x)dx < ff(x)g(x)dx SMfg(x)dx.

b

b
Ilj Wgx)dx<M; I,= fg(x)dx (1)

a

Since f(x) is continuous on [a, b], it must evolve continuously between m and M.

Hence, for any y; satisfying m < y; < M, there exists an x; in [a,b] suchthat f(x;) = y;.
Now, apply the above statement to (1).

Let

1 : _
E!f@mqu—n.
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Since m < y; < M, there exists x; in [a, b] suchthat f(x;) = y;.

Hence,

1 b
E!f@mqu=ﬂm)

That is,

b b
fﬂ@mmm=f@0fﬂww.

[ ]
In particular, if g(x) = 1, we have
b

b
ff@Mx=f@0fdx=f@ﬂw—a)

a

Second mean-value theorem of integral calculus
Let f(x) be monotonically increasing (or decreasing) on [a,b] and g(x) be integrable on [a, b].
Then,

b X1 b
ff&M@Mx=ﬂ@fg@Mx+ﬂwfg@Mm

where x; isin [a,b].

Proof

We assume first that f(x) is monotonically increasing, implying that f'(x) > 0 on [a, b].
Let

G(x) = fg(xA)dxA + c.

Hence, G is differentiable and thus continuous on [a, b].

b b
fﬂ@g@ﬂx=ff@wc@)

b

= G - [ 6GIF G

By first mean-value theorem

= f(b)G(D) — f(a)G(a) — G(x)[f (b) — f(a)]
= f(@I[G(xy) — G(@)] + fF(B)[G(D) — G(x1)]
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X1 b
= 1@ [ gt + £ [ gCoax
[

1.2 The Delta Function

Definition
We define the delta function, denoted conventionally as §(x), to be the limit of a sequence of
functions in the sense that, if

b

1
lim | D,(x)dx==, b>0
n—oo 2

0+
or

o

1

lim | D,(x)dx==, b<0,
n—oo 2

b
then

nll_r)r})0 D, (x) = 6(x).

Claim

d
lim | D,(x)dx =0,

n—oo

c
where 0 <c<d or c<d<0.
Proof
For 0 <c <d,

d d c 1
lim fDn(x)dx = lim an(x)dx— lim fDn(x)dx =——
n—oo n—oo n—oo 2
c ot

ot

=0.

N =

The case for ¢ < d < 0 can be proved in a similar way.
[

1.2.1 Representations of the delta function

1.)

One representation of the delta function is
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sin(Bx)
, pB— oo

X

We use [ instead of n as the index of the sequence of functions since it is not restricted to

integers.

This is because

b Bb oo
. sin(Bx) .1 ( sin xA 1 [ sin xA 1T 1
lim f dx=11m—f =—f =——=—
f—oo X B—oo T T XA n2 2
0+ o+ o+

The evaluation of the last integral is detailed in Appendix 1.1.
To show the reader this trend, we plot the representation for f from 1 (blue)to 5 (red) in steps
of 1, as shown in Fig. 1.2-1.

2.)
Another representation of the delta function is
_ﬁ2x2
e
ﬁ—, B — oo.
Vr
This is because
I [pe i 1
im =_
L—00 \/E 2
0+
- KON

Figure 1.2-1
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3.)
Still another representation of the delta function is
B
L fe”‘xdk L — oo.
2 ’
-B
This is because, by performing the integration
B ) .
2 : 2n ix mx

we can reduce it to the first representation above.

4.)

Our final example of the representation of the delta function is the following sequence of
polynomials:

Pn(x) = a,(1—x*)"  |x|<1; p,(x)=0, [x|>1 n=123-,

where a, is a normalization factor defined by
1
1
a, f(l —x?)"dx = 5 n= 1,2,3,
ot

Proof
When 0 < b < 1, consider the following integral

b b
fpn(x)dx =a, f(l — x2)"dx
o+ o+

1 1
=a, f(l —x)"dx — a, f(l — x2)"dx
o+ b

1

1
=5~ f(l — x2)"dx.
b

On one hand,
1

1
1 _1_x1‘L+11 2
—EZf(l—xz)”dx>2f(1—x)”dx=2 ( ) = ;
an n+1 + n+1
+ ot 0
n+1
Uy < ——

On the other hand,
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1

f(l —x)dx < (1 =b»)"(1—-b) < (1 —bH)™

b

Hence,
1

anj(l —x2)dx < nTH(l —-bH)" -0, n— oo
b

Then,

b

1
f prn(x)dx = o
0+

When b > 1,

b 1 1 )
fpn(x)dx = fpn(x)dx =a, f(l — x?)"dx = >
ot ot ot

by the definition of p,(x) and a,.
Therefore,
b

1
lim | a,(1-x*)"dx==, b>0,
n—oo 2

ot

which means p,(x), n — oo isindeed a representation of the § function.

[
1.2.2 Properties of the delta function
1.)

Sifting
When b > 0,if f(x) iscontinuouson (0,b] and f(x)|,_o+ = f(0%), then

b
[ r@seaax =300,

Similarly, when b < 0,if f(x) is continuouson [b,0) and f(x)|,—o- = f(07), then

"
1

[ rwscodx =370,

b

In particular,
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( 1
| r@sedx =517@) + £
which is equal to f(0) if f(x) is continuous at x = 0.

Proof
We first prove the case of b > 0.
Since f(x) is continuous, there exists a small enough b, suchthat f(x) is monotonicon (0,b,].
We then apply the second mean-value theorem of integral calculus and get
by by

| rwseax = lim [ reop,eodx
o+ o+

X, by
= lm £ [ Du@dx + Jim £(by) [ DaGIdx
ot X1

1
= f(0*) = > + f(by) * 0.

For b > 0 in general, we write

b by b b

1
ff(x)6(x)dx= ff(x)&(x)dx+ ff(x)d(x)dx=zf(0+)+ ff(x)6(x)dx.
o+ o+ by by

Next, we divide [b,,b] into several sub-intervals in which f(x) is monotonic.

Let one such sub-interval be [by_4, by].

Then,

by by

| reseodx=tim [ rpaeodx
br-1 br-1

Xk by

= lim f(by_q1) fDn(x)dx+ lim f(by) f D, (x)dx

n—oo n—oo
bg-1 Xk

= f(br-1) * 0+ f(by) * 0.
Hence, adding up all such integrals, we have

b
ff(x)&(x)dx =0.
by

Therefore, when b > 0,
b

[ rwseaax =300,

ot
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Similarly, when b < 0,

N
1

f FSCdx =5 f(07).

b

If f(x) iscontinuousat x =0,

[ Feoseaxr = 31707 + £(09] = £O)

]
Letting in the above equation f(x) = g(x + c¢), we have

[00)

f glx +c)d(x)dx = g(c).

— 00

By change of variable x 4+ ¢ = xa, we obtain

f g(xn)6(xn — c)dxr = g(c).

The above expression is the most common form for expressing the sifting property of the delta

function.

2)
Scaling

[ rws@ix ==

Proof
If a>0,

[ee] (o) d X
f FOO8(ax)dx = f Fln/a)8(xn) ;‘
= af( ).

If a<o,

r i dxr

f F0)8(ax)dx = j Flxn/a)8(xn) ;“

1 oo
= f f(xn/a)d(xa)dxn

a
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1
= —Ef(())-

3.)
Functional

1
8190 = ) 1oy S = ),

Proof

6(x) is non-trivial only in the neighborhood of x = 0.

Thus, for §[g(x)], we can only focus on those tiny intervals centered at x;’s where g(x;) = 0, and
on each such interval, approximate g(x) by a linear function, i.e.,

gx) = g(x) + g'(x)(x — xp).
Hence,

[ restgeonax =Y [ sty ot - xolax

Il —o0

1
= izl @

We may then state, equivalently,
1
SlgCOl = ) s 80 = 10,
g 19 Gl ‘

4))
Differentiation

[00)

f f(x)6'(x —c)dx = —f"(c).

— 0o

Proof

6(x+A/2—¢c)—6(x—A/2—¢)
A dx

f £ (x — )dx = Jim f @)

fle=A/2) = f(c+A/2)

= lim

A—0 A
- i fle+A4/2) = f(c—A/2)
— 11m
A—0 A

=—f'(0).
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1.3 Weierstrass’ Approximation Theorem

Weierstrass’ approximation theorem states that any function which is continuous in an interval can
be approximated uniformly by polynomials, i.e., 1, x, x?, ..., in this interval.

Weierstrass’ approximation theorem can be explained by employing the sifting property of the delta
function we have just proved.
Assume that f(x) is continuousin [c,d].
Then,
d+

fG) = f FW8u — x)du

d+

= Jm a, [ fQ1 - @-02da,

by employing the polynomial representation of the delta function.

Here, cT <c<d <d*.

Why is the integration domain [c¢~,d*] larger than [c,d]?

If we integrate over [c, d], then at the boundary, e.g., at ¢, we only get f(c)/2, not f(c).
After performing the integration in the above equation, we obtain a polynomial of order 2n.
We need to choose a proper n to meet the required error tolerance.

For an explicit proof of Weierstrass’ approximation theorem, see Appendix 1.2.
1.4 Fourier Transform

We define the Fourier transform as

[oe]

FUG)] = f U)e-* dx = (k)

— 00

and the inverse Fourier transform as

_ o dk
FAUWK)] = fU(k)e”‘xE.

U(x) and U(k) are called Fourier transform pairs.
The functions U(x) and U(k) are generally complex; however, the variables x and k are
always real unless otherwise stated.
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1.4.1 Fourier transform theorems

1.)
Fourier integral theorem
FA[FIU)]] = U).

Proof
fdk . [ .
T‘l[T[U(X)]]: fﬂelkx fdxle—Lk)qU(xl)

‘ (dk
= fdxlU(xl) fﬁe“k("l"‘)

= f U(x)6(x; — x)dxa

= U(x).

If U(x) isdiscontinuous at x, replace §(x; —x) by D, (x; — x) in the second-to-last equation
andlet n — oo,

We see that the newly obtained U(x) is the average of U(x) in the neighborhood of x.

[ ]

2.)
Linearity theorem
Fla Uy (x) + ayUz(x)] = a1U1(k) + azﬁz(k)-

3.)
Scaling theorem

1 -
FlU(ax)] = aU(k/a).
Proof
If a>0,

FlU(ax)] = f U(ax)e **dx
ax = x;

o)
X1 dxl

= f U(x)e *a e

—00
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12
1 [ —iEx
=— fU(xl)e a“tdx,
a
1.
=-U(k/a).
a
If a <O,

[ee)

FlU(ax)] = fU(ax)e‘ikxdx

— 0o

K
= fU(xl)e_lExldxl

—00

= —lU(k/a).
a

4.)

Shift theorem

FIU(x = ¢)] = e *cU (k).
Proof

o]

FlU(x—0¢)] = f U(x — c)e **dx

— 00

oo

= g lke f U(x — c)e~*k&x=q(x — ¢)

X—C=2x

= g tke f U(xy)e *¥1dx,
= e (k).

|
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5.)
Rayleigh’s (Parseval’s) theorem

fIU(x)Ide _ f|u<k)|2dk

Proof

[oe]

f|U(X)|2dX= fdx fczi: k2 (k) f e~ kX (ky)

[o0]

fczl— f U*(ky) fdxe i(k1—k)x

fm z— f 0 (ky)2m8(ky — k)

zdk

f oaof 3

6.)
Convolution theorem

The convolution of two functions is defined as

UV (x) = fm UG = %)V (x1)dx;
X — X1 = Xy -

= _fw V(x — x)U(x3) (—dx3)

= fwv(x — x5)U(x5)dx,

= ;(Oxmwx).

Then,

F{UX)QRV(x)} = jdxe‘”‘x fdxlU(x—xl)V(xl)
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= f dxre 1Y (x) f d(x — x;)e =Dy (x — x,)

= V()T (k).
Besides,

oo

FUGOV ()] = f VGOV (x)e- " dx

—00

o)

f dre™ f e1*U (ky) f —e”‘sz(k)

— 00

dk;y — dk
J‘ 1U(k1) f ZV(kZ) J.dxe—L(k kl kz)x

fdkl U(ky) f—V(k2)2n5(k ky —ky)

either

[ee)

dk; - ~
= fﬁ‘/(k — k1)U (k1)

— 00

= V(k)QU(k)

or

 dky )
= _f = Uk = k)V (kez).
= U(k)®V (k).

7.)
Complex conjugate

o)

:F[Uk(x)] — f U*(x)e—ikJCdx

—00

[ee) *

f U(x)et > dx]

— 00

X =—X1
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= ] U(—x;)e " (_dx1)]

= f U(—xl)e‘”‘xldxll

L— 00

= [Flu(=»]]
* [FIUM)]] .
That is, the operations of the Fourier transform and complex conjugate do not commute unless

U(—x) = U(x), i.e., for functions with inversion symmetry.

8.)
Autocorrelation theorem

FU@RU (—0)] = FUWI[FIU@I] = T T (k) = |T(k)|".

In addition,
FIU@)I?] = FIUXU*(0)] = FIU@IQF[U*(x)] = TU(k)QT* (k).

1.4.2 Useful Fourier transform pairs

1.)

Fourier transform of the rectangle function

The rectangle function in the real space of width W, is defined as
1L, x|l <W./2

Rect(x/W,) =31/2, |x|=W,/2
0, |x|>W,/2.

Finding its Fourier transform is straightforward:
Wi /2

F[Rect(x/W,)] = f e~ tkxdyx
Wy /2

o= ikWy/2 _ oikWy/2

—ik
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sin(kW, /2)
* kW,/2
= W, Sinc(kW, /2).
The rectangular function in the frequency space may be employed more frequently.

Similarly, it can be shown that

F~[Rect(k/W,)] = %Sinc(W x/2)
k 2T § .

2.)
Fourier transform of the comb function
The comb function is defined as

5,() = > 8(x—np),

n=-—oo

which is a periodic function of period p.
We want to compute its Fourier transform.

5,(k) = f(?p(x)e‘”‘xdx

[ee)

— z e—i*k*np

n=—oo

[ee)

— Z el*kxnp

n=—oco

e *P is a periodic function of period 2m/p.

e'*k*2P s 3 periodic function of period 2m/2p, which is also a periodic function of period 2m/p.

Therefore, 5p (k) is also a periodic function of period 2m/p.

N
— i ikp|™
= fim, ) [e*7]

n=—N
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WAAMAAL

-4/ =2V \/ V U2V \/4

=

Figure 1.4-1
lkp 1= [ Lkp]l/z [[eikpr/z _ [eikp]_l/z]

_ sin[(N + 1/2)kp]
~ v sin(kp/2)

= Jim, Dy (0
Dy (k) may diverge at k = m(2m/p) since its denominator equals zero there.

Before going into the mathematical details, we first plot, in Fig. 1.4-1, Dy(k) versus k for N =1,
2, 3.
(Actually, we plot Dy (k) versus k, defined by k = (2/p)k.)

It is seen that as N increases, the main lobes at k = m(2m/p) become higher (though narrower),
whereas the side lobes become lower (if normalized by the main lobe at k = 0).

Yes, your guess is correct.

It is an infinite series of delta functions.

We sketch a formal proof below.

Proof

First, we consider

/P n/p
_ sin[(N + 1/2)kp]
) nf/ ,, fU)Dy (k)dk = ] ﬂf/ p F0O— s %
(N+1/2)kp=v
(N+1/2)m | )
Sin v v
— N flv/(N + 1/2)p] sin[v/2(N + 1/2)] (N + 1/2)p

(N+1/2)m

== [ e

—~(N+1/2)m

sinv/v

in[v/2(N +1/2)1/[v/2(N + 1/2)]
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sin[v/2(N + 1/2)] ~ sinv,

Tt v/2(N +1/2) _mlﬂ}o 2

sinv

dv, N —
v

—>§_Zf(0)

sinv

dv
v

[e00)
fsmxd T
X ==
X 2

0+

21
= ?f(o)-

-210) fw

Since Dy (k) is a periodic function of period 2m/p,

) 21 O
5,00 = lim Dy(k) === > 8lk —m(2n/p)]

m=—oco

Computing the inverse Fourier transform of the above equation, we obtain
‘ ~ . dk
_ k
8,(x) = f Sp(k)e™™ —

_ % i f(S[k — m(2n/p)|ek*dk

m=—00 —o

In summary,
c 1 C i*mz—”*x
6= D Sx—mp) == > T
n=-—oo pmz—oo
- - P 21 -
5= ) e == > 81k - m@n/p)] (1)

n=-—oo m=—oo





