1 Mathematical Preliminaries

We shall go through in this first chapter all of the mathematics needed for reading the rest of this book.

The reader is expected to have taken a one-year course in differential and integral calculus.

1.1 Mean-Value Theorems of Integral Calculus

First mean-value theorem of integral calculus

Let f(x) be continuous on [a,b] and g(x) > 0 (or g(x) < 0) in [a,b].

Then,

$$\int_{a}^{b} f(x)g(x)dx = f(x_1) \int_{a}^{b} g(x)dx,$$

where x_1 is in [a, b].

Proof

We shall prove the case for g(x) > 0; the case for g(x) < 0 is entirely analogous.

Since f(x) is continuous on [a,b], it is bounded, i.e., there exist m and M such that $m \le f(x) \le M$ for all x in [a,b].

We further have $mg(x) \le f(x)g(x) \le Mg(x)$ for all x in [a,b] since g(x) > 0 for all x in [a,b].

Hence,

$$m\int_{a}^{b}g(x)dx \leq \int_{a}^{b}f(x)g(x)dx \leq M\int_{a}^{b}g(x)dx.$$

$$m \le \frac{1}{I_g} \int_a^b f(x)g(x)dx \le M; \qquad I_g = \int_a^b g(x)dx. \tag{1}$$

Since f(x) is continuous on [a,b], it must evolve continuously between m and M.

Hence, for any y_1 satisfying $m \le y_1 \le M$, there exists an x_1 in [a,b] such that $f(x_1) = y_1$.

Now, apply the above statement to (1).

Let

$$\frac{1}{I_g} \int_a^b f(x)g(x)dx = y_1.$$

Since $m \le y_1 \le M$, there exists x_1 in [a,b] such that $f(x_1) = y_1$. Hence,

$$\frac{1}{I_g} \int_a^b f(x)g(x)dx = f(x_1).$$

That is,

$$\int_{a}^{b} f(x)g(x)dx = f(x_1) \int_{a}^{b} g(x)dx.$$

In particular, if g(x) = 1, we have

$$\int_{a}^{b} f(x)dx = f(x_1) \int_{a}^{b} dx = f(x_1)(b-a).$$

Second mean-value theorem of integral calculus

Let f(x) be monotonically increasing (or decreasing) on [a,b] and g(x) be integrable on [a,b]. Then,

$$\int_{a}^{b} f(x)g(x)dx = f(a)\int_{a}^{x_1} g(x)dx + f(b)\int_{x_1}^{b} g(x)dx,$$

where x_1 is in [a, b].

Proof

We assume first that f(x) is monotonically increasing, implying that f'(x) > 0 on [a,b]. Let

$$G(x) = \int_{-\infty}^{x} g(x_{\wedge}) dx_{\wedge} + c.$$

Hence, G is differentiable and thus continuous on [a, b].

$$\int_{a}^{b} f(x)g(x)dx = \int_{a}^{b} f(x)dG(x)$$

$$= f(x)G(x)|_a^b - \int_a^b G(x)f'(x)dx$$

By first mean-value theorem

$$= f(b)G(b) - f(a)G(a) - G(x_1)[f(b) - f(a)]$$

$$= f(a)[G(x_1) - G(a)] + f(b)[G(b) - G(x_1)]$$

$$= f(a) \int_a^{x_1} g(x)dx + f(b) \int_{x_1}^b g(x)dx.$$

1.2 The Delta Function

Definition

We define the delta function, denoted conventionally as $\delta(x)$, to be the limit of a sequence of functions in the sense that, if

$$\lim_{n\to\infty}\int_{0^+}^b D_n(x)dx = \frac{1}{2}, \quad b>0$$

or

$$\lim_{n\to\infty}\int_{b}^{0^{-}}D_{n}(x)dx=\frac{1}{2}, \quad b<0,$$

then

$$\lim_{n\to\infty}D_n(x)=\delta(x).$$

Claim

$$\lim_{n\to\infty}\int\limits_{c}^{d}D_{n}(x)dx=0,$$

where 0 < c < d or c < d < 0.

Proof

For 0 < c < d,

$$\lim_{n \to \infty} \int_{c}^{d} D_{n}(x) dx = \lim_{n \to \infty} \int_{0+}^{d} D_{n}(x) dx - \lim_{n \to \infty} \int_{0+}^{c} D_{n}(x) dx = \frac{1}{2} - \frac{1}{2} = 0.$$

The case for c < d < 0 can be proved in a similar way.

1.2.1 Representations of the delta function

1.)

One representation of the delta function is

$$\frac{\sin(\beta x)}{\pi x}$$
, $\beta \to \infty$.

We use β instead of n as the index of the sequence of functions since it is not restricted to integers.

This is because

$$\lim_{\beta \to \infty} \int_{0^+}^{b} \frac{\sin(\beta x)}{\pi x} dx = \lim_{\beta \to \infty} \frac{1}{\pi} \int_{0^+}^{\beta b} \frac{\sin x}{x} dx = \frac{1}{\pi} \int_{0^+}^{\infty} \frac{\sin x}{x} dx = \frac{1}{\pi} \frac{\pi}{2} = \frac{1}{2}.$$

The evaluation of the last integral is detailed in Appendix 1.1.

To show the reader this trend, we plot the representation for β from 1 (blue) to 5 (red) in steps of 1, as shown in Fig. 1.2-1.

2.)

Another representation of the delta function is

$$\frac{\beta e^{-\beta^2 x^2}}{\sqrt{\pi}}, \quad \beta \to \infty.$$

This is because

$$\lim_{\beta \to \infty} \int_{0^+}^{b} \frac{\beta e^{-\beta^2 x^2}}{\sqrt{\pi}} dx = \lim_{\beta \to \infty} \frac{1}{\sqrt{\pi}} \int_{0^+}^{\beta b} e^{-x^2} dx = \frac{1}{\sqrt{\pi}} \int_{0^+}^{\infty} e^{-x^2} dx = \frac{1}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2} = \frac{1}{2}.$$

Figure 1.2-1

3.)

Still another representation of the delta function is

$$\frac{1}{2\pi}\int_{-\beta}^{\beta}e^{ikx}dk\,,\quad \beta\to\infty.$$

This is because, by performing the integration

$$\frac{1}{2\pi} \int_{-\beta}^{\beta} e^{ikx} dk = \frac{1}{2\pi} \frac{e^{i\beta x} - e^{-i\beta x}}{ix} = \frac{\sin(\beta x)}{\pi x},$$

we can reduce it to the first representation above.

4.)

Our final example of the representation of the delta function is the following sequence of polynomials:

$$p_n(x)=a_n(1-x^2)^n, \quad |x|\leq 1; \quad p_n(x)=0, \quad |x|>1, \quad n=1,2,3,\cdots,$$
 where a_n is a normalization factor defined by

$$a_n \int_{0^+}^{1} (1 - x^2)^n dx = \frac{1}{2}, \quad n = 1, 2, 3, \dots$$

Proof

When 0 < b < 1, consider the following integral

$$\int_{0+}^{b} p_n(x)dx = a_n \int_{0+}^{b} (1 - x^2)^n dx$$

$$= a_n \int_{0+}^{1} (1 - x^2)^n dx - a_n \int_{b}^{1} (1 - x^2)^n dx$$

$$= \frac{1}{2} - a_n \int_{b}^{1} (1 - x^2)^n dx.$$

On one hand,

$$\frac{1}{a_n} = 2 \int_{0^+}^{1} (1 - x^2)^n dx > 2 \int_{0^+}^{1} (1 - x)^n dx = 2 \frac{-(1 - x)^{n+1}}{n+1} \Big|_{0^+}^{1} = \frac{2}{n+1};$$

$$a_n < \frac{n+1}{2}.$$

On the other hand,

$$\int_{b}^{1} (1 - x^{2})^{n} dx < (1 - b^{2})^{n} (1 - b) < (1 - b^{2})^{n}.$$

Hence,

$$a_n \int_{b}^{1} (1-x^2)^n dx < \frac{n+1}{2} (1-b^2)^n \to 0, \quad n \to \infty.$$

Then.

$$\int_{0^+}^b p_n(x)dx = \frac{1}{2}.$$

When $b \ge 1$,

$$\int_{0+}^{b} p_n(x)dx = \int_{0+}^{1} p_n(x)dx = a_n \int_{0+}^{1} (1 - x^2)^n dx = \frac{1}{2}$$

by the definition of $p_n(x)$ and a_n .

Therefore,

$$\lim_{n \to \infty} \int_{0^+}^b a_n (1 - x^2)^n dx = \frac{1}{2}, \quad b > 0,$$

which means $p_n(x)$, $n \to \infty$ is indeed a representation of the δ function.

1.2.2 Properties of the delta function

1.)

Sifting

When b > 0, if f(x) is continuous on (0,b] and $f(x)|_{x\to 0^+} = f(0^+)$, then

$$\int_{0^{+}}^{b} f(x)\delta(x)dx = \frac{1}{2}f(0^{+}).$$

Similarly, when b < 0, if f(x) is continuous on [b,0) and $f(x)|_{x\to 0^-} = f(0^-)$, then

$$\int_{0}^{0^{-}} f(x)\delta(x)dx = \frac{1}{2}f(0^{-}).$$

In particular,

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = \frac{1}{2}[f(0^{-}) + f(0^{+})],$$

which is equal to f(0) if f(x) is continuous at x = 0.

Proof

We first prove the case of b > 0.

Since f(x) is continuous, there exists a small enough b_1 such that f(x) is monotonic on $(0, b_1]$. We then apply the second mean-value theorem of integral calculus and get

$$\int_{0^{+}}^{b_{1}} f(x)\delta(x)dx = \lim_{n \to \infty} \int_{0^{+}}^{b_{1}} f(x)D_{n}(x)dx$$

$$= \lim_{n \to \infty} f(0^{+}) \int_{0^{+}}^{x_{1}} D_{n}(x)dx + \lim_{n \to \infty} f(b_{1}) \int_{x_{1}}^{b_{1}} D_{n}(x)dx$$

$$= f(0^{+}) * \frac{1}{2} + f(b_{1}) * 0.$$

For b > 0 in general, we write

$$\int_{0^{+}}^{b} f(x)\delta(x)dx = \int_{0^{+}}^{b_{1}} f(x)\delta(x)dx + \int_{b_{1}}^{b} f(x)\delta(x)dx = \frac{1}{2}f(0^{+}) + \int_{b_{1}}^{b} f(x)\delta(x)dx.$$

Next, we divide $[b_1,b]$ into several sub-intervals in which f(x) is monotonic.

Let one such sub-interval be $[b_{k-1}, b_k]$.

Then,

$$\int_{b_{k-1}}^{b_k} f(x)\delta(x)dx = \lim_{n \to \infty} \int_{b_{k-1}}^{b_k} f(x)D_n(x)dx$$

$$= \lim_{n \to \infty} f(b_{k-1}) \int_{b_{k-1}}^{x_k} D_n(x)dx + \lim_{n \to \infty} f(b_k) \int_{x_k}^{b_k} D_n(x)dx$$

$$= f(b_{k-1}) * 0 + f(b_k) * 0.$$

Hence, adding up all such integrals, we have

$$\int_{b_{1}}^{b} f(x)\delta(x)dx = 0.$$

Therefore, when b > 0,

$$\int_{0^{+}}^{b} f(x)\delta(x)dx = \frac{1}{2}f(0^{+}).$$

Similarly, when b < 0,

$$\int_{b}^{0^{-}} f(x)\delta(x)dx = \frac{1}{2}f(0^{-}).$$

If f(x) is continuous at x = 0,

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = \frac{1}{2}[f(0^{-}) + f(0^{+})] = f(0).$$

Letting in the above equation f(x) = g(x + c), we have

$$\int_{-\infty}^{\infty} g(x+c)\delta(x)dx = g(c).$$

By change of variable $x + c = x_{\wedge}$, we obtain

$$\int_{-\infty}^{\infty} g(x_{\wedge})\delta(x_{\wedge}-c)dx_{\wedge} = g(c).$$

The above expression is the most common form for expressing the sifting property of the delta function.

2.)

Scaling

$$\int_{0}^{\infty} f(x)\delta(ax)dx = \frac{1}{|a|}f(0).$$

Proof

If a > 0,

$$\int_{-\infty}^{\infty} f(x)\delta(ax)dx = \int_{-\infty}^{\infty} f(x_{\wedge}/a)\delta(x_{\wedge})\frac{dx_{\wedge}}{a}$$

$$=\frac{1}{a}f(0).$$

If a < 0,

$$\int_{-\infty}^{\infty} f(x)\delta(ax)dx = \int_{\infty}^{-\infty} f(x_{\wedge}/a)\delta(x_{\wedge})\frac{dx_{\wedge}}{a}$$

$$=-\frac{1}{a}\int_{-\infty}^{\infty}f(x_{\wedge}/a)\delta(x_{\wedge})dx_{\wedge}$$

$$=-\frac{1}{a}f(0).$$

3.)

Functional

$$\delta[g(x)] = \sum_{i} \frac{1}{|g'(x_i)|} \delta(x - x_i).$$

Proof

 $\delta(x)$ is non-trivial only in the neighborhood of x=0.

Thus, for $\delta[g(x)]$, we can only focus on those tiny intervals centered at x_i 's where $g(x_i) = 0$, and on each such interval, approximate g(x) by a linear function, i.e.,

$$g(x) \approx g(x_i) + g'(x_i)(x - x_i).$$

Hence,

$$\int_{-\infty}^{\infty} f(x)\delta[g(x)]dx = \sum_{i} \int_{-\infty}^{\infty} f(x)\delta[g'(x_i)(x - x_i)]dx.$$

$$= \sum_{i} \frac{1}{|g'(x_i)|} f(x_i).$$

We may then state, equivalently,

$$\delta[g(x)] = \sum_{i} \frac{1}{|g'(x_i)|} \delta(x - x_i).$$

4.)

Differentiation

$$\int_{-\infty}^{\infty} f(x)\delta'(x-c)dx = -f'(c).$$

Proof

$$\int_{-\infty}^{\infty} f(x)\delta'(x-c)dx = \lim_{\Delta \to 0} \int_{-\infty}^{\infty} f(x) \frac{\delta(x+\Delta/2-c) - \delta(x-\Delta/2-c)}{\Delta} dx$$

$$= \lim_{\Delta \to 0} \frac{f(c-\Delta/2) - f(c+\Delta/2)}{\Delta}$$

$$= -\lim_{\Delta \to 0} \frac{f(c+\Delta/2) - f(c-\Delta/2)}{\Delta}$$

$$= -f'(c).$$

1.3 Weierstrass' Approximation Theorem

Weierstrass' approximation theorem states that any function which is continuous in an interval can be approximated uniformly by polynomials, i.e., 1, x, x^2 , ..., in this interval.

Weierstrass' approximation theorem can be explained by employing the sifting property of the delta function we have just proved.

Assume that f(x) is continuous in [c,d].

Then,

$$f(x) = \int_{c^{-}}^{d^{+}} f(u)\delta(u - x)du$$

$$= \lim_{n \to \infty} a_n \int_{c^-}^{d^+} f(u) [1 - (u - x)^2]^n du,$$

by employing the polynomial representation of the delta function.

Here, $c^- < c < d < d^+$.

Why is the integration domain $[c^-, d^+]$ larger than [c, d]? If we integrate over [c, d], then at the boundary, e.g., at c, we only get f(c)/2, not f(c).

After performing the integration in the above equation, we obtain a polynomial of order 2n. We need to choose a proper n to meet the required error tolerance.

For an explicit proof of Weierstrass' approximation theorem, see Appendix 1.2.

1.4 Fourier Transform

We define the Fourier transform as

$$\mathcal{F}[U(x)] \equiv \int_{-\infty}^{\infty} U(x)e^{-ikx}dx = \widetilde{U}(k)$$

and the inverse Fourier transform as

$$\mathcal{F}^{-1}\big[\widetilde{U}(k)\big] \equiv \int_{-\infty}^{\infty} \widetilde{U}(k)e^{ikx}\frac{dk}{2\pi}.$$

U(x) and $\widetilde{U}(k)$ are called Fourier transform pairs.

The functions U(x) and $\widetilde{U}(k)$ are generally complex; however, the variables x and k are always real unless otherwise stated.

1.4.1 Fourier transform theorems

1.)

Fourier integral theorem

$$\mathcal{F}^{-1}\big[\mathcal{F}[U(x)]\big] = U(x).$$

Proof

$$\mathcal{F}^{-1}\big[\mathcal{F}[U(x)]\big] = \int\limits_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx} \int\limits_{-\infty}^{\infty} dx_1 e^{-ikx_1} U(x_1)$$

$$=\int_{-\infty}^{\infty}dx_1U(x_1)\int_{-\infty}^{\infty}\frac{dk}{2\pi}e^{-ik(x_1-x)}$$

$$=\int_{-\infty}^{\infty}U(x_1)\delta(x_1-x)dx_{\wedge}$$

$$=U(x).$$

If U(x) is discontinuous at x, replace $\delta(x_1-x)$ by $D_n(x_1-x)$ in the second-to-last equation and let $n\to\infty$.

We see that the newly obtained U(x) is the average of U(x) in the neighborhood of x.

2.)

Linearity theorem

$$\mathcal{F}[a_1U_1(x) + a_2U_2(x)] = a_1\tilde{U}_1(k) + a_2\tilde{U}_2(k).$$

3.)

Scaling theorem

$$\mathcal{F}[U(ax)] = \frac{1}{|a|}\widetilde{U}(k/a).$$

Proof

If a > 0,

$$\mathcal{F}[U(ax)] = \int_{-\infty}^{\infty} U(ax)e^{-ikx}dx$$

$$ax = x_1$$

$$= \int_{-\infty}^{\infty} U(x_1) e^{-ik\frac{x_1}{a}} \frac{dx_1}{a}$$

$$= \frac{1}{a} \int_{-\infty}^{\infty} U(x_1) e^{-i\frac{k}{a}x_1} dx_1$$
$$= \frac{1}{a} \widetilde{U}(k/a).$$
If $a < 0$,

$$\mathcal{F}[U(ax)] = \int_{-\infty}^{\infty} U(ax)e^{-ikx}dx$$

$$ax = x_1$$

$$= \int_{\infty}^{-\infty} U(x_1)e^{-ik\frac{x_1}{a}}\frac{dx_1}{a}$$
$$= -\frac{1}{a}\int_{-\infty}^{\infty} U(x_1)e^{-i\frac{k}{a}x_1}dx_1$$

$$= -\frac{1}{a}\widetilde{U}(k/a).$$

4.)

Shift theorem

$$\mathcal{F}[U(x-c)] = e^{-ikc}\widetilde{U}(k).$$

Proof

$$\mathcal{F}[U(x-c)] = \int_{-\infty}^{\infty} U(x-c)e^{-ikx}dx$$

$$=e^{-ikc}\int_{-\infty}^{\infty}U(x-c)e^{-ik(x-c)}d(x-c)$$

$$x - c = x_1$$

$$=e^{-ikc}\int_{-\infty}^{\infty}U(x_1)e^{-ikx_1}dx_1$$

$$=e^{-ikc}\widetilde{U}(k).$$

5.)

Rayleigh's (Parseval's) theorem

$$\int_{-\infty}^{\infty} |U(x)|^2 dx = \int_{-\infty}^{\infty} |\widetilde{U}(k)|^2 \frac{dk}{2\pi}.$$

Proof

$$\int_{-\infty}^{\infty} |U(x)|^2 dx = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx} \widetilde{U}(k) \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} e^{-ik_1x} \widetilde{U}^*(k_1)$$

$$= \int_{-\infty}^{\infty} \frac{dk}{2\pi} \widetilde{U}(k) \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} \widetilde{U}^*(k_1) \int_{-\infty}^{\infty} dx e^{-i(k_1 - k)x}$$

$$= \int_{-\infty}^{\infty} \frac{dk}{2\pi} \widetilde{U}(k) \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} \widetilde{U}^*(k_1) 2\pi \delta(k_1 - k)$$

$$= \int_{-\infty}^{\infty} |\widetilde{U}(k)|^2 \frac{dk}{2\pi}.$$

6.)

Convolution theorem

The convolution of two functions is defined as

$$U(x) \otimes V(x) \equiv \int_{-\infty}^{\infty} U(x - x_1) V(x_1) dx_1$$

$$x - x_1 = x_2$$

$$= \int_{-\infty}^{-\infty} V(x - x_2) U(x_2) (-dx_2)$$

$$= \int_{-\infty}^{\infty} V(x-x_2)U(x_2)dx_2$$

$$= V(x) \otimes U(x).$$

Then,

$$\mathcal{F}\{U(x)\otimes V(x)\} = \int_{-\infty}^{\infty} dx e^{-ikx} \int_{-\infty}^{\infty} dx_1 U(x-x_1)V(x_1)$$

$$= \int_{-\infty}^{\infty} dx \cdot e^{-ikx_1} V(x_1) \int_{-\infty}^{\infty} d(x - x_1) e^{-ik(x - x_1)} U(x - x_1)$$
$$= \tilde{V}(k) \tilde{U}(k).$$

Besides,

$$\begin{split} \mathcal{F}[U(x)V(x)] &= \int\limits_{-\infty}^{\infty} U(x)V(x)e^{-ikx}dx \\ &= \int\limits_{-\infty}^{\infty} dx e^{-ikx} \int\limits_{-\infty}^{\infty} \frac{dk_1}{2\pi} e^{ik_1x} \widetilde{U}(k_1) \int\limits_{-\infty}^{\infty} \frac{dk_2}{2\pi} e^{ik_2x} \widetilde{V}(k_2) \\ &= \int\limits_{-\infty}^{\infty} \frac{dk_1}{2\pi} \widetilde{U}(k_1) \int\limits_{-\infty}^{\infty} \frac{dk_2}{2\pi} \widetilde{V}(k_2) \int\limits_{-\infty}^{\infty} dx e^{-i(k-k_1-k_2)x} \\ &= \int\limits_{-\infty}^{\infty} \frac{dk_1}{2\pi} \widetilde{U}(k_1) \int\limits_{-\infty}^{\infty} \frac{dk_2}{2\pi} \widetilde{V}(k_2) 2\pi \delta(k-k_1-k_2) \end{split}$$

either

$$= \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} \tilde{V}(k - k_1) \tilde{U}(k_1)$$
$$= \tilde{V}(k) \otimes \tilde{U}(k)$$

or

$$\begin{split} &= \int\limits_{-\infty}^{\infty} \frac{dk_2}{2\pi} \widetilde{U}(k-k_2) \widetilde{V}(k_2). \\ &= \widetilde{U}(k) \otimes \widetilde{V}(k). \end{split}$$

7.)

Complex conjugate

$$\mathcal{F}[U^*(x)] = \int_{-\infty}^{\infty} U^*(x)e^{-ikx}dx$$
$$= \left[\int_{-\infty}^{\infty} U(x)e^{ikx}dx\right]^*$$

$$x = -x_1$$

$$= \left[\int_{-\infty}^{-\infty} U(-x_1) e^{-ikx_1} (-dx_1) \right]^*$$

$$= \left[\int_{-\infty}^{\infty} U(-x_1) e^{-ikx_1} dx_1 \right]^*$$

$$= \left[\mathcal{F}[U(-x)] \right]^*$$

$$\neq \left[\mathcal{F}[U(x)] \right]^*.$$

That is, the operations of the Fourier transform and complex conjugate do not commute unless U(-x) = U(x), i.e., for functions with inversion symmetry.

8.)

Autocorrelation theorem

$$\mathcal{F}[U(x) \otimes U^*(-x)] = \mathcal{F}[U(x)] \big[\mathcal{F}[U(x)] \big]^* = \widetilde{U}(k) \widetilde{U}^*(k) = \big| \widetilde{U}(k) \big|^2.$$

$$\mathcal{F}[|U(x)|^2] = \mathcal{F}[U(x)U^*(x)] = \mathcal{F}[U(x)] \otimes \mathcal{F}[U^*(x)] = \widetilde{U}(k) \otimes \widetilde{U}^*(-k).$$

1.4.2 Useful Fourier transform pairs

1.)

Fourier transform of the rectangle function

The rectangle function in the real space of width $\ensuremath{\mathit{W}}_{\!x}$ is defined as

$$Rect(x/W_x) = \begin{cases} 1, & |x| < W_x/2 \\ 1/2, & |x| = W_x/2 \\ 0, & |x| > W_x/2. \end{cases}$$

Finding its Fourier transform is straightforward:

$$\mathcal{F}[\text{Rect}(x/W_x)] = \int_{-W_x/2}^{W_x/2} e^{-ikx} dx$$

$$= \frac{e^{-ikW_x/2}}{-ik} \Big|_{x=-W_x/2}$$

$$= \frac{e^{-ikW_x/2} - e^{ikW_x/2}}{-ik}$$

$$= \frac{-i2\sin(kW_x/2)}{-ik}$$

$$= W_x \frac{\sin(kW_x/2)}{kW_x/2}$$
$$= W_x \operatorname{Sinc}(kW_x/2).$$

The rectangular function in the frequency space may be employed more frequently. Similarly, it can be shown that

$$\mathcal{F}^{-1}[\operatorname{Rect}(k/W_k)] = \frac{W_k}{2\pi}\operatorname{Sinc}(W_k x/2).$$

2.)

Fourier transform of the comb function

The comb function is defined as

$$\delta_p(x) = \sum_{n=-\infty}^{\infty} \delta(x - np),$$

which is a periodic function of period p.

We want to compute its Fourier transform.

$$\tilde{\delta}_p(k) = \int\limits_{-\infty}^{\infty} \delta_p(x) e^{-ikx} dx$$

$$=\sum_{n=-\infty}^{\infty}e^{-i*k*np}$$

$$=\sum_{n=-\infty}^{\infty}e^{i*k*np}$$

 e^{i*k*p} is a periodic function of period $2\pi/p$.

 e^{i*k*2p} is a periodic function of period $2\pi/2p$, which is also a periodic function of period $2\pi/p$.

Therefore, $\tilde{\delta}_p(k)$ is also a periodic function of period $2\pi/p$.

$$= \lim_{N \to \infty} \sum_{n=-N}^{N} \left[e^{ikp} \right]^{n}$$

$$= \lim_{N \to \infty} \left[e^{ikp} \right]^{-N} \frac{\left[e^{ikp} \right]^{2N+1} - 1}{e^{ikp} - 1}$$

$$= \lim_{N \to \infty} \frac{\left[e^{ikp} \right]^{N+1} - \left[e^{ikp} \right]^{-N}}{e^{ikp} - 1}$$

$$\left[e^{ikp} \right]^{N+1} - \left[e^{ikp} \right]^{-N} = \left[e^{ikp} \right]^{1/2} \left[\left[e^{ikp} \right]^{N+1/2} - \left[e^{ikp} \right]^{-(N+1/2)} \right]$$

Figure 1.4-1

$$\begin{split} e^{ikp} - 1 &= \left[e^{ikp}\right]^{1/2} \left[\left[e^{ikp}\right]^{1/2} - \left[e^{ikp}\right]^{-1/2}\right] \\ &= \lim_{N \to \infty} \frac{\sin[(N+1/2)kp]}{\sin(kp/2)} \\ &\equiv \lim_{N \to \infty} D_N(k). \end{split}$$

 $D_N(k)$ may diverge at $k=m(2\pi/p)$ since its denominator equals zero there.

Before going into the mathematical details, we first plot, in Fig. 1.4-1, $D_N(k)$ versus k for N=1, 2, 3.

(Actually, we plot $D_N(k)$ versus \overline{k} , defined by $k=(2\pi/p)\overline{k}$.)

It is seen that as N increases, the main lobes at $k = m(2\pi/p)$ become higher (though narrower), whereas the side lobes become lower (if normalized by the main lobe at k = 0).

Yes, your guess is correct.

It is an infinite series of delta functions.

We sketch a formal proof below.

Proof

First, we consider

$$\int_{-\pi/p}^{\pi/p} f(k)D_N(k)dk = \int_{-\pi/p}^{\pi/p} f(k) \frac{\sin[(N+1/2)kp]}{\sin(kp/2)} dk$$

$$(N+1/2)kp = v$$

$$= \int_{-(N+1/2)\pi}^{(N+1/2)\pi} f[v/(N+1/2)p] \frac{\sin v}{\sin[v/2(N+1/2)]} \frac{dv}{(N+1/2)p}$$

$$= \frac{2}{p} \int_{-(N+1/2)\pi}^{(N+1/2)\pi} f[v/(N+1/2)p] \frac{\sin v/v}{\sin[v/2(N+1/2)]/[v/2(N+1/2)]} dv$$

$$\lim_{N \to \infty} \frac{\sin[v/2(N+1/2)]}{v/2(N+1/2)} = \lim_{v_1 \to 0} \frac{\sin v_1}{v_1} = 1$$

$$\to \frac{2}{p} \int_{-\infty}^{\infty} f(0) \frac{\sin v}{v} dv, \quad N \to \infty$$

$$= \frac{4}{p} f(0) \int_{0}^{\infty} \frac{\sin v}{v} dv$$

$$\int_{0+}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Since $D_N(k)$ is a periodic function of period $2\pi/p$,

$$\tilde{\delta}_p(k) = \lim_{N \to \infty} D_N(k) = \frac{2\pi}{p} \sum_{m=-\infty}^{\infty} \delta[k - m(2\pi/p)].$$

 $=\frac{2\pi}{n}f(0).$

Computing the inverse Fourier transform of the above equation, we obtain

$$\delta_{p}(x) = \int_{-\infty}^{\infty} \tilde{\delta}_{p}(k) e^{ikx} \frac{dk}{2\pi}$$

$$= \frac{1}{p} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta[k - m(2\pi/p)] e^{ikx} dk$$

$$= \frac{1}{p} \sum_{m=-\infty}^{\infty} e^{i*m\frac{2\pi}{p}*x}.$$

In summary,

$$\delta_p(x) = \sum_{n = -\infty}^{\infty} \delta(x - np) = \frac{1}{p} \sum_{m = -\infty}^{\infty} e^{i*m\frac{2\pi}{p}*x};$$

$$\tilde{\delta}_p(k) = \sum_{n = -\infty}^{\infty} e^{i*k*np} = \frac{2\pi}{p} \sum_{m = -\infty}^{\infty} \delta[k - m(2\pi/p)].$$
(1)