
6.7 Phase-Shifting Interferometry

6.7.1 Phase-shifting techniques

Phase-shifting interferometry is a powerful means of analyzing interferograms
to recover the phase information. Traditionally, interferograms were
measured by locating the center of a fringe and then tracing along the fringe.
Phase-shifting interferometry avoids the need to track the location of the
fringes and enables a point-by-point reconstruction of the wavefront.
Consider a slightly modified version of Eq. (6.11), where

Iðx, y; fÞ ¼ I 0ðx,yÞ þ I 00ðx, yÞcos½Ψðx, yÞ þ f�: ð6:23Þ
Here, I 0ðx, yÞ ¼ I1 þ I2, I 00ðx, yÞ ¼ 2

ffiffiffiffiffiffiffiffiffi
I1I2

p
, and Ψðx, yÞ ¼ ð2p=lÞ

½W 1ðx, yÞ �W 2ðx, yÞ� þ f12. In addition to the modified definition of the
interference pattern, an extra factor f has been added. Phase-shifting
interferometry records multiple interferograms with different values of f.
In doing so, the phase Ψðx, yÞ at each point in the interferogram is easily

Figure 6.11 Vertical coma in the presence of defocus and tilt: (a) untilted and (b) tilted.

Figure 6.12 Spherical aberration in the presence of defocus and tilt: (a) untilted and (b) tilted.

191Basic Interferometry and Optical Testing



recovered. To control the value of f, the interferometer is slightly adjusted
between each measurement. This adjustment is typically performed by placing
a piezo-electric transducer such as lead zirconate titanate (PZT) onto one of
the mirrors in the interferometer. PZT is a ceramic that changes thickness in
response to applied voltage. By applying specific voltages, small and precise
movements of the mirror can be made. In the laser Fizeau and Twyman–
Green interferometers, the reference surface is typically moved. In the Mach–
Zehnder, the mirror in the reference arm is typically moved. The movements
are controlled to introduce specific values of f into the OPD.

6.7.2 Reconstruction algorithms

Equation (6.23) shows that there are three unknowns in the interferogram
irradiance pattern: I 0ðx,yÞ, I 00ðx, yÞ and Ψðx, yÞ. The latter unknown is of
primary interest since it encodes the OPD between the reference and test
wavefronts. With three unknowns, at least three measurements with different
values of f are needed to recover Ψðx, yÞ. A possible three-step algorithm has
f ¼ p=3, p; and 5p=3. In this case, three measurements are made such that

I x, y;
p

3

� �
¼ I 0ðx,yÞ þ I 00ðx, yÞcos p

3

h i
cos½Ψðx,yÞ� � I 00ðx,yÞsin p

3

h i
sin½Ψðx, yÞ�,

Iðx, y;pÞ ¼ I 0ðx,yÞ þ I 00ðx, yÞcos½p�cos½Ψðx, yÞ� � I 00ðx, yÞsin½p�sin½Ψðx,yÞ�,
I x,y;

5p
3

� �
¼ I 0ðx, yÞ þ I 00ðx, yÞcos 5p

3

� �
cos½Ψðx, yÞ� � I 00ðx, yÞsin 5p

3

� �
sin½Ψðx, yÞ�:

ð6:24Þ
Reducing gives

Ψðx,yÞ ¼ tan�1
ffiffiffi
3

p Iðx, y;5p=3Þ � Iðx, y;p=3Þ
Iðx,y; 5p=3Þ þ Iðx, y; p=3Þ � 2Iðx, y;pÞ

� �
: ð6:25Þ

Thus, the phase at each point ðx, yÞ can be obtained from the irradiance values
at the corresponding points in the three measurements. While the three-step
algorithm gives an exact result, it is sensitive to errors in the value of f and
measurement noise. A wide variety of phase-shifting interferometry recon-
struction algorithms have been proposed in an effort to reduce the noise
sensitivity of the measurement. Four-step and five-step algorithms provide
superior performance over the three-step algorithm.

In the four-step algorithm, f ¼ 0, p=2, p; and 3p=2. The irradiance
patterns of the four measurements are

Iðx,y;0Þ ¼ I 0ðx, yÞ þ I 00ðx,yÞcos½Ψðx,yÞ�,
I x, y;

p

2

� �
¼ �I 00ðx, yÞsin½Ψðx, yÞ�,

Iðx,y;pÞ ¼ I 0ðx, yÞ � I 00ðx, yÞcos½Ψðx, yÞ�,
I x, y;

3p
2

� �
¼ I 00ðx, yÞsin½Ψðx, yÞ�:

ð6:26Þ
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Solving for the phase gives

Ψðx, yÞ ¼ tan�1 Iðx, y; 3p=2Þ � Iðx, y; p=2Þ
Iðx, y; 0Þ � Iðx, y;pÞ

� �
: ð6:27Þ

Finally, Schwider et al.1 and later Hariharan et al.2 describe a robust five-step
algorithm. In this case, f ¼ 0, p=2, p; 3p=2; and 2p. Following a similar
derivation as in the other algorithms, the phase for the five-step algorithm is

Ψðx,yÞ ¼ tan�1 2½Iðx,y; p=2Þ � Iðx,y; 3p=2Þ�
2Iðx, y;pÞ � Iðx,y; 0Þ � Iðx,y; 2pÞ

� �
: ð6:28Þ

6.7.3 Phase unwrapping

Each of the algorithms used to recover Ψðx, yÞ leads to an expression
involving the arctangent function. Arctangent has an inherent ambiguity, as
multiples of 2p can be added to a given argument, and the arctangent will
return the same result. The arctangent function has principal values in the
range of –p to p (noninclusive on the upper end) if the signs of the numerators
and denominators in Eqs. (6.25), (6.27), and (6.28) are taken into account. If
the phase function exceeds this range, the phase values will be wrapped back
down into this range. A one-dimensional analysis is useful for illustrating the
effects of phase wrapping. Suppose that the true phase has a spherical
aberration profile as shown in Fig. 6.13(a). Reconstructing this phase pattern
by applying the preceding algorithms to a series of phase-shifted interfero-
grams leads to the profile shown in Fig. 6.13(b). In the center of the phase
pattern, the original phase matches the wrapped phase. However, once the
phase reaches a value of p in the periphery, the arctangent function wraps
these values back into the range –p to p by removing integer multiples of
2p from the actual value until the resultant value is within the range. The
resultant wrapped wavefront has a series of discontinuous steps at the
wrapping transitions.

Figure 6.13 (a) Profile through a wavefront with spherical aberration. (b) Reconstruction of
the wavefront leads to a phase-wrapped wavefront.
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In general, the measured wavefront phase will exceed the range –p to p,
and its reconstruction will contain these wrapping artifacts. Examining
Fig. 6.13, the wrapped phase contains the same information as the original
phase. A value of 2p merely needs to be added to the peripheral region to
recover the original phase pattern. While intuitive, algorithms for performing
this phase unwrapping are sophisticated. See the book by Ghiglia and Pritt in
the bibliography for a detailed discussion of the various phase-unwrapping
algorithms. Here, a technique outlined by Peck3 will be applied to the one-
dimensional example above. Before proceeding, it is useful to define the
wrapping operator, wrapð Þ, as

wrapðxÞ ¼ ½ðxþ pÞ mod 2p� � p: ð6:29Þ
Suppose that the original phase as shown in Fig. 6.13(a) is given by ΨðxiÞ,

and the wrapped phase as shown in Fig. 6.13(b) is given by
FðxiÞ ¼ wrap½ΨðxiÞ�. The xi are a series of discretely sampled points across
the profile of the phase, with i ¼ 1 . . .N. A key observation in unwrapping the
phase is that the slopes of both the original phase and the wrapped phase are
identical except at the transition points. The next step in unwrapping the
phase is to calculate the difference between the wrapped phase and its
immediate neighbor such that DFðxiÞ ¼ Fðxiþ1Þ �FðxiÞ. This calculation is
shown in Fig. 6.14(a). Two outlier points with values of approximately �2p
appear at the wrapping points, while the remaining points are just the
differences that would be expected in the original wavefront. The slope of the
original wavefront can be approximated by

slopeðxiÞ ≅ wrap½DFðxiÞ�
xiþ1 � xi

: ð6:30Þ

Equation (6.30) is essentially the finite-difference expression for the slope of
the phase. The wrapð Þ operator in the numerator, however, has the added
effect of “filtering” out the outlier values that occur at the wrapping points

Figure 6.14 (a) Finite difference of the wrapped phase. (b) Estimate of the slope of the
original wavefront.
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and mapping them to something similar to the other slope values. The result
of Eq. (6.30) is shown in Fig. 6.14(b). This slope estimate is then fit to a
function and integrated to create an initial estimate of the original phase
ΨestðxiÞ.

The outlier values that were wrapped into the other difference values
create some residual error in ΨestðxiÞ. The residual errors can be calculated as

residual errorðxiÞ ¼ wrap½FðxiÞ � ΨestðxiÞ�: ð6:31Þ
The residual errors are shown in Fig. 6.15(a). Finally, a second estimate of the

original wavefront ~ΨðxiÞ is calculated as
~ΨðxiÞ ¼ ΨestðxiÞ þ residual errorðxiÞ: ð6:32Þ

The resultant estimate of the original phase is shown in Fig. 6.15(b). In
this noise-free example, the original phase is perfectly reconstructed by this
process.

The preceding example is a one-dimensional application of the phase-
unwrapping algorithm used to illustrate the steps of the algorithm. The
process can be easily extended to two dimensions. Equation (6.30) is extended
to calculate the slopes in both the x and y directions. The initial estimate of the
original phase Ψestðxi, yiÞ is obtained by fitting the slope data to the derivatives
of the Zernike polynomials in the same manner as was done for the Shack–
Hartmann reconstruction in Section 5.4.5. The coefficients of this fitting
process are then used to reconstruct the initial estimate of the phase.
Combining these results with the residual errors leads to the final estimate of
the original phase.

6.8 Testing Aspheric Surfaces

Much of the preceding discussion on optical testing assumed spherical
surfaces with small fabrication errors, or optical systems with small levels of
aberration. In these cases, the interferograms created in the various testing

Figure 6.15 (a) Residual wrapped error. (b) Reconstructed phase.

195Basic Interferometry and Optical Testing




