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5.4 Thermal Detectors

5.4.1 Principle of operation

The scope of thermal detector technology includes a large number of dif-
ferent physical mechanisms, resulting in a wide variety of measurable
characteristics. Common to to all these mechanisms is the underlying prin-
ciple that the absorbed heat increases the temperature of the device (hence
the name thermal), which is observed in the change of some observable
property of the device. The two major groupings include thermoelectric
transducer effects (Seebeck effect and pyroelectric effect) and parametric
transducers where the device temperature modulates an electric signal (re-
sistive bolometers, Golay cell, and p-n diodes).25,33

The Peltier–Seeback effect (discovered independently by Peltier, See-
beck and Thomson) is the bidirectional conversion between temperature
and voltage. This effect is exploited in thermocouple devices and Peltier
coolers used to cool detectors and mini-fridges. In a pyroelectric device,
temperature variations result in dielectric polarization changes in the ma-
terial. Pyroelectric detectors are commonly used in IR movement detectors
in security applications. In bolometer detectors the temperature change
results in a change in the device’s resistance. Nanotechnology bolometers
are used in low-cost thermal imaging applications.

In addition to the types mentioned earlier, there are several other ef-
fects also exploited in thermal detectors.25 None of these effects require
the use of small-bandgap semiconductor materials, thereby not requiring
material cool-down for long-wavelength operation. Some of the thermal
detectors remain sensitive to temperature effects, such as pyroelectric de-
tectors that lose polarization above the Curie temperature.

A common requirement for all thermal detectors is that the sensing el-
ement must be thermally isolated from ambient temperature structures in
order to allow minute temperature changes in the sensing element. A con-
ceptual model of a thermal detector is shown in Figure 5.2. The detector-
element thermal balance is affected by three heat-flow paths: (a) the in-
cident flux from the object (target), (b) thermally radiated flux from the
detector element, and (c) heat conducted from the detector element to the
device’s substrate. Thermal detector performance optimization entails the
careful optimization of the heat balance equation.

Modern thermal detectors employ elements with very small thermal
mass (heat capacity) compared to the surface area of the device. For a given
amount of absorbed energy, the temperature rise is maximized. Likewise,
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Figure 5.2 Conceptual model for thermal detector: (a) physical layout and (b) flux flow
model.

because the radiating area is large compared to the thermal mass of the de-
tecting element, the detector quickly cools down once the incident energy
source is removed.

5.4.2 Thermal detector responsivity

In Figure 5.2 the detector element with heat capacity Cs in [J/K] is at a
temperature Ts and radiates with radiance Ls into a full spherical environ-
ment. The environment is at a temperature Te, radiates with radiance Le,
and has an infinite heat capacity (it can source or sink an infinite amount
of energy without changing temperature). The target object is at a tem-
perature To, radiates with radiance Lo, and has an infinite heat capacity.
The detector element is fixed by mounting posts to the environment (the
readout electronics interface chip). The mounting posts conduct heat Pes
with conductance Gesc in [W/K] from the detector element to the envi-
ronment. The radiative flux exchange between the object and the detector
element is indicated by Φos. The radiative flux exchange between the detec-
tor element and the environment is indicated by Φes. The mounting posts
between the detector element and the environment have a collective heat
conductance Gesc. In this analysis the detector element is considered a thin
disk with area Ad. Under thermal equilibrium the net inflow of power on
the detector element is zero, Φos + Φes + Pes = 0, where inflowing power
is positive:

0 =
∫ ∞

0
AdΩo(αsλLoλ − αoλLsλ)dλ +∫ ∞

0
Ad(2π− Ωo)(αsλLeλ − αeλLsλ)dλ + Gesc(Te − Ts), (5.34)
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where Ωo is the optics FOV, αe is the environment absorptance (emissiv-
ity), αs is the detector-element absorptance (emissivity), and αo is the ob-
ject’s absorptance (emissivity). Equation (5.34) applies to the total flux over
all wavelengths. Each of the three radiative sources has its own spectral
emissivity, requiring a detailed spectral radiometry analysis to find the so-
lution. The following analysis assumes constant spectral absorption and
emissivity by applying Kirchhoff’s law and setting all values equal to a
scalar value αo = αe = αs = ε = εo = εe = εs = ε. Next, perform the
spectral integrals, resulting in:

0 = Adε[Ωo(Lo − Ls) + (2π− Ωo)(Le − Ls)] + Gesc(Te − Ts). (5.35)

The two detector heat-loss mechanisms are radiation heat loss and heat
conduction to the environment. Consider these two cases separately. Case
1: Le = Ls, no heat loss via radiation to the environment. Then AdεΩoLo =
Gesc(Ts − Te), where the object radiance Lo causes a detector-element tem-
perature Ts. Case 2: Gesc = 0, isolated detector element, with no physical
contact with the environment. Then ΩoLo = 2πLs − (2π− Ωo)Le, where
object radiance Lo raises the detector-element temperature such that it ra-
diates at Ls. In general, both radiation and conduction to the environment
take place, the relative ratio of which depends on the heat capacity and
spectral emissivity values of the three components in this system.

By the Stefan–Boltzmann law, Equation (3.19), the flux radiated (or
lost) by a Lambertian object over all wavelengths is

ΦSB =
AσeT4

π
, (5.36)

where A is the radiating surface area, ε in this case is the effective hemi-
spherical emissivity, and T is the temperature. The temperature derivative
of the wideband flux is

dΦSB

dT
=

4AσeT3

π
= Gr(T) (5.37)

with units [W/K], which, by definition, is thermal conductance. Gr(T) can
be interpreted that a thermal radiator loses flux by a ‘conductance’ given
by 4AσeT3/π — this is not a physical conductance, but it has the equivalent
effect. This ‘conductance’ varies with temperature.

The derivative of Equation (5.35) with respect to temperature is (keep-
ing in mind that dLe/dT = 0 because Te is constant)

AdεΩo
dLo

dT
= Adε2π

dLs

dT
+ Gesc, hence

ε
dΦo

dT
= ε

dΦs

dT
+ Gesc = εGr(Ts) + Gesc, and finally

ε
ΔΦ
ΔT

= G = εGr(Ts) + Gesc, (5.38)
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which defines a detector thermal conductance for small changes in Φo
incident on the detector.

In the closed system in Figure 5.2(a), the absorbed flux has two effects:
a change in the detector-element temperature Φdt = d(ΔT)C as well as a
heat loss through conduction to the substrate P = GΔT. Thus, the tem-
perature of the detector element is given by the solution of the differential
equation25

C
d(ΔT)

dt
+ GΔT = ε(ΔΦ)(t), (5.39)

where G is given by Equation (5.38). Assuming a sinusoidal input signal
ΔΦ(t) = ΔΦeiωt , the responsivity of the detector can be derived as being
of the general form12

ΔT = ΔT0 exp(t/τθ) +
ε(ΔΦ)eiωt

G + iωC
, (5.40)

where τθ = C/G is the thermal time constant of the detector, and T0 is the
initial state of the detector. The transient exponential term becomes zero
for large t. The magnitude of ΔT then becomes

ΔT =
ε(ΔΦ)√

G2 + (ωC)2

=
ε(ΔΦ)

G
√

1 + (ωτθ)2
. (5.41)

The responsivity is then

R =

(
ΔT
ΔΦ

)(
id

ΔT

)
=

g
G
√

1 + (ωτθ)2
, (5.42)

where R is the responsivity in [A/W], and g depends on the conversion
mechanism for the type of thermal detector. Responsivity can be similarly
defined in terms of voltage output.

One technique to improve the frequency response of the detector is to
increase the detector conductance G. This would, however, result in a re-
duced responsivity, as shown in Equation (5.42). The better way to improve
the frequency response is to reduce the detector-element heat capacity C.
The heat capacity is C = cρV, where c = dC/dm is the detector mate-
rial specific heat in [J/(g·K)], ρ is the material density in [g/m3], and V is
the detector-element volume in [m3]. The material properties c and ρ are
fixed; the only design freedom is the volume. The detector area must be
maximized; therefore the detector-element thickness must be minimized
to reduce the element’s heat capacity — this can be done with no other
detrimental effect on performance. The only requirement on the detector-
element thickness is to achieve mechanical stability and rigidity.
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Figure 5.3 Resistive bolometer construction (adapted34).

5.4.3 Resistive bolometer

The resistive bolometer senses a change in electrical resistance of the de-
vice when the device temperature changes as a result of changing absorbed
radiant energy. The bolometer consists of a thin, absorbent, metallic or
semiconductor layer on a structure that is thermally isolated from the
substrate material (low conductance). Different materials, ranging from
metals to semiconductors, can be used for the resistive element in these
detectors. The structure is designed to maximize absorption and the asso-
ciated temperature increase but minimize heat loss to the substrate. Mi-
crobolometer detector elements are constructed using nanotechnology pro-
cesses, achieving elements with very good thermal performance.25,33,35–37

Figure 5.3 shows the construction of one type of microbolometer detector,
used in modern staring array detectors. The readout electronics is located
underneath each detector element.

The metallic element bolometer has a positive temperature coefficient
of resistance (resistance increases when temperature increases). The tem-
perature coefficient of resistance αB in [K−1] is defined as

αB =
1

RB

dRB

dTs
, (5.43)

where RB is the bolometer resistance. The detector-element resistance is
given by the parametric equation

RB(T) = RB0 [1 + αB(T − T0)] , (5.44)

where RB0 is the resistance at temperature T0.


