Chapter 7
Decomposition of Hadamard
Matrices

We have seen in Chapter 1 that Hadamard’s original construction of
Hadamard matrices states that the Kronecker product of Hadamard matrices

of orders m and n is a Hadamard matrix of order mn . The multiplicative

theorem was proposed in 1981 by Agaian and Sarukhanyan [1] (see also [2]).
They demonstrated how to multiply Williamson—-Hadamard matrices in order
to get a Williamson—-Hadamard matrix of order mn/2. This result has been
extended by the following:

Craigen et al. [3]. They show how to multiply four Hadamard
matrices of orders m, n, p, g in order to get a Hadamard matrix of
order mnpq/16.

Agaian [2] and Sarukhanyan et al. [4] show how to multiply several

Hadamard matrices of orders n,,i=1,2,...,k+1, to get a Hadamard

matrix of order (mn,---m,,)/2*, k=1, 2,.... They obtained a

similar result for A(n,k)-type Hadamard matrices and for Baumert—
Hall, Plotkin, and Geothals—Seidel arrays [5].

Seberry and Yamada investigated the multiplicative theorem of
Hadamard matrices of the generalized quaternion type using the M-
structure [6].

Phoong and Chang [7] show that the Agaian and Sarukhanyan
theorem results can be generalized to the case of antipodal
paraunitary (APU) matrices. A matrix function H(z) is said to be
paraunitary (PU) if it is unitary for all values of the parameters z,

H(z)H"(1/z)=nl, n > 2. One attractive feature of these matrices is

their energy preservation properties that can avoid the noise or error

amplification problem. For further details of PU matrices and their

applications, we refer the reader to [8—10]. A PU matrix is said to be
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an APU matrix if all of its coefficient matrices have +1 as their
entries. For the special case of constant (memory less) matrices, APU
matrices reduce to the well-known Hadamard matrices.
The analysis of the above-stated results relates with solution of the following
problem.

Problem 1 [2, 11]: Let X, and 4,i=1,2,...,k be (0,£1) and (+1,-1)
matrices of dimensions p,xp, and g Xgq,, respectively, and

P9, = P4, =n=0(mod 4).

(a) What conditions must matrices X, and A, satisfy for

k
H=) X, ®4, (7.1)
i=1

to be a Hadamard matrix of order n, and
(b) How are these matrices constructed?

In this chapter, we develop methods for constructing matrices X, and

A;, making it possible to construct new Hadamard matrices and orthogonal

arrays. We also present a classification of Hadamard matrices based on their
decomposability by orthogonal (+1,—1)-vectors. We will present
multiplicative theorems of construction of a new class of Hadamard matrices
and Baumert-Hall, Plotkin, and Geothals-Seidel arrays. Particularly, we will

show that if there be £ Hadamard matrices of order m,, m,,...,m,, then a
Hadamard matrix of order (mym,---m,)/2""" exists. As an application of

multiplicative theorems, one may find an example in [12—14].

7.1 Decomposition of Hadamard Matrices by (+1,-1) Vectors

In this section, a particular case of the problem given above is studied, i.e.,

the case when A, is (+1,-1)-vectors.

Theorem 7.1.1: For matrix H [see (7.1)] to be an Hadamard matrix of order n,
it is necessary and sufficient that there be (0,£1) matrices X, and (+1,-1)

matrices 4;,71=1,2,...,k of dimensions p, x p, and g, xq,, respectively,

satisfying the following conditions:
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1. pg, = p,q, =n=0(mod4),
2. X,xX,=0, i#j, i,j=1,2,---,k, *is Hadamard product,

k
3. )X, is(+],—1)—matrix,

i=1

k k
43 XX/ @44+ X X ®A A =nl,, i+],

i=1 i,j=1

k k
5. XXX, ®AT4 +) XX, ®A4TA, =nl,, i*]

i=1 i,j=1

The first three conditions are evident. The two last conditions are jointly
equivalent to conditions

HH"=H"H =nl,. (7.2)

Now, let us consider the case where A, are (+1,~1) vectors. Note that any

Hadamard matrix F, of order n can be represented as

a) H =(+H)®X+(+)®Y,

8 7.3
by H,=>v,®4, (73)
i=1

where X, Y are (0,%1) matrices of dimension nx(n/2), A4, are (0,x1)

matrices of dimension 7 x(n/4), and v, are the following four-dimensional

(+1,-1) vectors:

v=H++), v, =H+—), vy=(H—-—+), v, =(+—-+),

(7.4)
Vo= (F =) Vo= (h= ), vy = (), vy = (+ ).

Here, we give the examples of decomposition of the following Hadamard
matrices:
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+ + + + + + + 4+
+ - + - + - + -
+ + + + + + - - + + - -
+ - + - + - - + + - - +
H, = , Hg=
+ + - - + + + + - - - -
+ - - + + - + - + - +
+ + - - - - + +
+ - - + - + + -
(7.5)
We use the following notations:
W =(+4), w, =(+-), vy =(++++),
Vv, =(+=+), vy =(++—), v, =(+——+). (7.6)

Example 7.1.1: The Hadamard matrix /{, and H; can be decomposed as

follows:
(1) Via two vectors:

+ + 0 0
0 0 + +
H,=w® +w, ® ,

+ - 0 0

0 0 + -
+ + + + 0 0 0 O
0 0 0 O + + + +
+ - + - 0 0 0 O
0 0 0 O + - + -

Ho=w® P +w, ® 000 ol (7.7

0 0 0 O + + - -
+ - - + 0 0 0 O
0 0 0 O + - - +

(2) Via four vectors:
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+ 0 0 0
0 + 0 0
H,=v® +v, ® +v, ® +v, ® ,
0 0 + 0
0 0 0 +
+ + 0 0 0 0 0 0
0 0 + + 0 0 0 0
0 0 0 0 + + 0 0
Hy=v® 00 +v, ® 00 +v,; ® 00 +v, ® oo .
+ - 0 0 0 0 0 0
0 0 + - 0 0 0 0
0 0 0 0 + - 0 0
0 0 0 0 0 0 + -
(7.8)
Now, let us introduce matrices.
B =4 +A4,+ A4, + 4, B, =A,+ A, + A, + 4, 7.9)

B,=A —A, —A,+A,, B,=—-A+A,+A4, — A,

Theorem 7.1.1 [15]: For the existence of Hadamard matrices of order n, the
existence of (0,£1) matrices B,,i=1,2,3,4 of dimension nx(n/4) is

necessary and sufficient, satisfying the following conditions:

. B*B,=0, B*B,=0,

2. B tB,, B,*B, are (+1,—1)—matrices,
4

3. Y. BB =21, (7.10)
i=1
T _ . . ..

4, BB, =0, i#], i,j=12,3,4,

5. BfB.:ﬂJ%, i,j=1,2,3,4.

i 2

Proof:
Necessity: Let H, be a Hadamard matrix of order n. According to (7.1), we

have

H =v®A4+v,04,+--+v,® 4. (7.11)
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From this representation, it follows that

4%4,=0, i#j, i,j=L12,...8,

. i (7.12)
A+A4,+-+4, 1sa(+],—1)—matrix.

On the other hand, it is not difficult to show that the matrix //, can also be

presented as
H,=[(+H)®B +(+-)®B,, (++)®B, +(+-)®B,]. (7.13)

Now, let us show that matrices B; satisfy the conditions of Eq. (7.10).
From the representation (7.13) and from Eq. (7.12) and H H nT =nl,, the

first three conditions of Eq. (7.10) will follow. Because H, is a Hadamard

matrix of order n, then from the representation (7.13), we find the following
system of matrix equations:

B/B,+B/B,+B.B +B,B,=nl,,,
B/B,—B/B,+B]B —B.B, =0,

(7.14a)
B/B,+B/B,+B]B,+ BB, =0,
B/B,+B/B,-B,B,— B, B, =0;

BB, +B/B,-B.B, —B!B, =0,

BITBI _BlTBz _BzTBl +BzTBz =nl,,, (7.14b)
B/B,+B'B,-B!B,—B)B, =0,
B/B,—B/B,-B,B,+BB, =0,

BB +B/B,+B,B +B,B,=0,
B!B,—B.B,+B,B —B,B, =0, 7.140)
BB, +BB,+B,B,+B,B,=nl,,,,
B{B,-B{B,+B,B,—B,B, =0,
B!B,+B]B,— BB —B,B, =0,
B{B,—B]B,—B,B, +B,B, =0, 14d)

BB,+B,B,—B,B,— B, B, =0,
B{B,—B;B,-B,B,+B,B,=nl,,,.
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They are equivalent to

B/'B.=2] ., i=1,273.4,
i i 2 nl/4 (715)
B,_Tszo, i#j, i=1,2,34.

Sufficiency: Let (0,£1) matrices B;,i=1,2,3,4 of dimensions nx(n/4)

satisfy the conditions of Eq. (7.10). We can directly verify that Eq. (7.13) is a
Hadamard matrix of order n.
Corollary 7.1.1: The (+1,—1) matrices

QlZ(Bl+Bz)T’ QzZ(Bl_Bz)Ta

, ; (7.16)
Q3:(B3+B4) > Q4:(B3_B4)
of dimensions % x n_satisfy the conditions
007 =0, i#j, i=123,4,
' (7.17)

00 =nl,, i=1234.

Corollary 7.1.2 [3]: If there be Hadamard matrices of order n, m, p, ¢, then
the Hadamard matrix of order mnpg/16 also exists.

Proof: According to Theorem 7.1.2, there are (0,£1) matrices 4. and
B,i=12,3,4 of dimensions mx(m/4) and nx(n/4), respectively,

satisfying the conditions in Eq. (7.10).
Introduce the following (+1,—1) matrices of orders mn/4:

X=4®(B +B,) +4,®(B -B,),

(7.18)
Y=4,®(B,+B,) +4,®(B,-B,)".
It is easy to show that matrices X, Y satisfy the conditions
XY'=Xx"y =0,
(7.19)

XXT+yY'=X"Xx+Y'y =11

2 mn/4°
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Again, we rewrite matrices X, Y in the following form:

=[(+H)BX,+(+H)®X,, (+HO X, +(+—)® X,],
(7.20)
= [(+H)®Y +(+)®Y,, (+H)®Y +(+-)®Y,].

where X

i

Y,i=12,3,4 are (0,£1) matrices of dimensions

(mn/4)x(mn/16) satisfying the conditions

X *x X, =X;x X, =Y *Y,=Y,*Y, =0,
X tX,, X,tX,, ¥,tY,, Y,£Y, are (+1,—1)—matrices,

ZXW ZX

i(XXTJrYY,T) i(XXJrYT Y,)= R
i= i=l1

(7.21)
Similarly to Hadamard matrices of orders p and ¢ can be constructed (+1,-1)

matrices P and Q of orders pq/4 with the conditions of Eq. (7.19).
Now, consider the following (0,£1) matrices:

,_Pv0 PO

2 2 7
(7.22)
C=X,8Z+Y,®W, i=1234.
It is not difficult to show that matrices Z and W satisfy the conditions
ZxW =0,
wh =wz", (7.23)

77T =777 =wwT =wTw =L4;

8 pql4*

Assuming that matrices C, of dimension (mnpq/16)x(mnpq/64) satisty
the conditions of Eq. (7.10).



