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Chapter 2

Discrete LPA

The idea of local smoothing and local approximation is so natural that it is not
surprising it has appeared in many branches of science. Citing [145] we men-
tion early works in statistics using local polynomials by the Italian meteorologist
Schiaparelli (1866) and the Danish actuary Gram (1879) (famous for developing
the Gram-Schmidt procedure for the orthogonalization of vectors).

In the 1960s and 1970s the idea became the subject of intensive theoretical study
and applications, in statistics by Nadaraya [158], Watson [230], Parzen [175], and
Stone [215], and in engineering sciences by Brown [19], Savitzky and Golay [196],
Petersen [179], Katkovnik [98], [99], [101], and Cleveland [29].

The local polynomial approximation as a tool appears in different modifica-
tions and under different names, such as moving (sliding, windowed) least square,
Savitzky-Golay filter, reproducing kernels, and moment filters. We prefer the term
LPA with a reference to publications on nonparametric estimation in mathematical
statistics where the advanced development of this technique can be seen.

In this chapter the discrete local approximation is presented in a general mul-
tivariate form. In the introductory section (Sec. 2.1), we discuss an observation
model and multi-index notation for multivariate data, signals, and estimators.

Section 2.2 starts with the basic ideas of the LPA presented initially for 2D
signals typical for image processing. The window function, the order of the LPA
model, and the scaling of the estimates are considered in detail. Further, the LPA is
presented for the general multivariate case with estimates for smoothing and differ-
entiation. Estimators for the derivatives of arbitrary orders are derived. Examples
of 1D smoothers demonstrate that the scale (window size) parameter selection is
of importance.

The LPA estimates are given in kernel form in Sec. 2.3. The polynomial smooth-
ness of the kernels and their properties are characterized by the vanishing moment
conditions.

The LPA can be treated as a design method for linear smoothing and
differentiating filters. Links of the LPA with the nonparametric regression con-
cepts are clarified in Sec. 2.4, and the LPA for interpolation is discussed briefly in
Sec. 2.5.
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22 V. Katkovnik et al.

2.1 Introduction

2.1.1 Observation modeling

Since the LPA is a method that is valid for signals of any dimensionality, we
mainly use a multidimensional notation because it is universal and convenient. For
instance, we say that the signal y(x) depends on x ∈ R

d , i.e., the argument x is a
d-dimensional vector, and we use it with d = 1 for scalar signals in time and
with d = 2 for 2D images. The multidimensional notation allows us to present
results in a general form valid for both scalar time and 2D image and signal
processing.

The symbol d is reserved for the dimensionality of the argument-variable x.
Thus, x is a vector with elements x1, . . . , xd .

Suppose that we are given observations of y in the form ys = y(Xs), s =
1, . . . , n. Here Xs stays for a location of the sth observation, and the coordinates
of this location are

Xs = [x1(s), . . . , xd(s)].
The integers s number observations and their locations.

Noisy observations with additive noise can be given in the following standard
model commonly used for image and signal processing:

zs = y(Xs) + �s, s = 1, . . . , n, (2.1)

where the additive noise �s is an error of the sth experiment usually assumed to be
random, zero-mean independent for different s with E{�s} = 0, E{�2

s } = σ2.
Equation (2.1) is a direct observation model where a signal y is measured

directly and the additive noise only defines a data degradation.
Suppose we are able to observe (y � v)(x), where v is a blurring kernel or point

spread function (PSF) of a linear convolution. The blurring phenomenon modeled
by the PSF v (continuous or discrete) is very evident in many signal and image
applications. Moreover, we assume that the data are noisy, so that we observe zs

given by

zs = (y � v)(Xs) + �s . (2.2)

This equation is an indirect observation model with a signal y measured not directly
but after some transformation.

A data degradation is defined by this transformation as well as by the additive
noise. It is assumed in image processing that all signals in Eqs. (2.1) and (2.2) are
defined on a 2D rectangular regular grid:

X = {Xs : s = 1, . . . , n}
with pixel (grid node) coordinates

Xs = [x1(s), x2(s)]. (2.3)
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Discrete LPA 23

In this notation the image pixels are numbered by s taking values from 1 through
n. The coordinates of these pixels can be given explicitly as

X = {k1∆1, k2∆2 : k1 = 1, . . . , n1, k2 = 1, . . . , n2}, n = n1n2, (2.4)

where ∆1 and ∆2 are the sampling intervals for x1 and x2, respectively.
In signal processing literature, square brackets are sometimes used for dis-

crete arguments to differentiate them from continuous arguments. For example,
the notation y(k1∆1, k2∆2) is for a continuous argument function and y[k1, k2] is
for a discrete one with

y(k1∆1, k2∆2) = y[k1, k2]. (2.5)

For this discrete argument y we also can use the general notation y(Xs) provided
that Xs = (k1∆1, k2∆2).

The LPA considered in the book is applicable to observations given on irregular
grids, when the coordinates Xs and the distances between Xs can be arbitrary. In
image processing this sort of situation appears when data are destroyed or lost.
Figure 2.1 illustrates the cases of regular and irregular grids for 2D data.

2.1.2 Classes of signals

A basic objective of data processing is to reconstruct (estimate) y from the noisy
observations {zs} with pointwise errors that are as small as possible. It is assumed
that y is an unknown deterministic. In comparison with stochastic models of y, this
means that the main intention is to obtain the best results for every realization of y,
even if they are generated by a probabilistic phenomenon.

The first category is that of parametric models y(x, θ), where θ is a vector of
unknown parameters. These models seek a signal y with parameter θ that gives an
approximation of the relation between x and y. We predict y based on the argument
variable x assuming that θ is given. The estimation is concentrated around methods
for finding θ from observations

zs = y(Xs, θ) + �s, s = 1, . . . , n.

Figure 2.1 Types of data grids: (a) regular with sampling intervals �1 and �2 on the argu-
ments x1 and x2; (b) regular with missing data; and (c) irregular with varying intervals between
observations Xs.
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24 V. Katkovnik et al.

The second category is that of nonparametric models, which assume that a
parametric representation of y with a reasonably small number of parameters θ is
unknown or does not exist. This y can be quite arbitrary, say, with discontinuities
and varying curvature. Examples of nonparametric and parametric curves (linear
y(x, θ) = θ1 + θ2x and harmonic y(x, θ) = θ1 cos(θ2x + θ3) + θ4) are shown in
Fig. 2.2.

In this book we deal with the nonparametric category of signals y. Usually it
is assumed that there is some continuous argument signal y(x), and the observed
y(Xs) are sampled values of this continuous signal. Different classes of continuous
argument signals can be exploited. We restrict our analysis to the class C

α of con-
tinuous differentiable signals y of d variables with bounded αth-order derivatives,
which are defined mathematically as follows

C
α =

{
y : max

r1+···+rd=α

∣∣∣∂r1
x1

. . . . ∂rd
xd

y(x)

∣∣∣ = Lα(x) ≤ Lα, ∀x ∈ R
d

}
, (2.6)

where Lα(x) and Lα are finite and α = r1 + · · · + rd is the order of the derivative
used in this definition.

The class C
α is composed of signals having bounded all possible derivatives of

the order α.
Let d = 1. Then the class C

α is defined as

C
α = {y : |∂α

x1
y(x1)| = Lα(x1) ≤ Lα, ∀x1 ∈ R}.

The class includes all signals with the bounded αth-order derivative.

Figure 2.2 Parametric and nonparametric models: (a) linear parametric model, (b) cosine
parametric model, and (c) nonparametric function with unknown parametric representation.
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Discrete LPA 25

Let d = 2. Then

C
α =

{
y : max

r1+r2=α

∣∣∣∂r1
x1

∂r2
x2

y(x1, x2)

∣∣∣ = Lα(x1, x2) ≤ Lα, ∀(x1, x2) ∈ R
2
}
.

In this definition, the maximum for each x = (x1, x2) is calculated over all
derivatives of the order α = r1 + r2. For α = 1, it assumes that

max(|∂x1y(x)|, |∂x2y(x)|) = L1(x),

while for α = 2 it means

max(|∂2
x1

y(x)|, |∂2
x2

y(x)|, |∂x1∂x2y(x)|) = L2(x).

Definition (2.6) is global because the conditions hold for all x. For images where
singularities and discontinuities of y carry the most important image features, a local
smoothness of y is more realistic. Therefore, the class C

α can be replaced by

C
α
A =

{
y : max

r1+···+rd=α

∣∣∣∂r1
x1

. . . . ∂rd
xd

y(x)

∣∣∣ = Lα(x) ≤ Lα, ∀x ∈ A ⊂ R
d
}
, (2.7)

where the argument x is restricted to a subset A.
The following piecewise smooth models are useful for many applications.
Let an area where y is defined be separated into q regions Ai , i = 1, . . . , q, and

each of these regions be a connected set with edges (boundaries Gi). The signal y

is assumed to be smooth differentiable within Ai :

y(x) =
q∑

i=1

yi(x)1[x ∈ Ai], (2.8)

where 1[x ∈ Ai] is an indicator of the region Ai , 1[x ∈ Ai] = 1 if x ∈ Ai and
zero otherwise. More specifically, yi belongs to a class of continuous differentiable
signals C

α
Ai

. The parameters α, Lα(x), and Lα can be different for the different yi

in Eq. (2.8).
The piecewise constant y,

y(x) =
q∑

i=1

ai1[x ∈ Ai], (2.9)

is a particular case of Eq. (2.8) with constant values within each region Ai . Figure 2.3
shows an example of a piecewise constant y defined according to Eq. (2.9) as well
as the corresponding regions Ai .

In the models (2.8) and (2.9) yi(x), and ai , as well as the regions Ai are usually
unknown. The boundaries Gi define change points of the piecewise smooth y in
Eq. (2.8). The estimation of y can be produced in different ways. One possible
approach deals with a two-stage procedure that includes estimating the boundaries
Gi at the first stage, which defines the regions Ai . The second stage is a parametric
or nonparametric fitting yi in Ai .

Another approach is connected with the concept of spatially adaptive estima-
tion. In this context, change points can be viewed as a sort of anisotropic behavior
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26 V. Katkovnik et al.

Figure 2.3 A piecewise constant 2D function.

of the estimated signal. One may therefore apply the same procedure for all x,
for instance, nonlinear wavelet, ridgelet, or curvelet estimators, and the analysis
focuses on the quality estimation when change-points are incorporated into the
model. With this approach, the main intention is to estimate the signal but not the
locations of the change-points, which are treated as elements of the signal surface.

In this book we will follow the second approach. The objective is to develop a
method that simultaneously adapts to the anisotropic smoothness of the estimated
curve and is also sensitive to the discontinuities in the curves and their derivatives.

In general, conditions (2.6) and (2.7) define nonparametric signals that do not
have parametric representations. The following important class of parametric y can
be interpreted as a special case of the nonparametric class C

α.
Let Lm+1(x) ≡ 0 for x ∈ R

d . Then y is polynomial of the degree m. Indeed, the
condition Lm+1(x) ≡ 0 means that y is a solution of the set of differential equations

∂r1
x1

. . . . ∂rd
xd

y(x) = 0

for all ri such that r1 + · · · + rd = m + 1, and this solution is a polynomial. For
this class of polynomials we use the notation

Pm = {y : ∂r1
x1

. . . . ∂rd
xd

y(x) = 0, r1 + · · · + rd = m + 1, ∀x ∈ R
d}, (2.10)

where m stays for the power of the polynomial. It is obvious that Pm ⊂ C
m+1

with Lm+1 = 0.

2.1.3 Multi-index notation

Multi-index notation is used to shorten expressions that contain many indices.
Let x be a d-dimensional vector, x ∈ R

d , and y be a scalar function of x,




