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Historical Comments: Historically, the study of differential
equations originated with the introduction of the calculus by Sir Isaac
Newton (1642-1727) and Gottfried Wilhelm von Leibniz (1646-1716).
Although mathematics began as a recreation for Newton, he became
known as a great mathematician by the age of 24 after his invention
of the calculus, discovery of the law of universal gravitation, and
experimental proof that white light is composed of all colors. Leibniz
completed his doctorate in philosophy by the age of 20 at the
University of Altdorf. Afterward he studied mathematics under the
supervision of Christian Huygens (1629-1695) and, independently of
Newton, helped develop the calculus. Leibniz corresponded regularly
with other mathematicians concerning differential equations, and he
developed several methods for solving first-order equations.

Other prominent mathematicians who contributed to the
development of differential equations and their applications were
members of the famous Bernoulli family of Switzerland, the most
famous of which are James (1654-1705) and John (1667-1748). Over
the years there have been a host of mathematicians who contributed
to the general development of differential equations.

The objective of this chapter is to review the basic ideas found in a first course in
ordinary differential equations (ODEs). In doing so, we will concentrate primarily on
those we deem most important in engineering applications. Because DEs are
considered the most fundamental models that are used in a wide variety of physical
phenomena, they play a central role in many of the following chapters of this text.

1.1 Introduction

Differential equations (DEs) play a fundamental role in engineering and science because
they can be used in the formulation of many physical laws and relations. The development
of the theory of DEs is closely interlaced with the development of mathematics in general,
and it is indeed difficult to separate the two. In fact, most of the famous mathematicians
from the time of Newton and Leibniz had a part in the cultivation of this fascinating subject.
The first problems studied that involved the notion of DE came from the field of mechanics.
Consequently, some of the terminology that persists today (like “forcing function”) had
its beginning in these early mechanics problems.

At its most basic level, Newton’'s second law of motion is commonly expressed by the
simple algebraic formulation

F = ma.
For a “particle” or body in motion, F denotes the force acting on the body, mis the mass

of the body (generally assumed to be constant), and a is its acceleration. In practice,
however, it is the velocity and position of the body as a function of time that may be more
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useful. Recalling that the velocity (speed) Vv is related to acceleration by a = dv/dt,
Newton’s second law may also be expressed by

- mdv,

dt
Last, the position y of the body is related to velocity by v = dy/dt, and by substituting this
last expression into the above equation, we get another variation of Newton’s law given

by 2
m d y .
dt?
These last two expressions of Newton’s second law are considered DEs because they
involve derivatives of unknown functions. And although the study of DEs grew out of
certain kinds of problems in mechanics, their use today is far more widespread. For

example, they occur in various branches of engineering and physical science to study
problems in the following areas (among others):

F

F =

e the study of particle motion

e the analysis of electric circuits and servomechanisms
e continuum and quantum mechanics

e the theory of diffusion processes and heat flow

e electromagnetic theory

Other disciplines such as economics and the biological sciences are also using DEs to
investigate problems like the following:

e interest rates

e population growth

e the ecological balance of systems
e the spread of epidemics

1.2 Classifications

Definition 1.1 By differential equation we mean an equation that is composed of
> a single unknown function y, and

> a finite number of its derivatives.

A simple example of a DE found in the calculus is to find all functions y for which
y' = f), (1)

where y' = dy/dx and f(X) is a given function. The formal solution to this equation is

y = f fx)dx + C, )
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where C is an arbitrary constant.
Most of the DEs that concern us are not of the simple type illustrated by (1). Typical
examples of the types of equations found here include

y = x%’ 3)

y" + ¢y + k?y = sinx 4)
y” + bsiny = 0 5)
V) +3xy =1 (6)

In order to provide a framework in which to discuss various solution techniques for DEs,
it is helpful to first introduce classification schemes for the equations. For example, some
important classifications are the following:

» Order: The order of a DE is the order of its highest derivative.

» Linear: The DE is said to be linear if it is linear in the unknown function y and all
derivatives. If a DE is not linear, it is called nonlinear.

» Ordinary DE: A DE is called ordinary when the unknown function depends on only
one independent variable. Otherwise, it is a partial DE.

Based on these definitions, Egs. (3)-(6) are ordinary, Egs. (3) and (6) are first-order
equations, and (4) and (5) are second-order. Also, only Eq. (4) is linear—the others are
nonlinear.

1.2.1 Solutions of differential equations

Definition 1.2 A solution y = y(X) of a DE on an interval | is a continuous function
possessing all derivatives occurring in the equation that, when substituted into the

DE, reduces it to an identity for all X in the interval I.

EXAMPLE 1 Verify that y = e * is a solution of the first-order DE
y +y=0.
Solution: To verify that a given (differentiable) function is a solution of a DE, we

simply substitute it directly into the DE. Note that the function y=€7™ is
continuous and has continuous derivatives for all X. Furthermore,
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y/+y:7efx+e*X:0

for all values of X. It also follows in the same manner that y = C,e ™ is a solution
for all values of X and all values of the constant C,.

EXAMPLE 2 Verify that y, = C,cos2X and Y, = C,sin2X are both solutions of
the second-order DE

Y+ dy =0
for any values of the constants C, and C,.

Solution: Both functions are continuous and have continuous derivatives for all
X. For y,, we have

y,” + 4y, = -4C,cos2x + 4C cos2x = 0,
for all values of X. Similarly, for Y, it follows that

y2” + 4y2 = —4Clsi112X + 4ClSinZX = 0.

In Example 2, we illustrated that both y, and y, are solutions of the given DE.
Moreover, it is easy to verify that the functions

y = C,cos2x + C,sin2X,

y = C;sinXcosX,
are also solutions of the same DE.
Solutions are classified in the following manner:

» Particular solution: If a solution contains no arbitrary constants, it is called a
particular solution of the DE.

» General solution: A function that contains all particular solutions of the DE is
called a general solution.

Because of arbitrary constants, the above DEs (Examples 1 and 2) have infinitely many
solutions. However, the number of arbitrary constants that appears in a general solution
is always equal to the order of the DE.

In solving DEs it can be important to know in advance: “Does a solution exist?” If so,
we may then also want to know: “Is it unique?” In general, questions concerning the
existence and uniqueness of solutions can be very difficult to answer.
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1.3 First-Order Equations

First-order DEs arise naturally in problems involving the determination of the velocity of
free-falling bodies subject to a resistive force, finding the current or charge in an electric
circuit, finding curves of population growth, and in radioactive decay, among other
applications. Each type of first-order DE that arises in practice may demand a different
method of solution. And although others exist, we will introduce only two methods of
solution—separation of variables and linear equations—both of which are applicable to
a wide variety of practical problems involving first-order DEs.
First-order DEs are typically written in either the derivative form

y' = F(xy) @)
or, through formal manipulations, in the differential form

M(xy)dx + NOgy)dy =0. 8)

In applications, the solution of (7) or (8) is usually required to also satisfy an auxiliary
condition of the form

y) = Yo ©)]

which geometrically specifies that the graph of the solution pass through the point (X;,y,)
of the xy-plane. Because X, is often the beginning point in the interval of interest, the
condition (9) is also called an initial condition (IC). Hence, solving (7) or (8) subject to the
auxiliary condition (9) is called an initial value problem (IVP).

Many first-order DEs that routinely arise in applications are nonlinear. In some cases
these may be very difficult or impossible to solve by known methods. To ensure that the
DE together with its initial condition (9) has a solution, we have the following existence-
uniqueness theorem which we state without proof (see [17]).

Theorem 1.1 If F(Xy) is a continuous function in a rectangular domain
a<x<b, c<y<d containing the point (X,.y,),then the IVP

y' = FXy), Y%) =Y,

has at least one solution in some interval |X - x| <h, (h>0) embedded in a <x <b.
If, in addition, the partial derivative dF/dy is continuous in that rectangle, then the IVP
has a unigue solution.

Remark: The conditions stated in Theorem 1.1 are only sufficient
conditions—not necessary conditions. That is, if these conditions are not
satisfied, the problem may have no solution, but in some cases may have more
than one solution or even a unique solution!
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1.3.1 Separation of variables

Perhaps the easiest method to apply when it is appropriate is that called separation of
variables. The first-order DE written in differential form

M(xy)dx + N(xy)dy = 0 (10)

is said to be “separable” if it can be rearranged in the form

f(y)dy = g(x)dx. (11)

Observe that the left-hand side of (11) is a function of y alone and the right-hand side is
a function of X alone. A family of solutions can be obtained by simple integration of each
side to yield the form

fly)dy = [g(x)dx + C, (12)
/ /

where C is a constant of integration (only one such constant is required because the
arbitrary constants from each side of the equation can be combined).

EXAMPLE 3 Solve the DE
(1 -x)dy + ydx = 0.

Solution: We see that division by y and (1 - X) leads to the “separated form”

ﬂ:_dx

, X= 1L, y=0.
y 1-X

Thus, by integrating each side independently, we arrive at
Inly| =In|1-x +C,
which, by writing C = In|C, | and using properties of logarithms, yields

y = C,(1-Xx).

Remark: Recall from calculus that/% =In |u| + C, where the absolute value
u

is retained except in those cases in which we know u> 0.
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EXAMPLE 4 Solve the IVP
x*+Dy +y*+1=0, y0 = 1.

Solution: By rearranging terms, we have

dy dx

y?+1 x2+1

which, upon integration, leads to
tan'y = —tan"'x + C.

If we apply the prescribed initial condition (X =0, y = 1), we see that C = n/4, and
consequently,
tan’'y + tan"'X = %

A more convenient form of the solution can be obtained by using the
trigonometric identity
tanA +tanB

tanA+B) = —————.
1 -tanAtanB

Thus, we find
tan(tan'y + tan"'X) = tan(n/4),

or, equivalently,

= 1.
1-xy
Now, solving explicitly for y, we get
y = 12X s
1+X

1.3.2 Linear equations
A linear first-order DE is any equation that can be put in the form

A+ +AX)Y = FX). (13)
The functions Ay (X) and A, (X) are the coefficients of the DE (which do not depend on y)

and F(X) is the input function, also called the forcing function. In practice, the solution
of (13) is usually required to satisfy the initial condition (IC)

y%) = Yo (14)

For developing the solution of a linear DE it is customary to first put (13) in the hormal
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form

y a0y = fx), (15)

obtained by dividing each term of (13) by A/(X). Hence, a,(X)=A,X)/A;(X) and
fX) = F(X)/A,(X).

To develop a general solution of (15), we first consider the associated homogeneous
equation

y + a(Xy =0, (16)

in which the input function f(X) is identically zero. One feature of a homogeneous equation
is that y = 0 is always a solution, called the trivial solution. However, our interest
concerns nontrivial (nonzero) solutions. We do note that (16) can be formally solved by
the method of separation of variables, which leads to

dy -a,(x)dx, y # 0.
y
The direct integration of this expression then yields

Inly| = - [8,09dx + C, (17)

where C is a constant of integration. By solving (17) directly for y, we obtain the family of
solutions

Y = CiYi00 = Cre| -~ [a,000x]. ()

where we write Y, to denote that (18) is a solution of the homogeneous equation. We also
introduced the notation C, = e €, and the function Y,(X) is defined by

y,(0) = em[*fao(X)dX]- (19)

The solution function (18) is a general solution of the homogeneous equation (16).
A general solution of the nonhomogeneous equation (15) is defined by the sum
Y =¥y * ¥Yp, Where Y, is any particular solution and y, is defined above. To construct the
particular solution, we employ a method called variation of parametersthat was developed
by J. L. Lagrange (1736-1813). Specifically, we look for a solution of the form

Yp = Uy, (¥), (20)

where U(X) is a function to be determined. The technique derives its name from the fact
that the arbitrary constant C, in the homogeneous solution (18) is replaced by the
unknown function U(X).

The direct substitution of (20) into the left-hand side of the DE in (15) gives us



10 CHAPTER 1

%[u(x)yﬂx)] + 2,00y, (%)

WXy, () + UL’ () + a(X)y, (X)] @0
u'egy, () + 0,

Yo' + 3(X)Yp

where we are using the fact that y, satisfies the associated homogeneous DE (16). Now,
if (20) is indeed a particular solution, then the result of (21) requires that u(X) be a solution
of U'(X)y,(X) = f(x). Upon integration, we determine

_
ux) = f mdx,

where we can ignore the arbitrary constant of integration (i.e., any particular solution is
good enough!). Hence, the particular solution is

Yo = V([ f(zz) dx, (22)
1

y

and the general solution of (15) becomes

Y=Yy + Y = Cy,(X) + yl(X)f

f(x) dx.
y,00 (23)

EXAMPLE 5 Find the solution of
xy' + (1-Xy =xe*, y1) = 3e.

Solution: We first rewrite the DE in normal form, which yields

y’+(l— )y:ex, x # 0.
X

Thus, using (19) we see that

y,(X) = exp[f(% - 1] dx

and, consequently, the homogeneous solution (18) is y,, = C, e*Xx.

= lex’
X

From the normal form above we note that f(X) = €*, and thus, the particular
solution is Yy, = U(X)e /X, where
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[S]

ui) = fxi);xdx = fxdx = X?

Hence, Yy, = %xe X, and the general solution we seek can be expressed in the form

Ce* 1. 0
Sy, Y, = + —xe*, x # 0.
Y=Yq t ¥ " >

Last, by imposing the IC, we are led to
1
yd) = Cie +§e = 3e,

or C, =5/2. Thus,

1.3.3 Initial condition

When solving (15) subject to the IC (14), it can be useful for physical interpretation to split
the problem into two simpler problems, defined by

PROBLEM (A): y' g,y =0, ¥X) =Y, (24)
PROBLEM (B): y' + ayy = f(x), yix) = 0. (25)

If we subject the general solution (18) of the homogeneous equation in PROBLEM (A) to
the prescribed IC, we are led to

yH(Xo) = Cl yl(xo) =Y
and hence, the IVP (24) has the unique solution

AL
Y, (%)

H (26)

Equation (26) physically represents the “response” of the system (15) to the IC (14) in the
absence of an input function f(X). Similarly, the solution of (25) is considered the response
of the system when Y, in the IC is zero, i.e., the system is “at rest.” To obtain this solution,
we now define the specific function

-t
u(x) fXO O ds, 27)

where we have introduced the dummy variable of integration S; thus,



