We present a diffuse optical imaging system with structured illumination and integrated detection for spatial characterization of scattering and absorption properties of turbid media. It is based on the application of single- pixel imaging techniques with integrating spheres, which allows us to develop a spatial resolved version of the Kubelka-Munk method.
We present a novel approach for imaging through turbid media that combines the principles of Fourier spatial filtering with single-pixel imaging. We compare the performance of our single-pixel imaging setup with that of a conventional system. We conclude that the introduction of Fourier gating improves the contrast of images in both cases. Furthermore, we show that single-pixel imaging fits better than conventional imaging in vision through turbid media by Fourier filtering.
We present a novel imaging system that combines the principles of Fourier spatial filtering and single-pixel imaging in order to recover images of an object hidden behind a turbid medium by transillumination. We compare the performance of our single-pixel imaging setup with that of a conventional system. We conclude that the introduction of Fourier gating improves the contrast of images in both cases. Furthermore, we show that the combination of single-pixel imaging and Fourier spatial filtering techniques is particularly well adapted to provide images of objects transmitted through scattering media.
We present a novel approach for imaging through scattering media by combining single-pixel imaging techniques and Fourier spatial filtering. Experimental improvements in both penetration depth and spatial resolution of the acquired images are shown.
Single-pixel detection approaches have been applied with success in different imaging
techniques such as optical microscopy. Here we show that it is possible to improve the resolution of
single-pixel microscopy by using an array of photodetectors and Fourier ptychography algorithms.
We describe a method to image objects through scattering media based on single-pixel detection and microstructured illumination. Spatial light modulators are used to project a set of microstructured light patterns onto the sample. The image is retrieved computationally from the photocurrent fluctuations provided by a single-pixel detector. This technique does not require coherent light, raster scanning, time-gated detection or a-priori calibration process. We review several optical setups developed by our research group in the last years with particular emphasis in a new optical system based on a double-pass configuration and in the combination of single-pixel imaging with Fourier filtering.
We present preliminary results on diffraction gratings made with holographic techniques using dichromated gelatin (DCG) matrix with edible dyes, the purple red, Layar® and blue Sabofrut®. The gratings were recorded with a laser diode, λ = 530nm. Curves show diffracted intensity vs exposure time. The recorded gratings show different diffraction efficiencies of gratings prepared with DCG, purple red + DCG, and blue+ DCG. We observed high diffraction efficiency with purple red. All exposure conditions and reconstruction were therefor for all gratings with the same concentration of dichromate for each one of the photosensitive emulsions prepared.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.