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Abstract. Optical metasurfaces have emerged as a groundbreaking technology in photonics, offering
unparalleled control over light–matter interactions at the subwavelength scale with ultrathin surface
nanostructures and thereby giving birth to flat optics. While most reported optical metasurfaces are static,
featuring well-defined optical responses determined by their compositions and configurations set during
fabrication, dynamic optical metasurfaces with reconfigurable functionalities by applying thermal, electrical,
or optical stimuli have become increasingly more in demand and moved to the forefront of research and
development. Among various types of dynamically controlled metasurfaces, electrically tunable optical
metasurfaces have shown great promise due to their fast response time, low power consumption, and
compatibility with existing electronic control systems, offering unique possibilities for dynamic tunability of
light–matter interactions via electrical modulation. Here we provide a comprehensive overview of the
state-of-the-art design methodologies and technologies explored in this rapidly evolving field. Our work
delves into the fundamental principles of electrical modulation, various materials and mechanisms
enabling tunability, and representative applications for active light-field manipulation, including optical
amplitude and phase modulators, tunable polarization optics and wavelength filters, and dynamic wave-
shaping optics, including holograms and displays. The review terminates with our perspectives on the
future development of electrically triggered optical metasurfaces.
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1 Introduction
In the rapidly advancing field of photonics, optical metasurfaces
have emerged as a groundbreaking technology, offering unpar-
alleled control over light–matter interactions at the subwave-
length scale with ultrathin surface nanostructures[1–28] and giving
thereby birth to flat optics[12]. Optical metasurfaces, which are
two-dimensional (2D) planar arrays of nanostructures (often
called meta-atoms), manipulate optical fields through localized
interactions, enabling functionalities that are challenging or
downright impossible to achieve with traditional bulk optical
components. These capabilities have propelled metasurfaces
to the forefront of optical research leveraging the precise ar-
rangement and design of meta-atoms to engineer the wavefront
of light, with applications ranging from imaging and detection

to display and information processing. In imaging, metasurfaces
facilitate the development of flat lenses, known as metalenses,
which deliver high-quality imaging without the bulk and weight
associated with traditional lenses[29–48]. For detection, metasurfa-
ces have advanced the creation of high-dimensional photodetec-
tors, exploiting their capability to predictably and independently
react to the phase, amplitude, polarization, and frequency of
light at the nanoscale[49–64]. In display technology, metasurfaces
enable flexible light-field modulation within ultracompact
footprints, resulting in high resolution, fidelity, and capacity im-
ages[65–104]. Additionally, metasurfaces are pivotal in advancing
information processing technologies, where they contribute to
the development of compact, high-performance optical elements
for photonic integrated circuits[105–120].

However, to date, most reported optical metasurfaces are
static, featuring well-defined optical responses determined by
their compositions and configurations set during fabrication,
a circumstance that, in turn, severely limits their adaptability
and responsiveness to dynamic environmental conditions or
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changing operational requirements. For more advanced inte-
grated optical systems exploited in diverse applications, it would
be highly desirable to develop dynamic optical metasurfaces
with externally controlled, reconfigurable functionalities. To ad-
dress this challenge, researchers have been exploring various
strategies to introduce tunability and reconfigurability into
metasurface functionalities[121–128]. Among these diverse strate-
gies, electrically triggered optical metasurfaces have shown
great promise due to their fast response time, low power con-
sumption, and compatibility with existing electronic control sys-
tems. Electrically tunable metasurfaces leverage external
electric fields to dynamically modify their optical responses by
integrating metasurfaces with active electro-optic (EO) material
compositions, whose refractive indices can be altered electri-
cally, such as liquid crystals (LCs)[129–132], phase-change materials
(PCMs)[133–138], transition metal oxides (TMOs)[135,139–141], con-
ducting polymers[142–144], 2D materials[145–151], transparent con-
ducting oxides (TCOs)[152–155], or EO nonlinear materials[156–159].
Alternatively, tunable metasurfaces can also be implemented
by integrating with micro-electromechanical and nano-
electromechanical systems (MEMS and NEMS)[160–162]. In these
configurations, the optical properties of tunable metasurfaces

can be controlled and modulated in real time with externally ap-
plied electrical fields, thereby enabling a wide range of dynamic
functionalities (Fig. 1).

Our review offers a thorough and detailed examination
of current advancements in electrically tunable optical metasur-
faces. Delving into the fundamental principles underlying
electrical modulation, we explore the diverse materials and
mechanisms employed to achieve the tunability of metasurface
operation and highlight the principal applications in active light-
field manipulation, including amplitude and phase modulators,
tunable polarization optics and wavelength filters, dynamic
wave-shaping optics (beam steering and tunable meta-lenses),
dynamic hologram and displays, as well as metasurface-based
spatial light modulators. Regarding future perspectives, our re-
view concludes by considering the challenges faced in this
swiftly advancing field and proposing potential directions for
further research and development.

2 Electrically Tunable LC Metasurfaces
To achieve dynamic optical metasurfaces, researchers have
been exploring the integration of LCs with metasurfaces.
LCs are a unique state of matter that exhibits properties between

Fig. 1 Overview of electrically tunable optical metasurfaces: materials, configurations, and
applications.
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conventional liquids and solid crystals[129–131]. Their molecular
orientation can be precisely controlled using external stimuli
such as electric fields, temperature, light, or pressure. This con-
trollability allows LCs to dynamically modulate their refractive
index, making them ideal candidates for creating reconfigurable
and tunable optical devices. The combination of LCs and meta-
surfaces—referred to as LC metasurfaces—promises a new
class of optical devices that are not only compact and efficient
but also highly versatile and reconfigurable, opening possibil-
ities for real-time applications in various fields such as adap-
tive optics, augmented reality, optical communications, and
more [132]. In LC metasurfaces, the LCs can serve multiple roles:
they can modify the dielectric environment of metasurfaces,
complement the optical properties of metasurfaces, act as tun-
able wave plates, or directly function as meta-atoms through
their anisotropic nature. By applying external stimuli, the orien-
tation of LC molecules can be changed, leading to the dynamic
control of the optical responses of metasurfaces. Numerous
functionalities, such as reconfigurable color displays, dynamic
beam steering, varifocal lenses, and tunable holographic dis-
plays, have been successfully demonstrated.

2.1 Electrically Tunable LC Metasurfaces by
Complementing Meta-Atoms’ Properties with LCs

Integrating LCs and homogeneous meta-atoms can enhance de-
vice performance, creating new capabilities. For instance, LC
metasurfaces can enable spectral tuning to generate tunable
structural colors[65,123,163]. By electrically adjusting the LC orien-
tation, the reflected[164] or transmitted[165–167] colors can be
dynamically varied to cover a wide range of the color palette.
Franklin et al. introduced a reflective LC-plasmonic system that
achieved full red-green-blue (RGB) color modulation by apply-
ing electric fields, as shown in Fig. 2(a)[164]. The reflective
plasmonic nanostructure consists of an aluminum (Al) array,
roughened to induce polarization-dependent plasmonic reso-
nance. The LCs used in the device are high-birefringence
LCs, which are crucial for modulating the effective refractive
index of the plasmonic modes. The LC orientation is controlled
by applying an electric field across the device, enabling the tun-
ing of plasmonic resonances and dynamic control over the color
of reflected light, covering the entire RGB spectrum. Based on
nanoimprint lithography, the researchers were able to produce
large-area, cost-effective samples, with the potential for scaling
up to hand-held or notebook-sized displays. The as-fabricated
device exhibits two distinct color states based on the polariza-
tion of incident light arising from the roughened surface mor-
phology of the Al nanostructures. When an electric field is
applied, the orientation of LC molecules changes, leading to
a change in the effective refractive index of plasmonic modes.
At low voltages, bulk LC reorientation occurs, resulting in
polarization rotation and the superposition of the device’s
two orthogonal off-state modes. As the voltage increases, the
LC molecules near the surface reorient, causing a red shift in
the plasmonic resonance. Eventually, at high voltages, the
LC molecules achieve vertical alignment, resulting in a satura-
tion state where the color shifts to green and loses polarization
dependence. They also showed the ability to achieve a full RGB
color basis set through a combination of bulk and surface LC
effects, which manipulate the phase retardation and polarization
state of the incident light. By carefully controlling the voltage
applied across the device, the researchers could transition the

color of reflected light from red to blue or blue to red, with
the highest voltage resulting in green [Fig. 2(a)], demonstrating
the potential for high-resolution, full-color displays. As the
spectrum shifts, the resonant strength changes, leading to vari-
ous applications in amplitude modulation[168–172]. Staude’s group
reported electrically tunable transparent displays operating at
visible, leveraging the unique properties of Mie-resonant silicon
(Si) metasurfaces[21,173] and LCs to achieve dynamic optical con-
trol[169]. To ensure high-quality pre-alignment of the LC mole-
cules, they applied photoalignment material AtA-2 to both the
upper electrode and the fabricated Si metasurface, significantly
enhancing the homogeneity and tuning accuracy of the device
without damaging the metasurface structures. By applying a
voltage across this LC metasurface cell, they could observe pro-
nounced spectral shifts in the metasurface resonances, transi-
tioning the metasurface in and out of the Huygens’ regime,
characterized by high transparency and efficient light manipu-
lation. Notably, they achieved a maximum modulation depth of
53% at an operation wavelength of 669 nm with an applied volt-
age of 20 V. A practical display functionality was demonstrated
by replacing the upper electrode with a patterned electrode
forming the letters “FSU-ANU”. The device exhibited pro-
nounced modulation of transmitted light, with the letters becom-
ing visible and more pronounced as the voltage increased, as
displayed in Fig. 2(b).

Besides amplitude modulation, phase modulation and even
phase-only spatial light modulators (SLMs) have also been
demonstrated using LC-integrated homogeneous meta-
atoms[168,174,175]. In 2019, Kuznetsov’s group proposed a novel
approach that combines dielectric metasurfaces with LCs to cre-
ate a high-resolution, phase-only transmissive SLM capable
of active beam steering with miniaturized pixel sizes[174].
Compared to traditional LC-based SLMs that achieve phase
modulation only through the reorientation of LC molecules
within thicknesses of several micrometers, intrinsically limited
by large pixel sizes, mutual crosstalk between pixels, and high
driving voltages, the metasurface-based SLM has significantly
reduced pixel sizes and improved modulation capabilities. The
metasurface SLM is designed based on Huygens’ principle,
where spectrally overlapped electric and magnetic dipole
resonances are supported by disc nanoantennas made up of
titanium dioxide (TiO2), a popular material for visible metasur-
faces due to its high refractive index and low absorption coef-
ficient[40,74,176–179]. By applying a voltage to modify the LC
orientation around nanoantennas, they observed significant
spectral shifts in the metasurface resonances, resulting in suffi-
ciently large phase modulation with reduced LC cell thickness
and pixel sizes. Specifically, the device demonstrated evenly
spaced phase retardation of approximately 2π∕3 between
different LC orientations (i.e., 0°, 45°, and 90°), with high
transmission efficiency within the range of 60%–90%, enabling
a three-level-addressing possibility. The fabricated metasurface
SLM comprises 28 individually addressable electrodes, each
independently controlling the LC orientation of a pixel with
three TiO2 nanoantennas. Using three-phase-level addressing
schemes, they successfully implemented dynamic beam steering
with tunable deflection angles up to 11° at the working wave-
length of 650 nm. To address the limitations associated with a
small sample size, a larger device was designed. While this de-
vice is restricted to reversing the deflection direction and cannot
adjust the deflection angle, it significantly enhances deflection
efficiency, achieving a rate of 36% at 660 nm, as shown in
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Fig. 2(c). Although the study represents a significant advance-
ment in the development of high-resolution, phase-only trans-
missive SLMs, it requires a thicker LC cell and cannot enable
continuous and full-phase modulation, which, in turn, limits their
functionalities and efficiencies. In 2023, Kuznetsov’s group pre-
sented a groundbreaking solution by integrating a thin LC layer

with a metasurface to realize a reflective metasurface SLM with
full-phase modulation and high reflectivity in the visible spec-
trum[175]. As shown in Fig. 2(d), the metasurface SLM consists
of a reflective design incorporating a bottom Al layer, a silicon
dioxide (SiO2) spacer, and a TiO2 metasurface topped with an
ultrathin LC layer of 500 nm. This design ensures high reflection

Fig. 2 Electrically tunable LC metasurfaces based on homogeneous meta-atoms. (a) LC-inte-
grated tunable full-color plasmonic display. The LC-plasmonic system produces the RGB color
basis set as a function of voltage. The letters appear and gradually become darker when the volt-
age increases from 0 to 20 V. Adapted with permission from Ref. [164] © Springer Nature. (b) LC-
integrated Si metasurface for electrically tunable transparent display. Adapted with permission
fromRef. [169] © American Chemical Society (ACS). (c) Electrically tunable transmissive metasur-
face SLM with three-level phase modulation for reversing deflection angles. Adapted with permis-
sion from Ref. [174] © the American Association for the Advancement of Science (AAAS).
(d) Electrically tunable reflective metasurface SLM with continuous and full-phase modulation pro-
grammable beam steering. The incident light is diffracted preferentially into the �1 order when
applied with a three-level voltage to create a supercell. Adapted with permission from Ref.
[175] © ACS. (e) Tunable LC metasurface for computational spectropolarimetry. The recon-
structed wavelengths and polarization states of the incident monochromatic light from 1420 to
1479 nm perfectly match the ground truth. Adapted with permission from Ref. [62] © Springer
Nature. (f) Electrically switchable nonlocal metasurfaces for SHG. The second-harmonic intensity
varies with applied voltages. Adapted with permission from Ref. [181] © AAAS.
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while facilitating continuous phase tuning from 0 to 2π by rotat-
ing the LC directors from an in-plane to an out-of-plane orien-
tation, which modifies the refractive index seen by the incident
light. The metasurface achieved a near-complete 2π phase shift
with high reflectance at a wavelength of 650 nm, primarily due
to the spectral tuning of the metasurface resonance induced by
changes in LC orientation upon applying a voltage. Meanwhile,
the reflectance remained above 50% throughout the phase tuning
range, highlighting the efficiency of the design. By programming
96 individually addressable electrodes with a small pixel pitch of
∼1 μm, the SLM demonstrated dynamic beam steering with a
wide field of view (FOV) of up to 22°. Impressively, the beam
steering efficiency reached up to 50%, among the highest re-
ported for such devices, with minimal crosstalk between pixels
due to the ultrathin LC cell.

Apart from amplitude and phase, polarization, as one of the
intrinsic properties of light[180], can be manipulated and detected
with LC-integrated homogeneous metasurfaces. Recently,
Yang’s group demonstrated a tunable LC metasurface capable
of accurately measuring the polarization and spectrum of light
with minimal hardware complexity[62]. As shown in Fig. 2(e),
the metasurface consists of a one-dimensional (1D) Si grating
embedded in an LC layer, which is covered with a transparent
indium tin oxide (ITO) electrode for active modulation. The
metasurface supports high-quality-factor (Q-factor) guided-
mode resonances (GMRs) with rich spectral and polarization
features that can be widely tuned by applying different bias volt-
ages. The LC metasurface, combined with a polarizer and
photodetector, transforms the Stokes vector that describes the
state of polarization through a Mueller matrix, which depends
on the wavelength and applied voltage. By sequentially altering
the voltage applied to the LC metasurface, the system encoded
the polarization and spectrum information into a series of inten-
sity measurements. These measurements are then computation-
ally reconstructed using a nonlinear least square fitting
algorithm to retrieve the full Stokes parameters and the spectrum
of the incident light. Simulations showed that the metasurface
could accurately reconstruct the polarization state and the wave-
length of the monochromatic incident light, even in the presence
of noise. The polarization reconstruction error was found to be
less than 5°, and the wavelength reconstruction error was below
0.5% with a signal-to-noise ratio (SNR) of 10 dB under no more
than 10 measurements. The fabricated spectropolarimeter suc-
cessfully reconstructed the polarization state and wavelength of
the incident light, with the reconstructed peak positions and
bandwidths agreeing well with the ground truth. Specifically,
the system demonstrated the ability to reconstruct narrowband
spectra with high accuracy (>99.7%) in the wavelength range
from 1420 to 1470 nm with a separation of 1 nm, as shown in
Fig. 2(e). The integration of a tunable LC metasurface with com-
putational reconstruction techniques presents a significant ad-
vancement in the field of spectropolarimetry. The proposed
system offers several advantages over traditional methods, such
as compactness, high fidelity, and flexibility. However, the study
also identified areas for improvement. The experimental spectral
resolution was lower than predicted by simulations, likely due to
fabrication imperfections and inhomogeneous LC alignment.
Future work could focus on enhancing the Q-factor of the res-
onances, reducing system noise, and optimizing the metasurface
design to improve performance.

In addition to LC-integrated linear metasurfaces, the integra-
tion of nonlinear metasurfaces with LCs presents a promising

approach for developing actively tunable nonlinear optical de-
vices. Sharma et al. explored the dynamic tuning of nonlocal
second-harmonic generation (SHG) using a hybrid metasurface
integrated with a twisted nematic LC layer[181]. The designed
metasurface consists of 30 nm thick gold (Au) meta-atoms with
threefold rotational symmetry, arranged in a square lattice with a
period of 550 nm, which supports a strong nonlocal surface lat-
tice resonance (SLR) mode at a fundamental wavelength of
860 nm for x-polarized incident light, resulting in polarization-
selective SHG. The metasurface was fabricated on an ITO-
coated glass substrate and encapsulated in a thin (∼6 μm)
LC cell. By increasing the applied voltage from 0 to 5 V, the
LC molecules align in the z-direction, modulating the second
harmonic (SH) signal with a large extinction ratio of >25 dB,
originating from the alignment-induced changes in the effective
refractive index, which shifts the SLR wavelength and thereby
the SH signal. As shown in Fig. 2(f), the SH signals under x- and
y-polarized excitation vary gradually when the applied voltage
increases from 0 to 5 V. The SHG signal can also be all-
optically controlled, with an abrupt enhancement observed at
a threshold power of 30 mW due to the isotropic-to-nematic
phase transition.

To offer greater flexibility and functionality for advanced
applications, it is crucial to integrate LCs with phase-gradient
metasurfaces composed of inhomogeneous meta-atoms.
Gorkunov et al. successfully combined LCs with superperiodic
polyimide metasurfaces to achieve efficient, electrically
controllable anomalous refraction, as depicted in Fig. 3(a)[182].
Traditional metasurfaces typically rely on periodic arrange-
ments of sub-wavelength elements to design basic building
blocks and achieve desired optical functionalities. In contrast,
the superperiodic design enhances this by creating unit cells
composed of variously sized stripes, which induce distinct LC
alignments. A semi-analytical approach was employed to model
the formation of LC modulations and their optical performance,
providing valuable insights into factors affecting anomalous re-
fraction efficiency, such as LC orientational elasticity and opti-
cal anisotropy. The fabricated metasurfaces could deflect up to
60% of incident light into a specific oblique direction, superior
to simpler periodic LC metasurfaces, which typically achieve
much lower diffraction efficiencies. By applying a voltage
across the LC layer, the metasurface could be switched between
refracting and transmitting states within a few milliseconds.
Impressively, the 10 μm periodic LC metasurface maintained
a refraction efficiency above 50% across the wavelength range
from 400 to 535 nm. This broadband and fast-switching perfor-
mance is essential for applications requiring real-time control
over light propagation. Using LC mixtures with higher optical
anisotropy could enhance metasurface performance, allowing
for sharper and deeper phase profiles. To increase the switching
efficiency and deflection angle, Chung and Miller employed a
large-scale computational inverse design approach to theoreti-
cally design an LC metasurface for beam steering[183]. By
leveraging adjoint-based local optimization and particle-
swarm-based global optimization, they achieved high-efficiency
resonant behavior in multiple states, a feat that is difficult to
achieve with intuition-based design approaches. For example, a
single-grating Si metasurface could achieve diffraction efficien-
cies of 71% in the voltage-on state and 52% in the voltage-off
state, with transmission-normalized (TN) efficiencies of 86%
and 63%, respectively. This design showed a switching effi-
ciency of 48%, significantly higher than previous designs.
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For higher efficiency and larger deflection angles, they devel-
oped a triple-grating Si metasurface with diffraction efficiencies
of 78% (82% TN) in the voltage-on state and 78% (90% TN)
in the voltage-off state, with a switching efficiency of 76%.
Another design for ultra-wide-angle deflection (�72°) exhibited
diffraction efficiencies of 62% and 76%, with TN efficiencies of
70% and 90%, respectively, as shown in Fig. 3(b). These high-
efficiency designs are supported by dual-resonance structures
with moderate Q-factor resonances in both operational states.
The Q-factors were found to correlate with diffraction efficien-
cies, suggesting that high-Q-factor resonances are essential for
achieving high performance.

By combining the resonance phase of metasurfaces with the
tunable anisotropy of LCs, Shcherbakov and Shvets realized an
electrically controllable LC-integrated metalens with continu-
ously adjustable focal lengths[184]. As shown in Fig. 3(c), the
proposed varifocal metalens adopts a Fresnel zone plate con-
figuration, which divides the lens into concentric rings, each
contributing to the phase modulation required to achieve the

focusing functionality. The LC-encapsulated meta-atoms impart
specific phase delays to incident light due to the supported elec-
tric and magnetic resonances[21,173], which can be adjusted by
changing the orientation of the surrounding LC molecules
via an applied voltage. The meta-atoms were optimized to pro-
vide a continuous and linear phase response as a function of the
LC orientation, which is crucial for achieving smooth focal
length adjustments. Simulations demonstrated that the varifocal
metalens could achieve a continuous shift in focal length from
12 to 15 mm by varying the voltage applied to the LC layer. The
fabricated bifocal metalens demonstrated high-contrast switch-
ing between two discrete focal lengths (9 and 4.5 mm) upon a
voltage bias of VPP � 9.8 V. The focal length could be
smoothly adjusted by varying the applied voltage, demonstrat-
ing the feasibility of continuous varifocal tuning. The experi-
mental results showed focusing efficiencies of 12.1%
and 13.6% for the OFF and ON states, respectively, comparable
to the simulation results. The Strehl ratios, which measure the
quality of the focal spots, ranged from 0.72 to 0.83, indicating

Fig. 3 Electrically tunable LC metasurfaces based on inhomogeneous meta-atoms.
(a) Superperiodic LC metasurfaces for electrically controlled anomalous refraction. The device
switches from anomalous refraction to direct transmission with an applied voltage of 3 V.
Adapted with permission from Ref. [182] © ACS. (b) Inverse-designed LC metasurfaces for high-
efficiency, large-angle, and tunable deflection. Adapted with permission from Ref. [183] © ACS.
(c) LC-integrated varifocal metalens. The focal length continuously varies from 4.5 to 9 mmwith an
applied voltage. Adapted with permission from Ref. [184] © ACS. (d) Electrically controlled 4-bit
DMSD for programmable displays. The programmable information sequence is dynamically gen-
erated by the DMSD. Adapted with permission from Ref. [191] © Springer Nature.
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near-diffraction-limited performance. The demonstrated varifo-
cal metalens addresses the limitation of traditional varifocal
lenses that rely on mechanical actuation, offering faster tuning
speeds and scalability for various modern imaging applications.
However, the efficiency needs to be further improved.

LCs and phase-gradient metasurfaces can be judiciously
designed to provide complementary phase modulation. For in-
stance, a metasurface can provide a geometric or Pancharatnam–

Berry (PB) phase[185–190] while an LC layer adds a tunable
transmission phase, enabling complex wavefront shaping[191,192].
In 2020, Liu’s group demonstrated an electrically controlled
digital metasurface device (DMSD) for dynamic image dis-
plays, as depicted in Fig. 3(d)[191]. The DMSD consists of an
array of metasurface pixels, each of which can be individually
addressed and reconfigured. Each pixel is composed of Au
nanorods separated from an Au electrode by a PC403 spacer,
with alternating columns covered by birefringent LCs with a
refractive index of na and PMMA with a refractive index of
nb, where na can be dynamically changed via an applied electric
field across the LCs and nb is fixed. The rotated Au meta-atoms
supply geometric phase and thus generate anomalous reflection
in a specific direction, while the relative propagation phase be-
tween odd and even columns of the metasurface array can be
dynamically controlled by varying the applied voltage, enabling
dynamic control over the reflection and transmission properties
of the metasurface. The fabricated DMSD prototype demon-
strated excellent performance in terms of high-contrast light
modulation (modulation ratio of 105:1), rapid switching within
the millisecond time range, and good reversibility. Additionally,
the four metasurface pixels could be independently addressed
by activating corresponding electrodes, enabling 4-bit optical
information programming. Moreover, this type of DMSD can
generate and switch between arbitrary holographic patterns in
real time, offering new possibilities for dynamic holography
and optical information encryption. Based on this design prin-
ciple, they achieved dynamic polarization conversion at visible
wavelengths[192]. The dynamic functionality of the metasurface
is achieved by electrically controlling the refractive index of the
LC layer. The incident linearly polarized light undergoes phase
modulation upon interaction with the metasurface, resulting in
the generation of left-handed circularly polarized (LCP) and
right-handed circularly polarized (RCP) light propagating along
different directions. The phase delay between the output LCP
and RCP light can be tuned by adjusting the applied voltage,
enabling rapid and reversible polarization rotation up to 90°
at 633 nm wavelength. By varying the applied voltage from
4 to 20 V, the polarization orientation of the reflected light could
be dynamically tuned from 90° and 0°.

2.2 Electrically Tunable LC Metasurfaces with LCs
Independently Acting as Tunable Wave Plates

In addition to complementing the optical properties of meta-
atoms, LCs can function independently as tunable wave plates
positioned either before[193–204] or after[205–209] polarization-multi-
plexed metasurfaces, promising advanced compound optical
devices with high reconfigurability and versatility. In the follow-
ing, we will discuss several examples of integrating independent
LCs before multiplexed metasurfaces to achieve rapid switching
between different functionalities.

Rho’s group demonstrated an LC-empowered Si metasurface
for electrically tunable color gradients and dark blacks[193]. As

shown in Fig. 4(a), the device involves integrating an aniso-
tropic elliptical-shaped Si meta-atom array with an LC cell,
where the Si meta-atoms produce strong Mie scattering via lat-
tice-induced quasi-GMRs and the LC layer is used to modulate
the incident linear polarization, resulting in dynamic tuning be-
tween bright colors and dark blacks. The fabricated LC meta-
surfaces demonstrated a pronounced dependency on linear
polarization. When the linear polarization was adjusted from
0° to 90°, the reflectance was dramatically modulated, resulting
in dark black states when the scattering conditions were unfav-
orable. Additionally, high-resolution color prints with high con-
trast and vivid colors were achieved by segmenting grayscale
images into multiple linear polarization zones, each occupied
by meta-atoms with particular orientations to achieve the desired
reflectance. The image brightness was electrically tuned from
dark black to bright colors using an external electric field from
0 to 3.0 V/μm. By designing meta-atoms with varying dimen-
sions within the same periodic structure, the researchers gener-
ated multicolored images that could be switched between visible
and hidden states through LC-empowered linear polarization
modulation [Fig. 4(a)]. The ability to dynamically tune the color
with high contrast and resolution may open new possibilities for
spectrum detection, high-performance displays, and advanced
security systems. Guo et al. proposed a color filter for dynamic
color tuning and spectral imaging, comprising a dichroic meta-
grating Fabry–Perot (FP) cavity and an LC cell[194], as illustrated
in Fig. 4(b). The FP cavity features a thin silver (Ag) film at the
bottom, a SiO2 insulator layer in the middle, and Ag metagrat-
ings on top, which produces distinct transmissive colors for dif-
ferent polarizations. The LC cell, aligned parallel to the FP
cavity, functions as a phase retarder to dynamically modulate
the input polarization. The fabricated color filter enables a res-
onance shift of ∼300 nm by altering the input polarization via
the LC cell. Consequently, the color appearance can be tuned
from blue to deep red by varying the applied voltage. This broad
tuning range covered the entire visible spectrum, demonstrating
the device’s capability for dynamic structural color applications.
In addition, the filter was experimentally employed for spectral
imaging of narrowband signals and colorful objects, achieving a
spectral resolvability of around 10 nm, with the peak wave-
length inaccuracy smaller than 5 nm. The device successfully
reconstructed the spectra and images with high fidelity, indicat-
ing minimal color fading and noise.

Reconfigurable multifunctional metalenses have been dem-
onstrated by combining polarization-encoded metalenses with
independent LCs[195–198]. In particular, a tunable polarization-
multiplexed achromatic dielectric metalens integrated with
twisted nematic LCs in the visible spectrum was proposed by
Duan and Hu[197], as shown in Fig. 4(c). The metalens is de-
signed to achieve achromatic focusing and tunable focal lengths,
addressing the chromatic aberration issue in conventional metal-
enses. The metalens is constructed from TiO2 nanostructures
with different cross-sectional shapes, arranged to achieve the
desired phase profiles under two orthogonal polarization chan-
nels across multiple wavelengths. To ensure efficient broadband
achromatic performance, a particle swarm optimization algo-
rithm was adopted to optimize the nanostructures to minimize
the matching error in phase compensation. The LC cell, consist-
ing of LC molecules confined between orthogonally oriented
alignment layers, converts the polarization of incident light.
The fabricated metalens demonstrated achromatic focusing with
minimal chromatic aberration across the visible spectrum from
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Fig. 4 Electrically tunable LC metasurfaces with independent LCs positioned before metasurfa-
ces. (a) Electrically tunable structural color by combining an LC cell and an elliptical meta-atom
array hosting enhanced Mie scattering via lattice-induced quasi-GMRs. The color is gradually
modulated from green to magenta by adjusting the applied voltages to the LC cell. Adapted with
permission from Ref. [193] © Springer Nature. (b) LC-driven metagrating FP color filter. Adapted
with permission from Ref. [194] © the Electromagnetics Academy. (c) Polarization-multiplexed
tunable achromatic metalens using twisted nematic LCs. The focal length shifts from 50 to
100 μm once the applied voltage changes from 0 to 5 V. Adapted with permission from Ref.
[197] © ACS. (d) LC-integrated metalens for electrically switchable bright-field and edge-enhanced
imaging. Adapted with permission from Ref. [198] © ACS. (e) Stimuli-responsive dynamic meta-
holographic displays enabled by an LC modulator. The voltage-dependent display was realized
in different polarization states. Adapted with permission from Ref. [199] © John Wiley and
Sons. (f) Electrically driven LC meta-optics for simultaneous near-/far-field multiplexing display.
Nanoprinting and meta-holography can be switched by changing the applied voltage. Adapted with
permission from Ref. [202] © JohnWiley and Sons. (g) Dynamic hyperspectral holography enabled
by inverse-designed metasurfaces with LCs. Multicolor holographic images were realized by vary-
ing the applied electric field. Adapted with permission from Ref. [204] © John Wiley and Sons.
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450 to 650 nm. By varying the applied voltage from 0 to 5 V,
the focal length was dynamically tuned from ∼55 to ∼105 μm,
enabling zoom imaging. Notably, the metalens achieved high
focusing efficiency across the operational wavelength range.
Apart from tunable achromatic lenses, customized dispersion-
manipulated metalenses and color metaholograms could be
implemented as well. Capitalizing on a spin-decoupled amor-
phous Si (α-Si) metalens integrated with an LC cell, Rho’s
group achieved real-time switching between bright-field and
edge-enhanced imaging modes within milliseconds, as shown
in Fig. 4(d)[198]. The metalens incorporates both geometric
and propagation phases to encode two phase profiles: a hyper-
bolic phase for bright-field imaging and a spiral phase with a
topological charge of �1 for edge-enhanced imaging. The rec-
tangular a-Si meta-atoms, with varying dimensions and rota-
tions, function as nanoscale half-wave plates (HWPs) that
convert incident circularly polarized (CP) light from LCP to
RCP and vice versa. The LC cell modulates the spin of the in-
cident light, allowing the metalens to switch between two im-
aging modes. The metalens prototype demonstrated clear
focal spots for LCP light and doughnut shapes for RCP light,
with measured efficiencies reaching 32.3%, 31.7%, and 20.4%
at wavelengths of 633, 532, and 450 nm, respectively.
Additionally, the LC-integrated metalens rapidly transitioned
between bright-field and edge-enhanced imaging modes by ef-
ficiently modulating the incident polarization with an applied
voltage. The metalens can capture amplitude and phase infor-
mation at the same time, making it particularly useful for im-
aging biological samples with weak amplitude fluctuations.
The ability to electrically switch between imaging modes enhan-
ces the functionality of microscopy setups, providing versatile
imaging solutions within a single device.

By combining polarization-dependent metaholograms and
independent LCs that modulate the incoming light, electrically
controlled holographic displays have been implemented[199–204].
Rho’s group explored the integration of LC modulators with
metaholograms to develop ultracompact, stimuli-responsive
holographic displays capable of real-time operation, as shown
in Fig. 4(e)[199]. The metaholograms employ an asymmetric
spin-orbit interaction to achieve full-phase modulation and high
transmittance for both LCP and RCP light, accomplished by op-
timizing the dimensions and orientations of rectangular α-Si
nanostructures to encode the desired phase shifts. The LC cells
could respond to various external stimuli, enabling dynamic
control of the polarization state of outgoing light, resulting in
switchable holographic images in real time. Particularly, the
application of an electric field reoriented the LC molecules,
modulated the polarization state of the input light, and eventu-
ally achieved real-time switching between different holographic
images [Fig. 4(e)], with a response time of approximately
20–30 ms. Besides the electric field, other stimuli, such as heat
and surface pressure, could trigger the LC modulator to achieve
dynamic holographic images. The capability of dynamically
switching holographic images in response to multiple stimuli
makes these displays ideal for smart sensing applications.
For example, they can be used as holographic labels for temper-
ature-sensitive products or as interactive holographic displays
that respond to touch. To address the challenges associated with
creating multifunctional metaholograms that can be dynami-
cally tuned, Li et al. proposed and experimentally demonstrated
an electric-driven, LC-integrated metasurface capable of simul-
taneous dynamic displays in both near-field and far-field

scenarios, as depicted in Fig. 4(f)[202]. The metasurface com-
prises α-Si nanopillars with varying geometries, systematically
arranged to form an architectural database that enables indepen-
dent phase and amplitude modulation under orthogonal polar-
izations. This design allows for the realization of near-field and
far-field displays simultaneously. The LC cell, confined be-
tween treated glass substrates, contains twisted nematic LC mol-
ecules whose orientation can be controlled by applying an
external electric field, facilitating dynamic modulation of the
polarization state of incident light. By varying the applied volt-
age, the device dynamically switched between two nanoprinting
images with high fidelity in the near-field. Simultaneously, dif-
ferent holographic images were successfully reconstructed in
the far-field by adjusting the LC driving voltage, demonstrating
the device’s capability for real-time holographic image switch-
ing. While the study presents significant advancements, the in-
formation capacity is still limited. To achieve high-capacity
metaholograms, other degrees of freedom (DoFs) of light, such
as wavelength, should be employed. Recently, Rho’s group pre-
sented a pioneering approach to dynamic hyperspectral holo-
graphs. By integrating inverse-designed metasurfaces with
oblique helicoidal cholesteric LC (ChOH), they demonstrated
a highly tunable platform capable of real-time spatial and spec-
tral modulation[204], which holds significant potential for appli-
cations in security, display technology, and interactive systems.
The metasurface was designed using a computational phase-
retrieval process that optimized the placement of meta-atoms
to achieve the desired holographic images at multiple wave-
lengths. The geometric phase with anisotropic meta-atoms
was used to ensure broadband operation and high efficiency
across the visible spectrum. The ChOH cell is composed of a
mixture of twist-bend nematic LCs and a chiral dopant. This
composition allows the LC molecules to form an oblique hel-
icoidal arrangement, which can be dynamically controlled by
varying the applied electric field, resulting in the precise tuning
of the reflection wavelength. The fabricated LC metasurface
successfully displayed 10 independent holographic images with
high fidelity and minimal crosstalk at distinct wavelengths,
ranging from 420 to 720 nm, as shown in Fig. 4(g). The
ChOH cell demonstrated precise spectral tuning capabilities.
By adjusting the electric field, continuous tuning of the reflec-
tion wavelength across the visible spectrum was achieved, with
the passband below 30 nm, enabling wavelength-multiplexed
high-resolution holography without significant overlap between
operating wavelengths.

2.3 Electrically Tunable LC Metasurfaces with Directly
Pixelated LC Cells

The previously discussed LC metasurfaces employ LCs as an
additional index-changing layer on top of functional metasurfa-
ces with direct and indirect interactions. Instead, LCs can be
directly patterned as meta-atoms with improved modulation ef-
ficiency, increased functional diversity, faster response time,
better optical properties, and customizable designs. These ben-
efits make patterned LC meta-atoms an alternative for advanced
optical applications and next-generation photonic devices[210–213].
The first example we would like to highlight is a novel SLM
that integrates LC-tunable FP nanocavities as individual
meta-pixels to achieve high-resolution multispectral operation
with continuous 2π phase modulation and high reflectance
across RGB wavelengths[212], superior to previously discussed
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metasurface-based LC SLMs that are typically limited to mono-
chromatic operation[174]. As shown in Fig. 5(a), the FP-SLM de-
vice consists of an array of FP nanocavities, each formed by a
thin (sub-micron) layer of LC sandwiched between two partially
reflective distributed Bragg reflectors (DBRs). The FP nanocav-
ities are optimized to support multiple resonances across the
visible spectrum, enabling continuous 2π phase modulation
from 400 to 800 nm. The FP-SLM includes two sets of con-
ducting electrodes, where a thin layer of ITO on the top acts
as a common electrode, while the bottom comprises pixelated
Al electrodes that individually bias the LC orientation. Applying
a bias to individual pixels allows for the local modification of
the LC orientation, which creates a varied refractive index land-
scape and eventually leads to different local phase delays. A
proof-of-concept device with 96 individually addressable linear
electrodes was fabricated, with each electrode having a width of
1 μm and a separation gap of 140 nm, achieving a pixel pitch of
1.14 μm. To characterize the device, they first verified electrode
control and measured reflectance spectra under various biases.
Based on interferometric measurements, large phase shifts of
∼2π were demonstrated for RGB wavelengths. They further
programmed the FP-SLM device to implement multispectral
beam steering by applying voltage profiles to create 0-2π linear
phase gradients, which resulted in beam steering with an FOVof
∼18° and absolute efficiencies exceeding 40%. Specifically,
different super-cell configurations (5, 8, and 12 electrodes) were
used to achieve tunable beam steering angles, with the highest
efficiency observed for the 8-pixel super-cell [Fig. 5(a)].
Additionally, a tunable lens with adjustable focal lengths and

numerical apertures (NAs) was demonstrated for a fixed wave-
length by reprogramming the device. It is also possible to focus
multiple wavelengths at the same focal distance with efficiencies
ranging from 16% to 27% for NA � 0.1. The proposed FP-
SLM architecture overcomes the limitations of traditional
LC-SLMs and metasurface-based devices by enabling high-
resolution multispectral operation with small pixel sizes. The
integration of LC-tunable FP nanocavities allows for continuous
phase modulation with high reflectance at multiple wavelengths,
making it suitable for applications in displays, optical comput-
ing, and more. To decrease the number of material constituents
for high-capacity displays, Lu’s group used a single-material LC
layer to achieve versatile and electrically switchable vectorial
holography[213]. As shown in Fig. 5(b), the LC superstructure,
a general LC meta-atom, is designed with a checkerboard
distribution of blue and red LC directors, each encoding
spin-multiplexed phase holograms for LCP and RCP light based
on geometric phases. This configuration allows the LC directors
to impart arbitrary polarization and amplitude control at varying
spatial positions. The authors designed and fabricated LC
superstructures to demonstrate vectorial LC holography with
programmable polarization control. A notable example is a vec-
torial LC-holographic clock displaying distinct time information
based on the polarization keys (analyzer). Two sets of phase
holograms were nested within a single LC element to display
the hour and minute hands independently under RCP and
LCP light, respectively. When illuminated by linearly polarized
(LP) light, the overlapping areas encoded with vectorial infor-
mation could be deciphered using specific polarization keys,

Fig. 5 Electrically tunable LC metasurfaces with directly pixelated LC cells. (a) High-resolution
multispectral SLMs with continuous 2π phase modulation based on LC-coupled FP nanocavities.
Programmable beam steering was achieved by selectively applying voltage patterns (top panel) to
the electrodes to create linear phase profiles. Adapted with permission from Ref. [212] © Springer
Nature. (b) Pixelated LC superstructures for generating vectorial holographic images with spatially
varied amplitudes and phase differences. The LC-holographic video of a football match was
addressed by both the electric field and polarization keys. Adapted with permission from
Ref. [213] © Springer Nature.
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demonstrating the ability to encode and retrieve complex vec-
torial data. They further explored the continuous control of both
holographic amplitude and vectorial distributions by designing
holographic images of the moon phases, encoded with contin-
uously varying LP profiles. The experimental results showed
high-quality holographic images with precise control over the
vectorial information, confirming the efficacy of the design.
Leveraging the dynamic tunability of LCs, the authors demon-
strated an active time-sequence vectorial holographic video.
They encoded different phases of a football match into the
LC superstructure, which could be dynamically displayed by
applying an electric field and varying the polarization keys
[Fig. 5(b)]. The resulting holographic video showcased high-
quality, time-sequenced images, illustrating the potential for
real-time vectorial holography applications.

The integration of LCs with optical metasurfaces harnesses
the strengths of both components, where metasurfaces offer
high spatial resolution and precise light control, and LCs enable
dynamic modulation of optical properties. Given that LCs are
well-established materials suitable for large-scale production,
this synergistic combination can revolutionize photonics by of-
fering unprecedented light control in compact, lightweight, and
highly integrated devices. However, several challenges remain
in the development of LC-integrated dynamic metasurfaces. The
fabrication process is complex and costly due to the precise
alignment required between the metasurface and the LC
layer, and ensuring material compatibility can be difficult.
Additionally, LCs are sensitive to temperature changes, affect-
ing performance and overall stability. The tuning range is lim-
ited by the extent of the refractive index change in the LCs, and
their response time, currently in the tens of milliseconds, must
be further reduced to meet the demands of high-speed photonic
systems. Addressing these hurdles will require innovations in
both device design and fabrication techniques.

3 Electrically Tunable PCM Metasurfaces
PCMs, whose morphologies and optical properties can be dras-
tically altered through the electrical stimulus, offer a versatile
platform for electrically tunable metasurfaces, superior to
thermal annealing[214–217] and optical writing[218–225], where bulky
heating plates/chambers and ultrafast lasers are necessarily
needed.

3.1 Electrically Tunable Vanadium Dioxide
Metasurfaces

Vanadium dioxide (VO2) is one of the appealing volatile PCMs
known for its sharp insulator-to-metal transition (IMT) close to
room temperature at around 341 K, where it undergoes a revers-
ible change from a monoclinic phase with insulating properties
to a tetragonal phase exhibiting metallic behavior[139,141,226]. The
IMT in VO2 involves a change in electronic structure accompa-
nied by a structural phase transition linked to the d-orbital
electrons of vanadium atoms. This transition is accompanied
by significant changes in electrical and optical properties, mak-
ing VO2 a material of great interest for numerous applications
once integrated with electrical electrodes, including smart win-
dows[227,228], integrated photonics[229–231], and metasurfaces[232–234].

The application of electrically controlled VO2 metasurfaces
for amplitude modulation is a rapidly evolving area of re-
search[235–238]. Particularly, the use of continuous VO2 films in
these metasurfaces demonstrated significant potential for

dynamic optical devices due to the uniform phase transition
characteristic across the entire surface, ensuring a consistent
modulatory effect over large areas[235,238]. In 2016, Werner’s
group presented a novel plasmonic metasurface design compris-
ing a VO2 thin film sandwiched between two continuous met-
allic layers, enabling the dynamic modulation of mid-infrared
waves through external electrical stimuli, as illustrated in
Fig. 6(a)[235]. In addition to supporting desired resonant modes,
the upper mesh-patterned Au antenna layer is connected to two
big Au pads that function as electric electrodes to flow the ap-
plied current and thus induce Joule heat conduction into the
VO2 thin film, eventually resulting in electrically controlled
IMT. This configuration allows for the demonstration of several
electrically triggered functionalities, including switchable re-
flection, a rewritable photonic memory effect, and the tuning
of spatially dependent infrared images. Impressively, they
successfully showcased substantial modulation in optical reflec-
tance, ranging from nearly 0% to around 80% at a wavelength of
3.05 μm. Later in 2021, Wang et al. extended the application of
VO2-film-based technologies into the realm of flexible and elec-
trically tunable metasurfaces[238]. They overcame the traditional
limitations of integrating PCMs into flexible metadevices by uti-
lizing mica sheets as substrates, which can withstand high tem-
peratures while retaining flexibility. The Au-VO2-Au infrared
meta-absorber demonstrated remarkable tunability and durabil-
ity, with the infrared absorption adjusted from 20% to 90%
through electrically induced phase transitions of VO2 with a
transferred graphene Joule heater.

Despite relatively large modulation depths, these VO2-film-
empowered metasurfaces are constrained by relatively large
energy consumption owing to the large thermal mass of continu-
ous VO2 films. For instance, an input power of ∼1 μJ per unit
cell per pulse is required to activate the IMT[235]. Additionally,
the modulation speed is typically at the sub-second level
since the applied thermal energy needs time to be dissipated
to recover the device. To decrease energy consumption and in-
crease the modulation speed, one feasible approach is to pattern
VO2 into nanostructures with reduced thermal mass[236]. In 2017,
Valentine’s group introduced an efficient metadevice capable of
spectral control in the near-infrared range by minimizing the
thermal mass of a VO2 PCM. In their design, a small VO2 patch
(120 nm × 120 nm × 37 nm) is precisely placed in the feed gap
of an Au bowtie antenna to interact with an alumina (Al2O3)
coated thick Au reflector [Fig. 6(b)], which allows for an exper-
imentally measured spectral tuning range of up to 360 nm and a
modulation depth of 33% at the resonant wavelength of
1588 nm with a faster switching speed of 1.27 ms, once the de-
vice is electrically switched by injecting the current flow
through the intrinsic bus bars connected to large external Au
electrodes. The device design facilitates integrated and localized
heating, leading to lower power consumption. Specifically, the
required current to transition the entire 24 μm × 24 μm sample
was determined to be 56 mA with an applied voltage of 2.2 V,
leading to a power usage of 123.2 mW and a switching energy
per pixel of ∼21 nJ, 47 times smaller than the film-based VO2

metasurface[235]. Regarding endurance, this current-driven VO2

metasurface can maintain its good performance in terms of
modulation depth and speed after being modulated for over
24,000 cycles, indicating its potential for long-term operation
up to millions of cycles without failure. In addition to planar
2D configurations, VO2 can be patterned as complicated
two-and-a-half-dimensional (2.5D) or three-dimensional (3D)
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metasurfaces by employing the IMT-induced strain[237,239,240]. For
example, Wang et al. expanded the utility of VO2 in MEOMS
(microelectro-opto-mechanical systems) to demonstrate a dy-
namic platform that exhibits over 50% optical modulation depth
across a broad mid-infrared wavelength range when the canti-
lever array, each consisting of VO2, chromium, and Au nano-
layers, is reconfigured by electric currents[237]. The platform’s
multifunctionality was showcased through applications such
as an active absorber and a reprogrammable EO logic gate,

indicating its potential in communications, energy harvesting,
and optical computing.

Apart from amplitude modulation, we delve into the more
sophisticated applications of electrically triggered VO2 metasur-
faces in phase control[241,242]. In a groundbreaking study,
Atwater’s group introduced a reflectarray metasurface that can
continuously modulate the phase of reflected light in the near-
infrared range by electrically controlling the phase transition of
integrated VO2 layers from semiconducting to semi-metallic

Fig. 6 Electrically tunable VO2 metasurfaces. (a) A hybrid metasurface absorber consisting of two
continuous Au layers sandwiching a thin VO2 layer for electrically triggered reflection control in the
mid-infrared range. A continuous spectral tuning is achieved before saturation when the applied
electrical current increases. Adapted with permission from Ref. [235] © Springer Nature.
(b) Dynamically reconfigurable metadevice for reflection modulation in the near-infrared range
by positioning nanostructured VO2 patches within the feed gap of Au bow-tie antennas. The ab-
sorption spectra vary with the device temperature. Adapted with permission from Ref. [236]
© ACS. (c) Electrically tunable VO2 metasurface for continuous phase modulation of reflected
light in the near-infrared range. A reversible voltage-dependent hysteresis loop is shown in the
phase shift when the applied voltage varies between 0 and 13 V. Adapted with permission from
Ref. [241] © ACS. (d) Electrically driven VO2 metasurface for broadband dynamic polarization
control. When VO2 transits from the insulating to the metallic phase through the applied current,
the metasurface transforms from a broadband HWP or QWP to a mirror. Adapted with permission
from Ref. [244] © John Wiley and Sons. (e) Electrically tunable VO2-Au metasurface for trans-
mission switching and optical isolation in the mid-infrared regime. The OPEN (transmitting)
and CLOSED (non-transmitting) states are switched by electrical Joule heating from electrical bias
and/or photothermal heating from incident light. Adapted with permission from Ref. [245]
© Springer Nature. (f) Electrically programmable nanophotonic matrix consisting of VO2 cavities
on pixelated microheaters. Each unit spectral pixel (2 × 2 VO2 cavities) can be individually con-
trolled for spectrum detection. Adapted with permission from Ref. [249] © Springer Nature.
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states, as shown in Fig. 6(c)[241]. The PCM-based metasurface
relies on a typical metal-insulator-metal (MIM) gap-surface-
plasmon (GSP) unit cell[19], where a 40 nm thick patterned VO2

stripe is embedded between an Au stripe and an Al2O3-coated
Au reflector. The top Au stripes simultaneously act as a resistive
heater through an electrical connection to an external circuit and
support optical resonances. By applying an electric bias, the
generated resistive heating induces local and controllable
IMT in VO2 to change the optical resonances. When in its in-
sulating phase, VO2 excites a magnetic dipole resonance at λ �
1520 nm with the magnetic field densely concentrated between
the back reflector and the top Au stripe. In the metallic phase of
VO2, the magnetic field predominantly resides within the Al2O3

layer, attributable to the diminished effective thickness of the
composite dielectric layer comprising both Al2O3 and VO2.
Such alterations in the near-field attributes of the mode sup-
ported by the metasurface lead to significant modifications in
both the amplitude and phase of the light reflected by the struc-
ture. At the wavelength of 1550 nm, there is a continuous phase
shift from 0° to 180° when the applied bias is gradually in-
creased from 0 to 13 V. Additionally, this phase modulation
capability is remarkably broadband, offering significant phase
shifts at multiple operation wavelengths. The initially measured
response time is ∼15 ms for ON switching and ∼100 ms for
OFF switching when high-intensity short pulses are applied.
Capitalizing on this design concept, Proffit et al. numerically
proposed electrically controlled broadband beam steering in
the near-infrared range using binary phase control inVO2-incor-
porated MIM phase nanoantenna arrays[242]. Through inverse de-
sign optimization, the beam steering performance at 1550 nm
has been enhanced, achieving continuous beam steering over
a 90° range with excellent agreement between theory and sim-
ulation results. Furthermore, the design demonstrates robustness
against manufacturing imperfections and a broadband response
from 1500 to 1700 nm.

In addition to dynamic amplitude and phase manipulation, the
IMT in VO2 also facilitates electrically tunable metasurfaces for
active polarization control when combined with anisotropic
meta-atoms to offer tunable birefringence. Here we highlight
a significant achievement in the modulation of polarization states
using a dispersion-free metasurface[243] integrated with PCM
VO2, as shown in Fig. 6(d)

[244]. The metasurface employs a MIM
structure to achieve optical anisotropy, in which the resonant
mode dispersion of “L”-shaped Au antennas is compensated
for by the thickness-dependent dispersion of the middle SiO2

spacer, thereby leading to dispersion-free optical responses that
can be tuned by the IMT in the topmost VO2 layer. When VO2

transits from an insulating to a metallic state around 341 K, the
polarization state of light transitions from horizontal to vertical
polarization or from circular to linear polarization across a broad
wavelength range, mimicking the functionality of a tunable
broadband HWP or quarter-wave plate (QWP). One of the most
compelling demonstrations in the study is the proof of concept
for dynamically independent control of multiple polarization dis-
plays. By applying electrical currents to separate channels within
the VO2 metasurface, the authors successfully manipulate vari-
ous polarization states, enabling the encoding of 2N states where
N is the number of separated channels, thereby paving the way
for advanced applications in display technology, encryption,
camouflage, and information processing, among others.

The examples mentioned above demonstrate the advantages
of using electrically controlled VO2 metasurfaces for dynamic

light manipulation in the linear regime. Figure 6(e) shows an
electrically controlled VO2-Au-integrated metadevice capable
of simultaneously performing three distinct optical functions:
switching, limiting, and nonlinear isolation, all tunable through
current modulation rather than external heating mechanisms[245].
The metasurface consists of a resonant array of square coaxial
apertures in an 80 nm thick Au film on top of a VO2 film, which
achieves a high optical transmission contrast when switched be-
tween the resonant and non-resonant configurations with Joule
heating through the Au layer providing a bias for controlled
heating. As an optical switcher, the device demonstrates an
impressive experimental transmission ratio of ∼100 by varying
the bias current at the design wavelength of 3.9 μm. When func-
tioning as an optical limiter, the study showcases the ability to
adjust the limiting threshold from 20 to 180 mW of incident la-
ser power, indicating significant tunability. Furthermore, they
discovered that by electrically heating the VO2-Au metasurface
near the critical IMT point, they could leverage the incoming
light beam to supply the requisite additional heat, propelling
the material through the edge of the IMTand realizing nonlinear
optical isolation. They demonstrated an operational regime in
which infrared light transmission was preferentially facilitated
in one direction over its reverse, while still ensuring consider-
able transmission levels. Moreover, the capability to modulate
the threshold for nonreciprocity was demonstrated by properly
adjusting external heating through the electrical current.
Compared to conventional nonlinear isolators, the required op-
tical intensities are much lower since the VO2 is initially heated
close to the critical point of IMT. The measured isolation ratio is
∼5–9, a bit larger than other existing VO2-empowered mid-in-
frared nonlinear isolators[246,247]. To further improve the isolation
ratio, a high-Q-factor metasurface could be used[248], but at the
expense of reduced bandwidths.

Very recently, He’s group has made significant advance-
ments in electrically tunable metasurfaces by developing a
highly durable, ultrafast, and programmable nanophotonic ma-
trix composed of VO2 cavities on pixelated microheaters[249].
This matrix, which has been shown to endure over 106 switch-
ing cycles and operate at speeds exceeding 70 kHz, addresses
several persistent challenges in the field, including speed,
durability, and programmability. As shown in Fig. 6(f), the
nanophotonic matrix features a 12 × 12 array of VO2-based
cavities integrated with individually addressable pixelated ITO
microheaters, allowing precise control over each pixel. The ma-
trix operates through indirect Joule heating, where the micro-
heater modulates the phase of the VO2 layer by adjusting the
thermal dissipation power. The group demonstrated a video-rate
color display by electrically addressing VO2 in a matrix of
12 pixel × 12 pixel. Beyond display applications, the potential
for spectrum detection was explored using a spatiotemporal
modulation scheme. By integrating 2 × 2 VO2 cavities on a sin-
gle heater as a spectral pixel, the device can modulate light
across different spatial and temporal domains. The study show-
cased accurate spectral detection using the matrix in both snap-
shot and tuning modes, further highlighting its versatility and
potential in advanced nanophotonic applications.

3.2 Electrically Driven Phase Change Chalcogenide
Metasurfaces

Phase change chalcogenides (PCCs) represent another class of
PCMs that have seen extensive application in the field of
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photonics[133,134,136–138,250]. These compounds, typically formed
from chalcogen elements such as sulfur (S), selenium (Se),
and tellurium (Te) from Group 16 of the periodic table, are com-
bined with elements from Group 13, 14, or 15, including ger-
manium (Ge), antimony (Sb), and arsenic (As)[251]. A distinctive
feature of PCCs is their ability to undergo reversible transitions
between amorphous and crystalline phases when subjected
to thermal, electrical, or optical stimuli. This phase-change
mechanism is deeply rooted in their atomic structure and bond-
ing[252,253], where the rapid shift between states is driven by the
movement of atoms into positions that either enhance long-
range order (crystalline) or disrupt it (amorphous). Such struc-
tural transformations lead to significant and non-volatile
alterations in their optical properties, which require zero static
energy to hold the programmed states, superior to the volatile
IMT in VO2. These changes are harnessed in metasurfaces to
dynamically modulate light interaction with engineered meta-
atoms[134,214–216,218,219,221,222], leveraging PCCs’ remarkable charac-
teristics including a high refractive index contrast (Δn ≥ 1),
non-volatility with long retention time exceeding 10 years, ul-
trafast switching speeds in the range of 10 ns to 100 ns, robust
switching endurance of over 109 cycles, low-energy transitions
down to a few aJ of energy per cubic nanometer, and compat-
ibility with CMOS manufacturing processes. The subsequent
section will delve into the applications of dynamically triggered
PCC metasurfaces through electrical stimuli.

GeSbTe (GST) or GeSbSeTe (GSST) alloys are a subset of
PCCs with intriguing properties, which have been widely used
in data storage technologies, such as rewritable CDs and DVDs,
and more recently, in non-volatile phase-change random access
memory[254–256]. They are also increasingly being explored for
use in reconfigurable metasurface applications, where their
phase transition capabilities enable dynamic control of light.
Early in 2014, Bhaskaran and colleagues reported the first
GST-integrated optoelectronic metasurface framework emerg-
ing as a new benchmark for high-resolution color pixels in dis-
play technology[257]. In line with lossy thin films for color
rendering[258], this approach used lossy GST thin films or nano-
structures, which are sandwiched between two conductive ITO
layers on a reflective conductive base, as illustrated in Fig. 7(a).
The transition of the GST layer from an amorphous to a crys-
talline state triggers a pronounced color transformation across
the nanometer-thick film, showcasing its potential for crafting
distinct pixels in display devices. Utilizing lithographic tech-
niques, an array of these uniquely colored pixels was engi-
neered, each capable of undergoing individual color shifts by
positioning a nanoscale conductive tip. This advancement re-
duces pixel dimensions to hundreds of nanometers (e.g.,
300 nm), facilitating the development of ultra-high-resolution
displays. Following this general concept, the team introduced
Ag3In4Sb76Te17 (AIST), another PCC alloy, which surpasses
GST in terms of modulation capability for pixeled displays[259].
Additionally, continuous grayscale imaging was realized by
manipulating the degree of crystallization with applied voltage.
Although these two examples demonstrate the potential of
using conductive nanoscale tips to electrically switch the PCC-
integrated color pixels for high-resolution, flexible display tech-
nologies, this methodology carries specific limitations inherent
to its execution and practical application. First, the precision re-
quired for a conductive tip to accurately switch individual pixels
is high, especially as the pixel size decreases to improve reso-
lution. While effective on a small scale, this approach may face

challenges scaling up to larger displays with millions of pixels,
where uniformity and precision across the entire display are
critical. Second, the switching speed may be slower compared
to other non-contact methods, which could potentially limit the
refresh rate of the display, impacting applications that require
fast updating of the visual content. Last, integrating a mecha-
nism that relies on conductive tips for switching in a mass-
produced display introduces complexity in manufacturing.
Similarly, maintenance or repair of such displays could be more
challenging, as the precise alignment and functionality of the
conductive tips are crucial.

To realize a unique electrically controlled PCC metasurface
platform, integrated electrodes offer an appealing solution with
energy efficiency, rapid response, precise control, scalability,
and compatibility with existing fabrication techniques. In 2021,
two independent works have shown the possibility of using
integrated resistive microheaters to switch PCC metasurfaces,
which offer strong, reversible, non-volatile, and multi-
state switching in the visible and near-infrared regimes with
low energy consumption and full integrability with existing
optoelectronic circuits[260,261]. In a groundbreaking study[260],
Brongersma’s group navigated this challenge of implementing
electrically programmable antennas and metasurfaces by em-
ploying GST as the cornerstone material. They first demon-
strated an electrically tunable antenna composed of a GST
nanobeam stacked atop an Ag stripe with a length of 10 μm
by properly fine-tuning both the thermal and optical parameters.
Through pulsed currents heating the Ag nanostrip electrode, the
GSTantenna is switched between the amorphous and crystalline
states, resulting in a scattering efficiency modulation of around
30%. Moreover, they have developed a reflective GST metasur-
face with an area of 5 μm × 5 μm on top of an Ag contact
layer, whose operation hinges on the application of electrical
pulses of varying intensity and duration, as shown in Fig. 7(b).
Specifically, a prolonged (∼20 μs) but relatively weak electrical
pulse is employed to transition the GST-Ag metasurface into a
state of near-perfect absorption. Conversely, a short (∼500 ns)
but intense pulse reverses this effect, rendering the GST-
Ag metasurface highly reflective. The reflectance variation
achieved in the experiment is notably substantial, reaching a
maximum ratio of 4.5 at the wavelength of 755 nm. Figure 7(b)
also illustrates the dynamic modulation of the reflected signal,
which fluctuates in response to the application of reset and set
pulses. This modulation demonstrates notable stability and
consistency across multiple cycles, underscoring the device’s
reliable performance and the efficacy of the electrical tuning
mechanism. Meanwhile, Hu’s group reported a large-scale
(up to 400 μm × 400 μm), electrically reconfigurable metasur-
face using GSST, a non-volatile PCC that possesses a wider
transparent window across different structural states and a larger
switching volume compared to GST compounds[261]. Through a
smart design that combines geometrically optimized heaters
with GSST meta-atoms, they have achieved precise and uniform
phase transitions across the whole metasurface area with acti-
vated electrical pulses (e.g., a single ∼10 V, 500 ms pulse
for crystallization and a single 20 V, 5 μs pulse for amorphiza-
tion), as shown in Fig. 7(c). With a GSST metasurface
composed of a periodic array of identical meta-atoms, they dem-
onstrated binary switching with a large absolute reflectance con-
trast of 40% at λ � 1.49 μm and a relative reflectance
modulation up to 400% at λ � 1.43 μm. In addition, quasi-
continuous multi-state tuning with a record half-octave spectral
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Fig. 7 Electrically tunable PCC metasurfaces. (a) GST metasurface emerging as an integrated
optoelectronic framework for high-resolution electronic display, in which a nanoscale conductive
tip is used to locally switch color pixels by applying a voltage between the two ITO layers. Adapted
with permission from Ref. [257] © Springer Nature. (b) Electrically actuated GST-Ag metasurface
for reflection modulation in the visible range. The absorption spectra vary with the device temper-
ature. Reset and set pulses are applied through the Ag strip, heating the metasurface to facilitate a
reversible transition between the amorphous and crystalline phases. Adapted with permission
from Ref. [260] © Springer Nature. (c) Electrically reconfigurable metasurface beam deflector
based on GSST meta-atoms on a metal heater. The deflection efficiencies are redistributed at
the design wavelength of 1550 nm by switching the phase of GSST meta-atoms. Adapted with
permission from Ref. [261] © Springer Nature. (d) Electrically reconfigurable heterostructure meta-
device for non-volatile, reversible, multilevel, fast, and remarkable optical modulation in the near-
infrared spectrum by integrating a robust resistive microheater with an Au-Al2O3-GST-Al2O3-Au
metasurface. An absolute reflectance contrast reaching 80% can be achieved between the reflec-
tive and absorptive states during multiple electrical sets and reset pulses. Adapted with permission
from Ref. [262] © Springer Nature. (e) GSST fishnet metasurface for electrically tunable transmis-
sion modulation. Low- and high-transmission states with a contrast ratio of 5.5 dB can be con-
sistently switched using electrical pulses for 1250 cycles. Adapted with permission from Ref.
[264] © John Wiley and Sons. (f) Electrically switchable W-Sb2S3 color filter. Adapted with per-
mission from Ref. [266] © John Wiley and Sons. (g) Electrically tunable Sb2S3 SNOC pixels.
Individual Sb2S3 SNOC pixels are controlled with a DC voltage of 10 V. Adapted with permission
from Ref. [270] © ACS. (h) Electrically programmable Sb2Se3 metasurface as a phase-only trans-
missive SLM by independently controlling individual meta-molecules. Tunable focusing with differ-
ent focal lengths is observed by selectively transitioning the phase of 2 (i), 4 (ii), and 6 (iii) central
meta-molecules to the amorphous state while maintaining the rest in the crystalline state. Adapted
with permission from Ref. [271] © ACS.
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range from 1.19 to 1.68 μm was realized by controlling the volt-
ages of crystallization pulses. The researchers also prototyped a
polarization-insensitive phase-gradient metasurface consisting
of two GSST meta-atoms to showcase the potential for dynamic
optical beam steering at the wavelength of 1.55 μm [Fig. 7(c)].
This capability is particularly noteworthy as it leverages the
non-volatile characteristics of PCC metasurfaces, enabling re-
configurable optics that can be dynamically altered without a
constant power supply.

Despite significant achievements, these two examples have
rather limited absolute reflectance contrasts (<40%) due to
the interference from lossy metallic wiring with the incident
light on the subwavelength scale of the PCC meta-atoms. In ad-
dition, the issue of crystallization filamentation leads to a direct
current path through the PCC, hindering a uniform phase tran-
sition across the entire volume of the meta-atoms. To overcome
these hurdles, Adibi’s group has demonstrated an electrically
reconfigurable heterostructure metadevice platform for non-
volatile, reversible, multilevel, fast, and remarkable optical
modulation in the near-infrared spectrum by combining a robust
tungsten (W) microheater with an Au-Al2O3-GST-Al2O3-Au
metasurface, enabling uniform electrothermal phase conversion
of the continuous GST layer without compromising the optical
efficiency, as shown in Fig. 7(d)[262]. This approach achieves an
absolute reflectance contrast of up to 80% at a potential oper-
ation speed of a few kHz, surpassing previous implementations
of PCC-based reflector-absorber switches[260,261]. Meanwhile, it
mitigates the thermal deformation of meta-atoms, a common is-
sue with alternative resistive heating strategies that employ plas-
monic materials prone to low melting points. More importantly,
this electrically driven model facilitates the achievement of
multiple non-volatile intermediate states of GST, enabling the
creation of multi-state reconfigurable metasurfaces crucial for
the advancement of adaptive optics technologies. They also suc-
cessfully showcased the capability of active beam steering
within the near-infrared spectrum through the utilization of
an electrically actuated phase-change gradient metasurface.
By altering the GST’s phase from amorphous to crystalline, pre-
cise control over the deflected power between the�1st and zer-
oth diffraction orders was implemented. However, such a GST
meta-deflector could only dynamically tune the power distribu-
tion between the �1st and zeroth diffraction orders and lacks
the capability of continuously steering the diffracted beams
in a controlled way, which requires addressing individual meta-
surface pixels instead of the whole meta-device. To solve this
issue, Adibi’s group has numerically proposed a hybrid Au-
GST-Au metasurface to tune the reflection phase over a wide
range of 315° while maintaining moderate reflection amplitudes
(>15%) by electrically controlling the crystalline fraction of
GST through Joule heating[263]. By individually triggering each
meta-atom with a proper voltage, phase, amplitude, or polariza-
tion of reflected light could be dynamically reconfigured.

To move the operation regime of active PCC metasurfaces
from reflection to transmission, which is more appealing for
practical applications, transparent electrodes can potentially re-
place conventional opaque metal heaters. For instance, a trans-
parent silicon-on-insulator (SOI) microheater was used to
successfully achieve a reversible switching near-infrared optical
filter based on a 200 μm × 200 μm fishnet GSST meta-atom ar-
ray, as displayed in Fig. 7(e)[264]. As a proof of concept, a trans-
missive metasurface filter (meta-filter) shows consistent
switching between low- and high-transmission states through

electrical pulses, achieving a switching contrast ratio of 5.5 dB.
Remarkably, the meta-filter sustains reversibility for 1250
cycles before experiencing accelerated degradation, marking
a great advancement toward the realization of free-space recon-
figurable optics. Therefore, the study heralds a new era for elec-
trically controlled PCC metasurface devices suitable for
transmissive optics using doped crystalline Si as the optically
transparent heater, which is compatible with CMOS processes
and exhibits low loss in the infrared spectrum.

The inherent narrow bandgap of Ge-composite PCCs limits
the efficiency of aforementioned dynamic metasurfaces, particu-
larly in the visible spectrum where PCCs strongly absorb light in
both amorphous and crystalline states. Consequently, there is a
growing demand to discover new PCCs with wider bandgaps.
By removing Ge and substituting Te with Se or S, the bandgap
broadens, leading to the formation of Sb2S3 and Sb2Se3,
which are transparent in near-infrared wavelengths[265–268]. In
particular, Sb2S3 has bandgaps of 2.05 eV� 0.05 eV and
1.72 eV� 0.05 eV in amorphous and crystalline states, moving
the absorptance band-edges to the wavelengths of 605 and
721 nm, respectively, which can be considered as a potential
low-loss platform for dynamic metasurfaces operating at visible
wavelengths[223–225,266]. Besides larger bandgaps, Sb2S3 exhibits
a substantial and nonvolatile refractive index change upon
crystallization, with the maximum Δn approaching ∼1 at
λ � 614 nm. By coupling Sb2S3 to an optical cavity composed
of multiple thin films, Simpson’s group demonstrated tunable
structural colors by actively switching the Sb2S3 absorption
edge with both optical and electrical stimuli[266]. For instance,
they showed that a metal∕Sb2S3 color filter can be electrically
switched by depositing Sb2S3 on top of a W filament, which
allows them to directly probe the optical response of the active
Sb2S3 area before and after the application of electrical pulses.
Figure 7(f) presents images of the device in its initial state and
after a 2 μs, 15.0mA� 1mA pulse. When Sb2S3 is in its amor-
phous state (initial state), the W∕Sb2S3 metasurface possesses
high absorption in the visible spectrum, rendering the image of
the active area dark. Once Sb2S3 is electrically triggered to the
crystalline state, the appearance of W∕Sb2S3 becomes light
blue-gray. However, this color filter is sensitive to a small in-
crease in the electric current, leading to ablation of the hottest
area after applying a 2 μs, 15.7mA� 1mA pulse. Therefore,
robust electrical switching with excellent endurance needs fur-
ther investigation. To enhance the color tuning range of thin-
film optical coatings, two distinct PCCs were utilized[269,270].
In 2021, Singh’s group demonstrated electrically dynamic color
generation by employing a broadband GST-Ag absorber and a
narrowband Sb2S3-Ag absorber to form an active thin-film coat-
ing that achieves tunable optical Fano resonance within the vis-
ible spectrum[269]. By applying electrical pulses to an integrated
W microheater, the structural phase of the PCCs within the film
can be switched between amorphous and crystalline states, al-
tering the reflection spectrum and thus the color. Continuous
tuning of the Fano resonance was achieved by increasing the
DC current from 0 to 300 mA, enabling significant color tun-
ability from pink to greenish yellow with a 15 nm thin Sb2S3
layer. Later in 2023, the same group used this concept to de-
velop PCCs-integrated steganographic nano-optical coatings
(SNOCs) as electrically tunable color reflectors for secure
optical data storage, as illustrated in Fig. 7(g)[270]. The SNOC
was designed to create optical Fano resonances with tunable
linewidths but fixed resonance wavelengths by structurally

Ding, Meng, and Bozhevolnyi: Electrically tunable optical metasurfaces

Photonics Insights R07-16 2024 • Vol. 3(3)



adjusting the PCC layer from amorphous to crystalline within
the visible spectrum, enabling high-purity color generation.
Optical steganography was implemented using tunable SNOC
color pixels by dividing the SNOC cavity layer into two regions,
each made from different dielectric materials (Sb2S3 or TiO2)
yet maintaining identical optical thicknesses. Furthermore, they
showcased the electrically tunable color capability of individual
Sb2S3 SNOC pixels within a 2 pixel × 2 pixel array, fabricated
on microheater devices to enable precise control and modulation
of colors. By applying a DC voltage of 10 V, the initial violet
color was changed to blue. Nevertheless, such thin-film color
coatings suffer from larger pixel sizes and slower modulation
speeds. Additionally, reversible color switching has not been
realized in such PCC thin-film coating, which, in turn, requires
judiciously designed microheaters to enable transient melting
and rapid cooling simultaneously.

To enable substantial free-space light control with smaller
pixel sizes and faster speeds, one needs to utilize PCC meta-
atoms with proper resonances to enable substantial phase or am-
plitude modulation. Fang and colleagues presented a significant
advancement in electrically controlled phase modulation by
introducing a state-of-the-art transmissive SLM that effectively
utilizes the unique properties of Sb2Se3 (i.e., non-volatile behav-
ior and low loss in the near-infrared regime), as depicted in
Fig. 7(h)[271]. Integrated into a high-Q (∼409) diatomic Si meta-
surface, Sb2Se3 facilitates a phase-only modulation of ∼0.2π in
the experiment. The robustness of the device is evidenced by its
ability to endure over 1,000 switching cycles with no noticeable
performance degradation by applying SET and RESET electric
pulses to the doped Si microheater. The authors further lever-
aged an alternative GMR to enhance the interaction between
TE-polarized light and the Sb2Se3 layer, where a resonance
shift of approximately 8 nm, alongside a 2π phase shift, was
achieved through precise control of individual meta-molecules
[Fig. 7(h)]. For the designed SLM, individual meta-molecule
control was realized through the electrical connection between
a single source channel and 17 separate group channels, each
linked to one of 17 meta-molecules. By applying varied phase
profiles, tunable far-field beam shaping with three focal lengths
was successfully demonstrated. The simplicity, reliability, and
capability of this Sb2Se3 SLM offer a promising alternative
to more traditional technologies like LCs or MEMS if full 2π
phase-only control with unity transmission is achieved with
more complicated meta-atom designs, potentially reducing
the complexity and cost of manufacturing and maintenance.

Despite their potential, electrically controlled metasurfaces
using PCMs present several limitations. The phase transition
temperature of VO2, around 68°C, can be unsuitable for many
applications, requiring additional energy to trigger the phase
change or causing unintended transitions in common environ-
mental conditions. PCCs often have even higher transition tem-
peratures, further limiting their practical use. Therefore, thermal
management is crucial, as localized heating to induce phase
changes can lead to heat dissipation issues, affecting perfor-
mance and longevity. Material stability is another concern, as
repeated phase transitions can lead to fatigue and affect long-
term reliability. Particularly, producing high-quality, pure VO2

with consistent properties remains challenging, as does the syn-
thesis and integration of VO2 nanoparticles into nanophotonic
devices, which is both complex and costly. The tunability
of PCMs is inherently limited, restricting their application in
scenarios requiring a broad range of optical responses[137].

Additionally, integrating PCMs with other materials can be
problematic due to differences in thermal expansion, chemical
reactivity, and mechanical properties, potentially leading to in-
terface degradation or delamination. Environmental and health
concerns also arise from the toxicity of constituent compounds,
necessitating safe handling protocols and proper disposal meth-
ods. By overcoming these hurdles, the potential of PCMs in ac-
tive metasurfaces and other photonic applications continues
to grow.

4 Electrochemically Activated Metasurfaces
Electrochemical reactions, fundamental to processes such as en-
ergy storage in batteries, corrosion protection, and sensing, are
significantly influenced by the surface characteristics of the ma-
terials involved. Metasurfaces, by their engineered features,
offer an effective way to modify surface areas, electron transfer
rates, and local electromagnetic environments, thereby pro-
foundly altering the dynamics of electrochemical reactions.
Meanwhile, the integration of electrochemical environments
into metasurfaces has led to the development of a novel class
of active metasurfaces, which can be dynamically tuned and re-
configured through electrochemical stimuli, allowing for the
versatile manipulation of light at the nanoscale in a controllable
manner, a feature particularly beneficial in applications like
smart windows that change transparency or color in response
to electrical inputs[272–274].

4.1 Electrochemically Activated Metasurfaces Based on
Inorganic TMOs

To develop efficient electrochemically activated metasurfaces
with good performance, it is critical to choose materials for
the electrodes. Inorganic TMOs, such as tungsten trioxide
(WO3) and TiO2, are excellent electrochemical materials that
can dynamically modify their optical properties via reduction
and oxidation (redox) chemical reactions in many cycles.
During a redox cycle, both electrons and guest ions (i.e., Li�)
are concurrently introduced into a redox-active host material.
This simultaneous injection significantly alters the distribution
of charge carriers, thereby largely modulating the complex re-
fractive index and resulting in dynamically controlled optical
responses. For instance, TMO thin films change their color
or opacity under the influence of an electrical stimulus, a phe-
nomenon called “electrochromism”[272,275]. Integrating electro-
chromic TMOs with metasurfaces enables the development
of dynamical structural coloration with superior properties in
terms of wider color ranges, high resolutions, good thermal sta-
bility, long endurance, and compatibility with standard nanofab-
rication processes[65,123,163,276,277].

Brongersma’s group demonstrated dynamic modulation of
gap plasmon resonances using a thin TMO LixWO3 spacer layer
sandwiched between an Al base layer and Al nanorods, forming
a typical MIM cavity, as depicted in Fig. 8(a)[276]. These
Al∕LixWO3∕Al resonators exhibited changes in their plasmonic
colors in response to variations in the optical properties of
LixWO3, which were controlled by adjusting the Li concentra-
tion x with an electrical stimulus. Upon applying a certain volt-
age, Li ions were injected into the LixWO3 layer from nearby
ionically connected Li0.7FePO4 electrodes, shifting the refrac-
tive index from ∼2.1 in its lithiated state (−1.4 V) to ∼1.9 in
its delithiated state (1 V). This change in refractive index modi-
fied the resonance conditions and led to a resonance shift of
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58 nm from approximately 620 nm (purple color) to 565 nm
(blue color) in the reflectance spectra. Owing to the use of
MIM plasmonic structures, vivid structural colors were pro-
duced. In addition, intense light–matter interactions at the plas-
monic hotspots allow a substantial decrease in the LixWO3

thickness down to 17 nm. Furthermore, the switching time, a
critical parameter for display technologies, was improved to
20 s. The researchers also demonstrated continuous color adjust-
ment through cyclic voltammetry sweeping and robust bista-
bility over several minutes. Nevertheless, the approach is
hindered by relatively slow switching speeds and the necessity
for a high operating temperature of 80°C to enhance ionic
conductivity. While optimizing the doping process, such as

substituting Li� ions with protons, might enhance ion diffusiv-
ity and shorten switching time, the current configuration appears
somewhat unsuitable for display applications in its present form.
In this Al∕LixWO3∕Al gap plasmon resonator, the absorption
bandwidth is quite wide, hindering the precise tuning of plas-
monic colors. FP cavities with narrow resonances provide a via-
ble solution to this problem. Recently, asymmetric FP cavities
have been utilized to achieve rich and precise structural color
tuning in reflection mode, as shown in Fig. 8(b)[278]. These nano-
cavities were fabricated by sequentially sputtering uniform
layers of W and amorphous WO3 onto polyethylene terephtha-
late (PET) substrates. This method is relatively simple as it re-
quires no nanopatterning and is fully compatible with standard

Fig. 8 Electrochemically activated metasurfaces based on inorganic materials. (a) Electrically
controlled Al∕LixWO3∕Al gap plasmon resonators for tunable structural color generation, where
Li� ions are reversibly inserted and removed under specific voltages. The color changes from blue
to red/purple upon lithiation, corresponding to a blue shift of 58 nm in the reflection spectrum.
Adapted with permission from Ref. [276] © ACS. (b) Asymmetric W-WO3-PET FP nanocavity
for tunable structural colors. By electrically adjusting the amount of Li injected into the WO3 layer,
subtle color modulation from red to green was achieved. Adapted with permission from Ref. [278]
© Springer Nature. (c) Electrochemically actuated Ag-TiO2-Al plasmonic metasurfaces for
dynamic color tuning. The metasurface exhibited a significant color change from gold to green
when anatase TiO2 transitions to LTO. Adapted with permission from Ref. [279] © ACS.
(d) Compositionally and mechanically dual-altered rechargeable Si metasurfaces integrated into
an LIB cell for dynamic color display. Under a low voltage, lithiation and delithiation processes
occur dynamically to control the phase transformation from Si to Li xSi, enabling high-contrast
colorization and decolorization with long cyclic stability. Adapted with permission from Ref.
[280] © AAAS. (e) Switchable plasmonic color generation by integrating an electrically controlled
local proton source. When a positive bias of 5 V is applied, hydrogen ions split frommoisture travel
through a proton-conducting GdOx layer and transform Mg to MgH2, resulting in color changes.
Adapted with permission from Ref. [288] © Springer Nature.
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electrochromic fabrication techniques. The W layer acts as a
partial reflector and a current collector at the same time, ena-
bling a good match of reflections at the WO3 interfaces. As
a result, the incident light bounced back and forth within the
WO3 thin layer, enhancing or suppressing the reflected light
at specific wavelengths depending on the thickness and refrac-
tive index of theWO3 layer. In the experiment, reflectance mod-
ulations of up to 50% and various distinct structural colors have
been implemented, which remain nearly unchanged at oblique
angles of incidence up to 40°. Moreover, by inserting Li ions
from an external reservoir into the WO3 layer, its refractive in-
dex was continuously varied from 2.15 to 1.61 at a wavelength
of 600 nm, resulting in rich and subtle color modulation since
the colors are directly related to the WO3 refractive index. For
example, a wide range of color modulation, from red (0.5 V) to
yellow (−0.4V) and green (−0.8V), was realized for a 163 nm
thickWO3 film, corresponding to a very large modulation range
of the FP resonance (243 nm), which shifted the reflection peak
position from 760 to 517 nm. In addition, this color modulation
was reversible and showed good cycling stability over 1000
cycles. The measured switching time between a steady bleached
and colored state was on the order of a few seconds, comparable
to other inorganic electrochromic materials.

TMO TiO2 is ideally suitable for reversible color generation
when electrochemically lithiated to Li0.5TiO2 (LTO), which
offers an index change of 0.65 at 649 nm with minimal absorp-
tion[279]. Capitalizing on the phase transformation from TiO2 to
LTO, Eaves-Rathert et al. employed a simple FP nanocavity to
harness the dynamic tunability of TiO2, where a 100 nm TiOx
film was deposited on a titanium backplane and annealed to
form anatase TiO2. This nanocavity demonstrated a broadband
reflection with a local minimum of around 410 nm due to the
destructive interference. Upon lithiation to LTO under a bias of
less than 2 V, the reflection peak shifted to blue-green wave-
lengths (∼490 nm), achieving a 114 nm blue shift. To improve
switching speed and color tunability, they integrated the
TiO2∕LTO system into a gap plasmon metasurface configura-
tion, which involved 20 nm thick TiO2 films placed between
patterned Ag nanopillars and an Al backplane, as shown in
Fig. 8(c). This configuration enhances light–matter interaction
within the gap, leading to strong absorption due to the GSP res-
onances. As such, the metasurface exhibited a significant blue
shift in reflectance minimum (135 nm) when transitioning from
anatase TiO2 to LTO, resulting in a color change from gold to
green. The switching speed was found to be competitive with
other materials like LixWO3, with 50% of the reflectance
change achieved within 7 s, which is mainly limited by the de-
vice platform since the Li� ion transport is very efficient with
measured diffusion coefficients on the order of 10−11 cm2∕s.
Further electrochemical characterization showed excellent cy-
cling stability, where a 20 nm anatase film cycled at 3 μA∕cm2

demonstrated stable lithium capacity retention over 400 cycles.
Capitalizing on the similar reversible lithiation and delithiation
process in a lithium-ion battery (LIB) setup, Yang et al. utilized
Si, the predominant semiconductor material for electronics
and photonics, to implement compositional and mechanical
dual-altered rechargeable metasurfaces for broadband optical
reconfiguration in the visible and near-infrared regions through
an electro-chemo-mechanical coupled process, as shown in
Fig. 8(d)[280]. They fabricated metasurfaces by patterning Si
structures onto an Ag film coated on a quartz substrate. These
Si structures were integrated into a LIB cell, where the Ag layer

served as a current collector during charging and discharging
cycles. The dynamic color changes were driven by the composi-
tional transformation from Si to lithium silicon (LixSi) and the
mechanical expansion of the Si layer during lithiation and de-
lithiation processes, under a low voltage of ≤1.5V. The volume
of the Si layer could expand up to 300%, dramatically altering
both structural morphology and optical scattering properties, re-
sulting in high-contrast colorization and decolorization within
30 s and significant cyclic stability (>400 cycles). With a
straightforward multilayer film deposition method, they created
chameleon and butterfly patterns with four distinct colors
depending on the varied thicknesses of the Si layers. Upon
electrochemical activation, the colors could be dynamically
and reversibly tuned by controlling the external voltage within
1.5 V. The initial vibrant colors transformed into a uniform dark
green upon full lithiation and returned to their original state after
delithiation. Additionally, intermediate colors were achieved
during the transition by properly controlling the electrochemical
potential of the LixSi linked to the applied voltage, which could
be stabilized and maintained even after disconnecting the elec-
trical supply. High-resolution structural colors with significant
color and intensity modulations were further demonstrated us-
ing electron beam lithography (EBL) to create L-shaped and
bowtie nanostructures with different periods and gaps. Apart
from the periodicity of the nanostructures, the incident and ob-
servation angles could be used to vary structural colors, which
allows for color encoding with both viewing angle and applied
voltage, presenting a novel strategy for multidimensional infor-
mation encryption. Very recently, Kovalik et al. leveraged
this concept to achieve reversible color tuning in the visible
spectrum using Li-ion insertion in α-Si metasurfaces that
support multiple Mie resonances[21,173] and possess significant
changes in both the refractive index (Δn � 0.12 at 500 nm) and
lattice expansion[281]. With a power consumption of less than
120 μW∕cm2, pronounced color bleaching was observed.
Notably, the device maintains good optical performance after
multiple lithiation cycles, showing resilience against mechanical
degradation. In addition, continuous color tuning is achieved,
with intermediate alloyed states accessible for varying degrees
of color bleaching.

Like lithiation of TMOs, hydrogenation of phase transition
metals like magnesium (Mg) provides a unique material plat-
form for dynamic metasurfaces[282–287]. Driven by the absorption
and desorption of hydrogen, metal hydrides undergo substantial
changes in their crystallographic and electronic structures,
leading to significant alterations in their optical properties and
facilitating an IMT. Despite significant achievements in Mg-in-
tegrated dynamic metasurfaces, cumbersome gas chambers for
(de)hydrogenation are required, which is a major drawback for
practical applications. Huang et al. provided an efficient solu-
tion to address this limitation by integrating a nanoscale solid-
state proton source into Mg-based plasmonic devices, which
enables the precise and selective modification of the optical
properties of Mg[288]. As shown in Fig. 8(e), the electrically
switchable plasmonic device comprises an Al/Mg/Pd stack,
periodically arranged Al nanodiscs embedded in a thin gadolin-
ium oxide (GdOx) layer, and a thin Au layer, where Mg acted as
a switchable mirror. By controlling the diameter and spacing of
the nanodiscs as well as the distance between the reflective Mg
mirror and the Al nanodisc arrays, a variety of reflective plas-
monic colors were generated. When a positive bias of 5 V was
applied to the top Au electrode for 120 s, water molecules from
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moisture near the GdOx∕Au interface were split into molecular
oxygen (O2) and hydrogen ions (H�). The gate bias then drove
these protons through the proton-conducting GdOx layer to the
bottom Al/Mg electrode (mirror), leading to the hydrogenation
of the Mg layer, which could be accurately controlled by spe-
cific patterned gold electrodes that served as sources for hydro-
gen ions. As a result, the metallic Mg transformed into the
optically transparent dielectric MgHx, leaving the Al layer as
the bottom mirror. Consequently, the effective thickness of
the new spacer, consisting of both GdOx and MgHx, is in-
creased, resulting in a blue shift of the plasmonic resonance
and a change in the plasmonic colors accordingly. When a neg-
ative bias of −2V was applied for 1 h, the plasmonic colors
returned to their original states, showcasing excellent reversibil-
ity even after hundreds of cycles. While water hydrolysis and
proton transport were relatively fast (∼10 ms), the hydrogena-
tion and dehydrogenation processes require sufficient time to
load and unload hydrogen, dramatically slowing the overall
switching speed. To realize fast switching, one may only utilize
refractive index changes in GdOx to switch colors produced by
thin-film interferences.

4.2 Electrochemically Activated Metasurfaces Based on
Conducting Polymers

Apart from inorganic materials, conducting polymers, a specific
branch of organic materials, have emerged as highly promising
materials for developing electrochemically activated metasurfa-
ces with faster switching speeds and more advanced function-
alities. Conducting polymers are organic polymers capable of
conducting electricity, a property typically associated with met-
als and inorganic semiconductors[144]. Their conductivity arises
from a typical conjugated backbone with alternating single (σ)
and double (π) carbon-carbon bonds, facilitating the movement
of charge carriers, such as electrons and holes. These charge
carriers can be incorporated directly during polymerization or
via post-processing methods, such as chemical or electrochemi-
cal doping. Unlike the doping of inorganic semiconductors,
where doping levels are much lower (typically less than 1%),
conducting polymers can achieve extremely high doping levels
approaching one charge per repeating unit. Furthermore, the
doping level in conducting polymers can be adjusted in various
ways after fabrication, enabling their use in devices such as
electrochemical transistors, electroactive actuators, and tunable
metasurfaces.

Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the
most studied conducting polymers due to its stability and high
transparency in its conductive state. The optical properties of
PEDOT can be modulated through electrochemical doping,
making it suitable for dynamic color-changing devices[289,290].
Moreover, PEDOT can switch between insulating and conduc-
tive states through electrochemical doping/dedoping reactions,
which allows for the dynamic tuning of metasurface properties,
such as extinction, reflectivity, and absorption, making PEDOT
suitable for applications in adaptive optics. Jonsson’s group
demonstrated the use of PEDOT:Sulf nanoantennas for dynamic
organic plasmonics[291,292]. They prepared thin PEDOT:Sulf films
using vapor phase polymerization followed by sulfuric acid
treatment to achieve high electrical conductivity exceeding
5000 S/cm. These PEDOT:Sulf films exhibit a negative real per-
mittivity in the spectral range from 0.8 to 3.6 μm, indicating
plasmonic behavior resulting from the high concentration of

mobile positive polaronic charge carriers in the polymer
network[291]. When the PEDOT:Sulf film was patterned into peri-
odic PEDOT:Sulf nanodisks using colloidal lithography, pro-
nounced localized surface plasmon resonances (LSPRs) were
observed in the infrared ranges, which can be tuned through
chemical redox reactions. For instance, exposing PEDOT:Sulf
nanodisks to the vapor of highly branched poly(ethylenimine)
(PEI) can reduce the charge carrier concentration in PEDOT,
effectively switching PEDOT between plasmonic and insulating
states. Since chemical tuning is not very convenient for most
applications, the authors later developed electrical tuning of
PEDOT:Sulf nanoantennas[292]. As shown in Fig. 9(a), the device
consists of PEDOT:Sulf nanodisks on an ITO/glass substrate,
which is coated with an ion gel and a second ITO/glass substrate
as the top electrode. This setup allowed for the electrochemical
modulation of the redox state of the polymer, enabling revers-
ible switching of its plasmonic properties. The extinction spectra
showed that the resonance peak observed at around 1800 nm for
the oxidized state could be entirely suppressed by applying a
positive bias, demonstrating excellent reversibility over multiple
cycles [Fig. 9(a)]. Beyond binary switching, they also demon-
strated the ability to gradually tune the plasmonic response of
PEDOT:Sulf nanoantennas. A continuous suppression of the
plasmonic resonance, accompanied by a small red shift of
the extinction peak, was achieved by applying different biases.
To eliminate the need for additional electrodes that typically ob-
struct optical performance, Kang et al. explored the develop-
ment of electrically tunable and electrode-free metasurfaces
by utilizing an inverted nanoantenna array design of PEDOT:
Sulf[293]. They employed a nanofabrication method known as
solvent-assisted nanoscale embossing followed by reactive
ion etching, which allows for the precise creation of both regular
and inverted nanoantenna arrays with high resolutions. The fab-
ricated inverted nanorod (INR) arrays demonstrated polariza-
tion-dependent extinction peaks, primarily determined by the
gap between apertures and thus influenced by the size and perio-
dicity of the apertures. As shown in Fig. 9(b), the device features
a continuous, in-plane configuration that enables direct electri-
cal connection. By applying voltages of 0 and −5V repeatedly,
the optical properties of the PEDOT:Sulf film transitioned be-
tween oxidized (doped) and reduced (undoped) states. This tran-
sition facilitates the reversible switching of the plasmonic
resonance of the PEDOT:Sulf INR array, with the extinction
spectra showing significant changes based on the applied volt-
age. The ability to dynamically modulate these properties with-
out extra electrodes enhances the device’s applicability in many
optoelectronic applications.

In addition to the simple tuning of extinction spectra,
Giessen’s group has presented significant advancements in dy-
namic metasurfaces using electrically switchable plasmonic
nanoantennas made from conducting polymers[294]. They ex-
plored the use of poly(3,4-ethylenedioxythiophene):polystyrene
sulfonate (PEDOT:PSS) for creating nanoantennas by alternate
lithographic processes that require multi-step indirect patterning
and dry etching, which can reversibly switch between metallic
and insulating states when PEDOT:PSS is subjected to an
electrochemical redox reaction [Fig. 9(c)]. When a voltage of
�1V is applied, PEDOT:PSS becomes doped and exhibits met-
allic properties, supporting strong plasmonic resonances at
around 2.2 μm. Conversely, applying a voltage of −1V reduces
the polymer, rendering it insulating and effectively turning off
the plasmonic resonance. This switching occurs rapidly, with a
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rise time of 20.8 ms and a fall time of 9.1 ms, equivalent to a duty
cycle time of 29.9 ms, corresponding to a maximum switching
frequency of 33 Hz. The nanoantennas could endure multiple
switching cycles (260 cycles) with minimal degradation. This
breakthrough enables dynamic control of optical properties at
video-rate frequencies, paving the way for applications in
high-resolution augmented reality, virtual reality, and other opto-
electronic devices. As a proof of concept, they implemented

electrically switchable beam steering with a 100% contrast ratio
between the diffracted beam intensities in the metasurface
ON and OFF states, superior to the design that combines Au
nanoantennas and an electropolymerized PEDOT[295]. The meta-
surfaces, composed of PEDOT:PSS meta-atoms with different
orientations to supply the PB phase, diffracted the cross-
polarized component to an angle of �10.2° when illuminated
with a CP light for an applied voltage of �1V, corresponding

Fig. 9 Electrochemically activated metasurfaces based on conducting polymer PEDOT.
(a) Electrochemically activated PEDOT:Sulf nanoantennas for tunable extinction. Extinction spec-
tra of a nanodisk array with a thickness of 65 nm, a diameter of 145 nm, and an array period of
600 nm on the counter ITO electrode, where on and off plasmonic resonance was switched at the
electrical bias of 0 and 5 V. Adapted with permission from Ref. [292] © John Wiley and Sons.
(b) Electrode-free PEDOT:Sulf INR arrays for electrically tunable extinction. Plasmon resonance
of an INR array was switched OFF and ON by applying voltages of −5 and 0 V repeatedly. Adapted
with permission from Ref. [293] © Royal Society of Chemistry. (c) Electrically switchable PEDOT:
PSS nanoantennas. Plasmonic resonance of fabricated PEDOT:PSS antennas was completely
tuned ON and OFF with applied voltages of �1 and −1V, respectively, with a modulation fre-
quency of up to 30 Hz. Adapted with permission fromRef. [294] © AAAS. (d) Electrically switchable
metaobjective comprising two PEDOT:PSS metalenses. The metaobjective allows for four differ-
ent states depending on the individual voltage applied to the polymer metalens. Adapted with
permission from Ref. [297] © Springer Nature. (e) Electrically controlled near-infrared optical
modulator by coupling Tamm plasmon to PEDOT:PSS. Optical modulation depth exceeding
88% was achieved under low voltages of �1V. Adapted with permission from Ref. [298]
© John Wiley and Sons.
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to the ON state. On the contrary, a voltage of −1V turns the
metasurface completely OFF, and the diffracted beam at �10.2°
vanishes completely. Intriguingly, intermediate states could be
realized by successive electrochemical doping, allowing the in-
tensity of the diffracted beam to be gradually modulated.
Dynamic control over multiple diffraction angles was also pos-
sible by incorporating two electrically switchable metagratings
placed on electrically isolated areas, where each metagrating has
a different superlattice period to produce distinct diffraction an-
gles[296]. The device demonstrated three distinct states of beam
diffraction based on the applied voltages: large-angle diffraction
(33.5°) when the left grating is ON and the right is OFF, small-
angle diffraction (16°) when the right grating is ON and the left is
OFF, and no diffraction when both gratings are OFF. Leveraging
the reversible metal-to-insulator transition of PEDOT:PSS, they
have developed a conducting polymer metalens that can be
dynamically switched ON and OFF with low voltages of �1V
by precisely controlling the rotation angle of nanoantennas to
obtain a quadratic phase profile[297]. When the metalens was ON
with an applied voltage of�1V, a focal spot was obtained at the
working wavelength of 2.65 μm. Notably, the metalens exhibited
hysteresis behavior, allowing it to remain in either the ON or
OFF state at 0 V, depending on the preceding voltage. This hys-
teresis enables non-volatile operation, which is energy-efficient
and ideal for applications requiring stable optical states without a
continuous power supply. They extended the concept further to
create a metaobjective composed of two independently switch-
able metalenses (metalenses 1 and 2 with focal lengths of 6 and
5 mm, respectively), which are mounted on an ITO-coated sub-
strate. The separation between two metalenses is filled with an
electrolyte layer of 3.5 mm to facilitate electrochemical switch-
ing. As shown in Fig. 9(d), by adjusting the voltages applied to
each polymer metalens of �1V or −1V, four distinct states
were successfully achieved: single focus in the focal plane F1
(z � 6 mm) or F2 (z � 8.5 mm), a dual-focal state with spots
in both planes F1 and F2, and an OFF state with no focal spots.

Despite achievements, the previously designed PEDOT:PSS
meta-atoms suffer from limited modulation depths[294–297]. To
overcome this limitation, Ko et al. introduced an electrically
switchable optical modulator with a near-unity optical modula-
tion under a low operation voltage in the telecom range using
Tamm plasmon coupled with PEDOT:PSS[298], which addresses
key challenges in high-density optical interconnects, photonic
switching, and memory applications. As displayed in Fig. 9(e),
the electrically controllable Tamm plasmon (ECTP) array con-
sists of a DBR, a PEDOT:PSS active layer, and an Au mem-
brane. Each ECTP cell is equipped with a working electrode
(WE) and a counter electrode (CE), allowing to precisely control
the reflectivity by adjusting the applied voltage between �1V
and −1V. The DBR consists of alternating SiO2 and silicon ni-
tride (SiN) layers, which create a necessary optical stop band for
the Tamm plasmon resonance. The modulation mechanism re-
lies on the electrochemical doping and dedoping of PEDOT:
PSS, which switches the polymer between metallic and insulat-
ing states. When a positive voltage (�1V) is applied, PEDOT:
PSS becomes doped, increasing its carrier density and making it
metallic. In contrast, a negative voltage (−1V) reduces the pol-
ymer, turning it insulating. This switching modulates the plas-
monic resonance, enabling the device to transition between high
reflectance (ON state) and high absorption (OFF state). The
device achieves an exceptional modulation depth of 88% exper-
imentally at the wavelength of 1500 nm, with theoretical

projections exceeding 99%, attributed to the strong light con-
finement at the DBR/PEDOT:PSS interface, facilitated by the
Tamm plasmon mode. Moreover, the proposed optical modula-
tor can be easily scaled to work across a broad spectral range
from 800 to 2500 nm, making it suitable for various near-infra-
red applications. The switching speed of the ECTP is mainly
determined by the ion exchange rate in the PEDOT:PSS layer.
Although incorporating a porous Au membrane could signifi-
cantly enhance ion transport and thus reduce the switching time,
this ECTP still exhibits slower switching speeds (∼30 ms in a
dedoping and doping duty cycle) compared to other active ma-
terials like PCMs or electron density tuning materials. The
ECTP’s hysteresis behavior under cyclic voltage allows for
its application in optical memory devices. They demonstrated
a programmable memory cell capable of multi-level data stor-
age, whereby electrical pulses with positive and negative poten-
tials define the information state. By applying different voltage
sweeps, the device can encode and decode binary informa-
tion, showcasing its potential for rewritable optical memory
applications.

Polyaniline (PANI) is another widely used conductive poly-
mer due to its low loss, high stability, and facile synthesis[299].
PANI experiences significant changes in its refractive index, es-
pecially in the imaginary part[300,301], when electrochemically
switched between its oxidized form [emeraldine state (ES)]
and reduced form [leucoemeraldine state (LS)] with an applied
voltage. In the ES form, PANI exhibits strong absorption,
whereas in the LS form, it has minimal absorption in the visible
and near-infrared wavelengths. The electrochemical switching
of PANI occurs at an ultrafast speed of approximately 1 μs
and can withstand more than switching 105 cycles without deg-
radation. These properties make PANI an ideal material for elec-
trically controlled metasurfaces with active responses[301–308]. For
example, switchable plasmonic colors were realized by coating
plasmonic nanocrystals with PANI[303–307]. To explore the func-
tionalities beyond spectral tuning, Liu’s group utilized a com-
plicated metasurface design with preselected Au antennas
locally conjugated with PANI[301]. As illustrated in Fig. 10(a),
the metasurface consists of two sets of Au nanorods that are
alternatively arranged in odd and even rows on an ITO-coated
substrate based on the PB phase. The Au nanorods in even rows
are conjugated with PANI, acting as the active pixels, whereas
the Au antennas in odd rows are embedded in PMMA as static
pixels. When PANI is close to its LS form with no absorption,
the anomalous transmission approaches zero due to the destruc-
tive interference of the scattered light from the neighboring rows
with a relative orientation of Δθ � 90°. When PANI transits to
its ES form with increased absorption, the anomalous transmis-
sion gradually increases and eventually reaches a maximum in-
tensity. In the experiment, PANI was grown on preselected Au
nanorods using an electrochemical polymerization process in an
aqueous electrolyte, which was monitored in real time using
cyclic voltammetry, ensuring precise control over the PANI
thickness. The optimal thickness of PANI was found to be
around 50 nm, which allowed for high-intensity contrast switch-
ing with a ratio of up to 860:1 at the wavelength of 633 nm
[Fig. 10(a)]. The switching speed was around 35 ms, and the
device showed excellent reversibility over more than 100
switching cycles without significant degradation. They also
showcased the practical applications of addressable metasurface
holography, where two holographic images of “L” and “R”
could be switched on and off independently.
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Based on in-situ grown PANI, Lu et al. demonstrated an
electrically switchable Huygens’ metasurface with high-
performance metrics, including fast switching speed, high
modulation contrast, and long-term durability[308]. The metasur-
face consists of dielectric Si nanodisks surrounded by a layer of
PANI. The PANI layer was grown in-situ using electrochemical
polymerization, ensuring strong mechanical and electrical con-
tact between the polymer and the Si nanoantennas, which can
not only simplify the fabrication process but also enhance the
durability and performance of the metasurface. The modulation
mechanism also relies on the redox reaction of PANI, which
switches between ES and LS forms, resulting in significant
changes in the refractive index. At �0.6V, PANI is in its oxi-
dized state with strong absorption, while at −0.2V, it is in its
reduced state with minimal absorption. As a proof of concept,
the researchers implemented the phase-gradient metasurface for
active beam steering, in which the intensities between zeroth
and �1st diffraction orders were controlled by the applied volt-
age, as shown in Fig. 10(b). A high modulation contrast of over
1400% was measured for the �1st order between two states,
which is significantly higher than previous polymer-based meta-
surfaces[294,301]. The diffraction efficiency reaches up to 28%, 25
times higher than similar devices[294,295,309], attributed to the care-
ful design of the Huygens’ nanoantennas and the strong inter-
action between the PANI layer and dielectric nanodisks. The
switching speed of the metasurface is around 60 frame/s, with

a rise time of 14.1 ms and a fall time of 11.7 ms. The device
shows excellent stability, maintaining performance over 2000
switching cycles without noticeable degradation, owing to the
solid contact between the PANI and the nanoantennas.

Electrochemically activated dynamic metasurfaces offer sev-
eral advantages, including precise control over optical properties
through electrochemical modulation, allowing for reversible
changes in response to applied electrical signals. This tunability
facilitates diverse applications, from color display and beam
steering to tunable lenses and holography. Additionally, the
use of electrochemical processes can enable low-power opera-
tion and integration into compact devices. However, the com-
plexity of fabrication, involving precise material deposition
and integration, can be costly and time-consuming. Material sta-
bility under repeated electrochemical cycling is a concern, as it
may lead to degradation over time, affecting long-term reliabil-
ity. Furthermore, the range of tunability is often limited by the
inherent properties of the materials used, and maintaining con-
sistent performance across different environmental conditions
can be challenging. Despite these limitations, the outlook for
electrochemically activated dynamic metasurfaces is promising.
Ongoing research focusing on improving material stability, ex-
panding tunability, and developing more efficient fabrication
techniques will unlock new possibilities in photonics and other
fields, driving the development of versatile electrochemical
metasurface-based technologies.

Fig. 10 Electrochemically activated metasurfaces based on conducting polymer PANI.
(a) Electrochemically controlled visible metasurfaces with high-contrast switching through in-site
optimization. A maximum intensity contrast was achieved by selectively and locally coating PANI
on Au antennas with 36 cycles. Adapted with permission from Ref. [301] © AAAS. (b) Active
Huygens’ metasurface based on in-situ grown PANI. Intermediate PANI states with gradually var-
ied refractive indices could be addressed via voltage tuning, enabling the continuous modification
of the intensity distributions between the �1st and zeroth diffraction orders. Adapted with permis-
sion from Ref. [308] © De Gruyter.
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5 Electrically Tunable Metasurfaces Based
on 2D Materials

2D materials consist of single or few layers of atoms and include
substances such as graphene, its derivatives, and transition metal
dichalcogenides (TMDs) like molybdenum disulfide (MoS2),
tungsten disulfide (WS2), and molybdenum diselenide (MoSe2),
as well as black phosphorus, among others[145,146,149]. Due to their
atomically thin structures and electrically tunable bandgaps, 2D
materials can be heterogeneously integrated with ultrathin, flat-
form-factor metasurfaces to create electrically tunable hybrid
metasurfaces[151]. Furthermore, the versatile resonances sup-
ported by the designer metasurfaces can significantly enhance
the interaction between light and 2D materials, thus achieving
efficient light modulation. In addition to hybrid metallic and
dielectric metasurfaces integrated with 2D material, the materi-
als themselves can be engineered into electrically tunable
atomic-layer metasurfaces, leveraging mechanisms such as
carrier-injection tunable graphene plasmons, tunable exciton
resonances, and others[147,148,150].

5.1 Electrically Tunable Metasurfaces with Continuous
Graphene Layers

Due to its ultrafast carrier mobility, continuous graphene layers
can be integrated with metallic or dielectric meta-atoms to real-
ize tunable metasurfaces with ultrafast modulation on the sub-
picosecond level, driven by an electrical stimulus. Through
an electrical gating that adjusts the Fermi level of the graphene
layer, the optical responses are dynamically tuned. This
tuning mechanism relies on an electrically tunable carrier
density, which, in turn, alters the complex refractive index.
Consequently, this modifies the resonance properties of the met-
allic/dielectric antenna arrays and thus naturally affects the op-
tical response[310]. In 2014, Capasso’s group showcased a
significant technological advancement with graphene-activated
tunable plasmonic metasurfaces over a 5–7 μm wavelength
range[311]. They demonstrated a tunable metasurface perfect
absorber in reflection, composed of an Au antenna array (30 nm
thick) on graphene, an Al2O3 dielectric layer (300 nm thick),
and a thick Al substrate (300 nm thick), forming an asymmetric
subwavelength-thick FP cavity [Fig. 11(a)]. By varying the gate
voltage applied to the graphene, the absorber can switch in and
out of a critical coupling condition, achieving a modulation
depth of up to 95% (defined by 1 − jRmin∕Rmaxj, where Rmin

and Rmax are the minimum and maximum achievable reflectiv-
ities, respectively) at λ � 6 μm with a gate voltage change
of 80 V. This technology allows for ultrathin, high-speed
(20 GHz) optical modulators and can be scaled from infrared
to terahertz wavelengths. Notably, this configuration was later
extended to the near-infrared spectrum (1.55 μm) and demon-
strated as feasible for low-pump-fluence all-optical modulation
with ultrafast modulation speeds (picosecond scale), benefiting
from graphene’s ultrafast photocarrier relaxation time[312]. In
2015, Shvets’s group experimentally demonstrated a reflective
intensity modulator by integrating graphene with plasmonic Au
metasurfaces that exhibit Fano resonances, achieving efficient
electrical switching of infrared light, as shown in Fig. 11(b)[313].
The electrically controlled plasmonic response of graphene in
the Pauli blocking regime leads to strong spectral shifts of
the Fano resonances without inducing additional nonradiative
losses. Coupled with the narrow spectral width of the Fano

resonance, this configuration enables reflectivity modulation
of about 10 dB [defined by 10 lg�j1 − Roff∕Ronj�, with
Ron ≈ 19%, and Roff ≈ 1.9%] at the wavelength of ∼7 μm.
Apart from intensity modulation, graphene-tunable plasmonic
metasurfaces are also explored for their capability in dynamic
phase manipulation[314,315]. For example, in 2017, Atwater’s
group demonstrated a simple configuration consisting of a rec-
tangular Au nanoantenna array with a graphene layer atop a
SiNx-coated Au reflector, as illustrated in Fig. 11(c)[315]. This
configuration achieved significant phase modulation in reflec-
tion across the mid-infrared spectrum (λ � 8–9 μm). By adjust-
ing the Fermi energy of graphene through electrostatic gating,
the metasurface can dynamically modulate the phase of re-
flected light over a broad range, specifically achieving phase
shifts of 206° and 237° at wavelengths of 8.70 and 8.50 μm,
respectively.

Following this concept, various nanoantennas with distinct
resonances and functionalities have been studied. For instance,
Yuan’s group theoretically explored a graphene-activated meta-
surface capable of alternating between being a perfect absorber
and a reflective polarization converter with high efficiency
(>90%) at 1550 nm in 2023[316]. The modulator employs an
FP-like nanostructure with an elliptically patterned anisotropic
nanohole antenna array, which supports GMRs to enhance the
modulation capabilities of graphene. In 2024, Feinstein and
Almeida demonstrated a graphene-metal hybrid metasurface
that supports tunable hybrid graphene-Au plasmons for active
control of mid-infrared radiation[317]. They engineered this by
depositing Au nanorods on graphene sheets, creating localized
surface plasmons that couple with graphene’s plasmons to en-
hance their interaction and resonance strength. Experimentally,
they demonstrated a modulation rate of 17% [defined as
1 − T�EF�∕TCNP, where T�EF� and TCNP represent the trans-
mittances at Fermi level EF and at the charge neutrality point
(CNP, EF � 0 eV), respectively] at a wavelength of 11.5 μm,
achieved with only a modest 0.35 eV chemical doping. Note
that reflective graphene-tunable metallic/dielectric metasurfaces
are primarily based on asymmetric FP cavities, each comprising
a back reflector, a dielectric spacer, an electrically controlled
graphene layer, and versatile nanoantenna arrays. These antenna
arrays feature different configurations such as periodic Au nano-
brick antenna arrays (in experiment, λ � 2–6 μm)[318], split-ring
Au nano-resonators (in experiment, λ � 5 μm)[319], combined
Ag split-ring resonators (SRRs) and inductance-capacitance
(LC) resonators (in simulation, λ � 6 μm)[320], combined
PMMA dielectric gratings with lithium niobate (LN) for
dynamically controlled GMRs (in simulation, λ � 800 nm)[321],
and silver grating (in simulation, λ � 6.78 μm)[322].

In addition to reflective-type, transmission-type graphene-
tunable hybrid metasurfaces have also been investigated. In
2016, Atwater’s group experimentally integrated graphene
plasmonic ribbons (GPRs) with subwavelength metallic slit ar-
rays to achieve electronically tunable extraordinary optical
transmission, as depicted in Fig. 11(d)[323]. The graphene plas-
monic ribbons are electrostatically tuned within the slits to
modulate their resonant coupling with surface plasmons on
the metallic layers, thereby dynamically controlling the optical
transmission properties. This configuration achieved enhanced
mid-infrared transmission modulation efficiency of 28.6%
(defined by 1 − T∕Tmax) at a specific wavelength of 1397 cm−1
(∼7.158 μm), achieved by adjusting the Fermi energy of gra-
phene between −0.353 eV (a maximum transmittance of
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∼10.7%) and −0.542 eV (a minimum transmittance of ∼7.6%),
corresponding to gate voltages between 50 and−350V. Potential
modulation efficiencies up to 95.7% were demonstrated
under optimal conditions in simulations. Some other possible
configurations for transmissive graphene-integrated hybrid
metasurfaces include single-layer graphene on top of nano-struc-
tured surfaces such as a Si photonic-crystal-like substrate[324].

To achieve more complex, independent control of amplitude
and phase, multiple parameter control strategies are often re-
quired[325,326]. In 2020, Jang’s group theoretically explored a
novel approach for achieving complete complex amplitude
modulation using graphene plasmonic metamolecules, as shown

in Fig. 11(e)[325]. By integrating pairs of tunable graphene plas-
monic ribbons with noble metal antennas, this metasurface can
independently control both the amplitude and phase of light
across a complete 2π range at a wavelength of 7 μm. This
dual-parameter control is facilitated through the independent
electronic tuning of the Fermi levels of two subwavelength scat-
terers within each metamolecule, offering a high degree of flex-
ibility and precision for dynamic complex wavefront control
at mid-infrared frequencies. Importantly, this configuration
presents significant fabrication challenges, as both the graphene
layer and the gold antenna layer must be precisely patterned,
involving complex and labor-intensive fabrication processes.

Fig. 11 Electrically tunable metasurfaces with continuous graphene layers. (a) Tunable metasur-
face absorber composed of a metasurface on graphene, an Al2O3 layer, and an Al substrate at the
wavelength of 6.5 μm. Adapted with permission from Ref. [311] © ACS. (b) Reflective intensity
modulator based on a Fano-resonant metasurface integrated with graphene at the wavelength
of 7 μm. Adapted with permission from Ref. [313] © ACS. (c) Reflective phase modulator based
on gate-tunable graphene-Au nanoantenna array at the wavelength of 8.5 μm. Adapted with per-
mission from Ref. [315] © ACS. (d) Transmissive intensity modulator by coupling extraordinary
optical transmission resonances to electro-statically tunable graphene plasmonic ribbons.
Adapted with permission from Ref. [323] © Springer Nature. (e) Metamolecule composed of a
pair of independently controlled gate-tunable graphene plasmonic meta-atoms for complete
complex amplitude modulation at the wavelength of 7 μm. Adapted with permission from
Ref. [325] © ACS. (f) Tunable mid-infrared multi-resonant graphene-metal hybrid metasurfaces.
Adapted with permission from Ref. [327] © John Wiley and Sons.
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In most graphene-integrated plasmonic metasurfaces men-
tioned earlier, the metallic nanoantennas are in direct contact
with the graphene layer, leading to unintentional doping from
the metal to graphene. This interaction can limit how effectively
a bias voltage can tune the metasurface’s permittivity. To ad-
dress this issue, Janssens’s group experimentally demonstrated
the enhancement of tunable mid-infrared multi-resonant gra-
phene-metal hybrid metasurfaces by integrating a thin Al2O3

barrier layer (10 nm thick) in 2024[327]. This design significantly
minimizes electrical coupling between the metal and graphene,
greatly improving the tunability of the resonances. As illustrated
in Fig. 11(f), the dual-band resonance tuning exhibits a tuning
range of ∼500 nm for a resonance at λ � 7.3 μm, and ∼120 nm
for another resonance at λ � 4.7 μm.

5.2 Electrically Tunable Metasurfaces with Directly
Patterned Graphene Meta-Atoms

Apart from integrating continuous graphene layers with meta-
atoms, graphene itself can be crafted into nanoantennas to real-
ize electrically tunable graphene metasurfaces. This capability
stems from the existence of graphene plasmons[152,328–334], which
can strongly couple with incident electromagnetic waves with
low losses and high spatial confinement, offering fascinating
light control in the mid-infrared (MIR) and terahertz (THz)
spectrum ranges. Unlike conventional metallic plasmonic meta-
surfaces, which are inherently static, graphene metasurfaces
provide tunability through electrically adjustable optical permit-
tivity. By controlling the carrier density through electrostatic
gating, the resonance frequency, damping rate, and propagation
length of graphene plasmons can be dynamically tuned, facili-
tating the design of innovative dynamic metasurfaces. For
instance, experimental evidence has demonstrated that the
plasmonic resonances of patterned graphene nanodisks and

nanorings can be significantly tuned around a wavelength of
3.7 μm[335]. This tunability of graphene plasmons allows for ac-
tively controllable and enhanced absorptance, making them suit-
able for applications in ultracompact intensity modulators[336].
Due to significantly increased losses of graphene plasmons in
the visible spectrum, these metasurfaces are most effective in
the MIR to THz regimes[337–345]. In 2015, Liu’s group conducted
a simulation study on graphene plasmonic metasurfaces for dy-
namic wavefront shaping in the reflection within the MIR spec-
trum (λ � 25 μm)[337]. The metasurface consists of patterned
graphene ribbons on a dielectric/metal substrate, forming a
MIM configuration, where the width of the graphene ribbons
is designed for phase engineering. By varying the Fermi energy
of graphene through electrical gating, the efficiency of a tunable
reflective focusing graphene metalens can be dynamically ma-
nipulated [Fig. 12(a)]. Almost concurrently, Tian’s group nu-
merically reported the potential for dynamically tunable
transmissive anomalous refraction using graphene metasurfaces
in the infrared spectrum, as illustrated in Fig. 12(b)[339]. These
metasurfaces, composed of periodically patterned graphene
nano-crosses, support plasmonic resonances at the MIR spec-
trum (λ � ∼17.6 μm) and are encoded with geometric phases,
specifically designed to manipulate CP light. By adjusting the
Fermi energy of the graphene from 0.75 to 1 eV, they demon-
strated that the anomalous refraction efficiency of the phase-
gradient graphene metasurface could be optimized across
different wavelengths from ∼17.6 to ∼20.7 μm, thereby broad-
ening its effective operational bandwidth. Furthermore, by
arranging gradient graphene nano-crosses on a dielectric-sepa-
rated thick Au substrate, they theoretically demonstrated the
ability to dynamically switch high-order anomalous reflection
on and off at the wavelength of ∼8 μm by varying the
Fermi energy of graphene between 0.95 and 0.8 eV [see
Fig. 12(c)][341]. In another simulation study shown in Fig. 12(d),

Fig. 12 Electrically tunable metasurfaces with directly patterned graphene meta-atoms.
(a) Reflective graphene plasmonic metasurfaces comprising subwavelength-patterned graphene
ribbons on a dielectric/metal substrate for dynamic control over reflective wavefronts by modulat-
ing the plasmonic resonance through adjustment of graphene’s Fermi level at the wavelength of
around 20 μm. Adapted with permission from Ref. [337] © Springer Nature. (b) Transmissive gra-
phene nano-cross metasurfaces for dynamically tunable broadband MIR anomalous refraction,
operating at the wavelength of around 17 μm. Adapted with permission from Ref. [339]
© John Wiley and Sons. (c) Reflective graphene metasurface for high-order anomalous reflection
switching. Adapted with permission fromRef. [341] © JohnWiley and Sons. (d) Reflective diagonal
nano-cross graphene metasurfaces for tunable polarization-preserving vortex beam generation at
the wavelength of 8 μm. Adapted with permission from Ref. [344] © John Wiley and Sons.
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Chen et al. employed diagonal graphene nano-crosses to suc-
cessfully generate polarization-preserving optical vortices, with
tunable topological charges over a frequency range from 4.5 to
5.5 THz[344]. It is important to note that, to date, there is still a
lack of experimental demonstrations of tunable graphene meta-
surfaces in the infrared spectrum. For motivational purposes,
several experimental implementations in the terahertz range
can be referenced[338,343,345].

In addition, graphene oxide, a derivative of graphene, can be
used to enable dynamic metasurfaces. In 2021, Jia’s group ex-
perimentally demonstrated a varifocal graphene oxide metalens
capable of dynamically tuning its focal length to provide zoom
imaging across the entire visible spectrum[346]. This metalens op-
erates in transmission and achieves broad spectral coverage
through the detour phase method (no graphene plasmons here).
Constructed from graphene oxide (250 nm thick) on a polydi-
methylsiloxane (PDMS) substrate, the lens employs lateral
stretching to tune focal lengths, offering a 20% tuning range
for different wavelengths—specifically red (650 nm), green
(550 nm), and blue (450 nm) light. In a related effort, the same
group demonstrated dynamically switchable structural color
using graphene and graphene oxide meta-pixels[347]. These
meta-pixels consist of alternating graphene/graphene oxide and
dielectric layers on an Ag-coated flexible substrate. They can
dynamically and instantaneously switch colors by controlling
light scattering to excite various modes, a capability enabled
by the strong anisotropic optical properties of the graphene
and graphene oxide meta-pixels.

5.3 Electrically Tunable Metasurfaces with Other 2D
Materials

Besides graphene, the development of 2D materials has ex-
panded well beyond, with many other 2D materials (also known
as van der Waals materials) being explored to enable tunable
metasurfaces. These materials offer versatile configurations

and tuning approaches, including tunable excitonic effects in
transition TMDs[150,348,349], tunable hybrid plasmon modes in
black phosphorus carbide (b-PC)[350], anisotropic quantum well
electro-optics in few-layer black phosphorous[351], and tunable
tri-layer black phosphorus integrated FP cavities[352]. Benefiting
from recent advances in the fabrication and transfer methods,
electronic and optical properties, as well as electrical-tuning
capabilities, the expansion of 2D-materials-integrated tunable
metasurfaces allows for functionalities that are challenging with
graphene alone, such as extending into the visible and near-
infrared spectra, exploiting novel tunable excitonic mechanisms
in TMDs, and utilizing tunable anisotropic 2D materials for
dynamic polarization control.

In 2018, Ang’s group introduced b-PC for creating tunable
anisotropic plasmonic metasurfaces in transmission[350]. As
shown in Fig. 13(a), the metasurface comprises back-gated b-
PC nanoribbon arrays on a SiO2∕Si substrate, supporting hybrid
plasmon modes within the wavelength range from 5 to 7.7 μm.
These modes are related to a Fano resonance between the plas-
mons and infrared-active optical phonons in b-PC. Exhibiting
anisotropic behavior, this resonance allows for distinct re-
sponses along different crystal orientations and can be finely
tuned via electrical gating, thereby offering new possibilities
for tunable anisotropic metasurfaces.

In addition to the plasmon modes supported by graphene and
b-PC mentioned above, which have been widely investigated for
enabling tunable metasurfaces, a novel exciton tuning effect
is proposed to create mutable, flat meta-optics. In 2020,
Brongersma’s group demonstrated a breakthrough using exciton
resonance tuning to develop a tunable, atomically thin transmis-
sive zone plate lens made from a monolayer of WS2

[348]. In this
WS2, excitons, which are electron-hole pairs bound by the
Coulomb force within semiconductors, dominate the optical
properties. By applying electrical gating using an ionic liquid,
they were able to switch the exciton resonances in WS2 on and
off, enabling substantial modulation of the focusing properties.

Fig. 13 Electrically tunable metasurfaces with other 2D materials. (a) Tunable Fano resonances
by coupled plasmons and infrared-active optical phonon in back-gated b-PC nanoribbon arrays.
Adapted with permission from Ref. [350] © ACS. (b) Tunable WS2 zone plate metalens in trans-
mission using excitonic resonance tuning effect. Adapted with permission from Ref. [348]
© Springer Nature. (c) Exciton-based MoSe2 metasurface for dynamic reflective beam steering.
Adapted with permission from Ref. [349] © ACS. (d) TLBP-integrated FP cavity for dynamic polari-
zation control in reflection. Adapted with permission from Ref. [352] © AAAS.
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Operating within the visible spectrum, the lens demonstrated
tunable focusing capabilities with a change in focusing effi-
ciency from approximately 0.055% to 0.025% (corresponding
to a modulation efficiency of 33% at λ � 625 nm) with a volt-
age change from 0 to 3 V [Fig. 13(b)], alongside a switching
time of tens of milliseconds, with rise and fall time of 39 and
16 ms, respectively. Building on the theme of exciton resonance
tuning, Atwater’s group further advanced this area by introduc-
ing amethod for dynamic reflective beam steering using an active
van der Waals metasurface composed of unpatterned MoSe2
on patterned Au electrodes in 2023[349]. They exploited the tun-
ability of excitonic radiative and non-radiative rates within
MoSe2 via applied voltages to achieve significant changes in
the complex refractive index. Experimentally, they demonstrated
the capability to steer reflected light to angles ranging from−30°
to�30° at a resonant wavelength of 757 nm, albeit with low ef-
ficiency (∼1%) and modulation contrast, as shown in Fig. 13(c).
Crucially, this approach obviates the need for fabricating pat-
terned nanostructures, as the tunable phase gradient is directly
dictated by the voltage profile applied to the MoSe2.

Apart from dynamic wavefront engineering, tunable polari-
zation control has also been explored on the van der Waals meta-
surface platform, utilizing tunable anisotropic 2D materials. In
2021, Atwater’s group investigated the EO properties of tri-
layer black phosphorus (TLBP) integrated within an FP cav-
ity[352]. This integration enables broadband polarization control
across telecommunications wavelengths ranging from 1410 to
1575 nm. TLBP exhibits inherent birefringence and significant
electrical tunability of its anisotropic refractive indices, enabling
the dynamic manipulation of the polarization state of reflected
light and covering nearly half of the Poincaré sphere, as dis-
played in Fig. 13(d).

Furthermore, the possibility of dynamic dispersion control
has also been explored with tunable van der Waals metasurfaces.
In 2023, Mosallaer’s group theoretically proposed tunable pulse
shaping using an all-dielectric metasurface enhanced by
MoS2

[353]. The metasurface includes an array of TiO2 nanobars
coated with aMoS2 layer and positioned over a DBR to enhance
reflectivity. This configuration utilizes MoS2 to actively control
the temporal profile of optical pulses. It achieves electrically
tunable phase modulation enhanced by quasi-bound states in
the continuum (quasi-BICs), supported by the asymmetric
TiO2 nanobar array, which allows for dynamic adjustments
of the phase and group delay dispersion properties.

Owing to their 2D flat form and rich physics underlying their
tunability, 2D materials are inherently suitable for developing
tunable metasurfaces. These can be achieved either by combin-
ing them with specifically designed dielectric or metallic meta-
surfaces or by patterning 2D materials themselves to create
atomic-layer tunable meta-optics. Additionally, the rapid carrier
dynamics of 2D materials such as graphene enable ultrafast re-
sponses, making them promising for ultracompact and ultrafast
tunable meta-optics. However, the interaction of light with 2D
materials is typically weak (especially in the high-frequency re-
gime, such as the visible spectrum), necessitating carefully de-
signed resonances (via either dielectric or metallic meta-atoms
or 2D material meta-atoms) to enhance light–matter interaction
and consequently, modulation efficiency. Moreover, selecting
the appropriate 2D material for the targeted spectral regime
is crucial; for instance, most graphene-based tunable metasur-
faces are effective from infrared to terahertz spectra, owing
to the tuning range of the carrier density. Lastly, it is important

to note that both electronic and optical properties of single- or
few-layer 2D materials are significantly influenced by environ-
mental conditions, including temperature and humidity, and
their long-term stability should also be investigated for further
development.

6 Electrically Tunable Metasurfaces Based
on TCOs

TCOs such as ITO, aluminum-doped zinc oxide (AZO), gal-
lium-doped zinc oxide (GZO), and cadmium oxide (CdO)
exhibit high transparency in the visible and/or infrared spectral
ranges along with excellent electrical conductivity[152–155]. These
properties make TCOs ideal for developing electrically tunable
metasurfaces by leveraging their tunable refractive indices
through carrier injection. TCO-enabled metasurfaces offer
broad-range continuous tunability and high modulation speeds,
owing to the carrier-density-tunable epsilon-near-zero (ENZ)
phenomena and rapid carrier dynamics. Among all TCOs,
ITO is the most widely utilized in developing tunable metasur-
faces due to its tunable ENZ wavelength in the telecom range,
superior optical and electrical properties, established technol-
ogy, compatibility with other materials, and chemical and
mechanical durability. By implementing an electrically gated
metal-oxide-semiconductor (MOS) capacitor configuration
(e.g., Au∕Al2O3∕ITO), it is possible to control carrier accumu-
lation and depletion at the ITO/dielectric interface, thus modu-
lating the permittivity of ITO through carrier-induced effects.
The relationship between the permittivity and carrier density
of ITO is typically described by the Drude model, while the
inhomogeneous carrier distribution within the accumulation
layer in ITO is analyzed using Poisson and drift-diffusion equa-
tions. Notably, the carrier density in ITO can be easily adjusted
to achieve the ENZ phenomenon around a specific wavelength,
typically in the near-infrared range. The ENZ phenomenon al-
lows for strong electric field confinement at the ITO/dielectric
interface, significantly enhancing light–matter interactions and
enabling substantial tunability of the optical response. Apart
from TCOs, the carrier-induced field effect in Si and gallium
arsenide (GaAs) using p-i-n, p-n, or Schottky diode configura-
tions can also be applied to add tunability to metasurfaces[354–359].
However, the maximum attainable refractive index change with
these configurations is limited compared to TCOs, owing to
lower carrier density and the absence of ENZ phenomena. To
address this limitation, high-Q resonances and multiple cas-
caded p-i-n or p-n junctions have been proposed to enhance their
tunability.

This section will focus on recent developments in TCO-
integrated electrically tunable metasurfaces, which represent
versatile metasurface configurations combining various reso-
nances and MOS structure designs, utilizing both single and
multiple gate-voltage-controlled approaches.

6.1 Electrically Tunable Metasurfaces with Single-Gated
TCOs

To implement high-performance TCO-activated metasurfaces, it
is important to properly design the resonance of meta-atoms to
match the target operation wavelength while tuning the ENZ
wavelength of the TCO through electrical gating to coincide
with the resonance. The simplest configuration involves
inserting a continuous ultrathin TCO layer into a MIM configu-
ration, making conventional GSP metasurfaces active for
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intensity[360–362], phase[363,364], and polarization[363,365–367] modula-
tion. In 2015, Brongersma’s group experimentally demonstrated
electrically tunable light absorbers using Au GSP metasurfaces
incorporated with thin ITO film at a wavelength of 3.8 μm, as
illustrated in Fig. 14(a)[360]. The thicknesses of each layer in the
metasurface are 50 nm (top Au), 6 nm (ITO), 20 nm [hafnium
oxide (HfO2)], and 50 nm (bottom Au), with the width and
period of the top Au strip being 600 and 750 nm, respectively.
By applying a voltage between �5V (for carrier depletion) and
−5V (for carrier accumulation), the profile and mode index of
the GSP mode could be dramatically changed reversibly, result-
ing in a large reflectance modulation (up to 15%, or a modula-
tion ratio of ΔR∕R � 35%). The operation speed was limited to
125 kHz due to the capacitance of the ITO∕HfO2∕Au configu-
ration and the resistance of the ITO layer. Beyond intensity
modulation, they further investigated the dynamic phase control
in reflection using a similar MIM configuration at the wave-
length of 5.94 μm[363]. As shown in Fig. 14(b), this MIM con-
figuration comprised a 50 nm thick Au nanostrip array (2.2 μm
period), a 20 nm thick ITO layer, a 115 nm Al2O3 layer, and a
50 nm bottom Au layer. By tuning the carrier density in the ITO

layer, the phase tuning range can reach up to 180°, thereby shift-
ing the system between under-coupling (V � −40V), critical
coupling (V � 0V), and over-coupling (V � �40V) regimes.

Apart from uniform amplitude and phase modulation,
Atwater’s group reported individually addressable phase-gra-
dient MOS-integrated MIM nanostrip arrays in 2016, which
are composed of Au stripe antennas (250 nm wide, 50 nm thick,
and 400 nm period), a 5 nm thick Al2O3 layer, a 20 nm thick
ITO layer, and an 80 nm thick Au backplane[368]. By applying
different voltages between each gold stripe antenna and the bot-
tom Au layer, the carrier concentration at the Al2O3∕ITO inter-
face beneath each antenna can be independently controlled,
thereby achieving tunable phase-gradient metasurfaces at the
wavelength of 1550 nm. Notably, a phase coverage of 184°
and a reflectance change of ∼30% were achieved by applying
a gate bias of 2.5 V. In experiments, they demonstrated dynamic
phase grating switching between zeroth and �1st diffraction
beams by electrically controlling subgroups of metasurface
elements, with modulation frequencies reaching 10 MHz
[Fig. 14(c)]. Furthermore, with an improved configuration con-
sisting of 40 nm Au fishbone antennas (connected by gold

Fig. 14 Electrically tunable metasurfaces with single-gated TCOs. (a) ITO-integrated plasmonic
absorber for amplitude modulation at λ � 3.8 μm. Adapted with permission from Ref. [360]
© Springer Nature. (b) ITO-integrated nanostrip metasurfaces for dynamic phase and polarization
control at λ � 5.94 μm. Adapted with permission from Ref. [363] © ACS. (c) Individually address-
able nanostrip metasurfaces for 1D reconfigurable wavefront shaping at λ � 1.55 μm. Adapted
with permission from Ref. [368] © ACS. (d) Tunable multifunctional metasurfaces consisting of
individually addressable fishbone nanoantennas for 1D dynamic wavefront shaping at
λ � 1.522 μm. Adapted with permission from Ref. [369] © ACS. (e) Transmission-type tunable
ITO-integrated metasurface employing hybrid plasmonic waveguide mode at λ � 1.5 μm.
Adapted with permission from Ref. [371] © John Wiley and Sons. (f) Pixelated ITO-integrated
GSP metasurface for 2D beam steering at λ � 1.3 μm. Adapted with permission from Ref. [374]
© De Gruyter.
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stripes), 9.5 nm HfO2∕5 nm ITO/9.5 nm Al2O3, and an 80 nm
Au back reflector, the same group achieved a significantly large
continuous phase shift from 0° to 274° with applied gate
voltages from 0 to 6.5 V at λ � 1522 nm, as displayed in
Fig. 14(d)[369]. This large tunable phase shift offers the potential
for dynamic wavefront shaping corresponding to multiple opti-
cal functions, such as 1D dynamic beam steering and cylindrical
metalenses with reconfigurable focal lengths.

Besides operation in reflection, TCO-integrated transmissive
metasurfaces have also been investigated. Various configura-
tions have been studied, including a modified MIM structure
with ITO and HfO2 sandwiched between two Au strips[370],
MOS structures placed on a Si substrate[371], and modified
MIM with a hollow Au square instead of a continuous Au back
reflector[372]. As an example, in 2020, Lee’s group experimen-
tally reported a gate-tunable ITO-integrated plasmonic metasur-
face for high-speed control of light transmission at 1550 nm[371].
As shown in Fig. 14(e), the metasurface consisted of a 40 nm Au
nanoslit array (120 nm width and 900 nm period) atop a multi-
layer of 10 nm Al2O3, 20 nm ITO, and 140 nm α-Si on a quartz
substrate. By adjusting the ITO’s permittivity via a single gate
voltage, the hybrid resonance formed by the coupling between
the plasmonic mode from the Au pattern and the waveguide
mode from the Si layer can be modulated, consequently altering
the transmittance. In their experiment, a transmittance change
of 33% was observed under a bias of 6 V, with a high modu-
lation speed characterized by a 3 dB cut-off frequency of
826 kHz.

Most research on ITO-integrated metasurfaces has been
conducted using 1D pixelated structures, which restricts their
applicability to 1D light field control. To implement 2D pro-
grammable light field control, the only solution is to create
2D metasurface pixel arrays that can be individually ad-
dressed[373,374]. This remains challenging due to the densely
packed arrays of nanoscale metasurface elements. In 2022, Kim
et al. demonstrated a 10 × 10 independently addressable 2D
metasurface pixel array with an overall size of 52 μm × 52 μm,
as illustrated in Fig. 14(f)[374]. Each metasurface unit cell consists
of a 50 nm Au nanoantenna, a 7 nm HfO2 layer, a 1 nm Al2O3

layer, a 5 nm active ITO layer, a 1 nm HfO2 layer, a 5 nm Al2O3

layer, and an Au mirror. By applying single gate voltages be-
tween the top Au antenna and the ITO layer (ranging from
−4 to �4V), they achieved a moderate tunable phase shift
of 137° at λ � 1330 nm. Furthermore, they implemented dy-
namic beam steering over a range of �7.3° in 2D space by ap-
plying different voltages to each of the 2D metasurface pixels.

For future reference, some relevant and motivating investiga-
tions on the tunable TCO metasurfaces are also listed here,
including: (1) thermal robustness: studies on the thermal robust-
ness of TCO metasurfaces under high-power irradiation with
both continuous wave (CW) and pulsed laser illumination[375].
(2) Alternative TCOs: exploration of other conducting oxide
materials such as CdO[375] and gallium-doped zinc oxide (Ga:
ZnO)[376], targeting different wavelengths and higher speeds,
among other benefits. (3) Versatile metallic meta-atom configu-
rations: MIM meta-molecules with double-resonances for dual-
band operation[377]; ITO gap-loaded gold dimer nanoantenna[378];
tunable dual-functional metasurfaces of MOS on a hyperbolic
substrate for incident-angle multiplexed independent phase
and amplitude modulation (λ � 1450 nm)[379]; ITO-integrated
multi-resonant Al metasurface for broadband tunable absorber
(λ � ∼1550 nm)[380]. (4) Dielectric meta-atom configurations:

ITO-integrated disc-shaped Si metasurfaces on an Au plate
(λ � 1100 nm)[381]; ITO-perovskite barium strontium titanate
(BST)-ITO nanoresonators supporting magnetic dipole resonan-
ces for enhanced amplitude modulation (λ � 820 nm)[382]; Si3N4

nanograting-Si-ITO-Al2O3-Au tunableGMRmirror structure for
dual-band amplitude modulation (λ � 1310 and 1550 nm)[383];
Si nanograting-Al2O3-ITO intensity modulator in reflection
(λ � 1550 nm)[384]; active quasi-BICmetasurfaces by integrating
Si metasurfaces with ITO film (from 1300 to 1500 nm)[385].

6.2 Electrically Tunable Metasurfaces with Multi-Gated
TCOs

Although single-gate-controlled MOS configurations feature an
ultracompact, fast, and all-solid tunable metasurface solution,
they exhibit limited tunability, with the amplitude and phase
modulation intrinsically coupled. As an improvement to achieve
larger and independent tunability of amplitude and phase, re-
cently developed dual-gated and multi-gated controlled TCO
metasurfaces offer significant advances. By employing dual-
gated or multi-gated control, the range of tunability can be ex-
panded, providing more precise and versatile modulation of the
optical properties. In 2018, Mosallaei’s group reported a
numerical investigation of a tunable multi-gated ITO-assisted
dielectric metasurface, as illustrated in Fig. 15(a)[386]. The meta-
surface consists of disc-shaped Si nanoantennas and multiple
Al2O3∕ITO layers on an optically thick Au substrate. By ac-
tively controlling the closely spaced electric and magnetic res-
onances in the Si nanoantennas with electrically controlled ITO
layers under multi-gated biasing, a relatively high reflection am-
plitude of 0.4 over the entire phase-tuning coverage (∼180°) in
the near-infrared regime (λ � ∼1.4 μm) was achieved. Based on
the multi-gated ITO tunable dielectric meta-atoms, they theo-
retically demonstrated various optical applications using differ-
ent biasing strategies, including reconfigurable polarizers (by
applying an identical bias voltage to all meta-atoms), dynamic
beam steering (using two-state biasing and a multilevel grating
system), as well as controllable on- and off-axis focusing
(through advanced element-by-element biasing). Utilizing a
similar configuration without the Au back reflector, they inves-
tigated its potential for tunable phase engineering in transmis-
sion[387]. Furthermore, they numerically explored multi-gated
ITO metasurface designs for amplitude/phase modulators and
tunable phase-gradient components in the telecom wavelengths,
using both dielectric[388,389] and metallic[390,391] meta-atoms sup-
porting GMRs[388], decoupled gap plasmon resonances[390,391],
and others[389]. The enhanced tunability by adopting a dual-gated
ITO-integrated metasurface was first experimentally confirmed
by Atwater’s group in 2018[392]. They proposed a dual-gated re-
flectarray metasurface for achieving extensive (300°) phase tun-
ability at the wavelength of 1550 nm. As shown in Fig. 15(b),
the unit cell is composed of an 80 nm Al back reflector, a bottom
9.5 nm gate dielectric (composite HfO2∕Al2O3), a 5 nm ITO
layer, another 9.5 nm gate dielectric, and a layer of 40 nm
Al fishbone antenna on top. Two independent voltages can
be applied between the ITO layer and the top fishbone antenna
layer or the bottom Al back reflector, respectively, forming two
independent voltage-controlled MOS channels at the top and
bottom ITO/dielectric interface. Specifically, they achieved a
continuous phase shift from 0° to 303° and a relative reflectance
modulation of 89% under a �6.5V bias.
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Besides enhanced tunability, the dual-gated TCO metasur-
face also provides possibilities for achieving independent phase
and amplitude control based on a two-control-parameter ap-
proach[393]. In 2020, Park et al. reported a breakthrough in
all-solid-state SLM based on an electrically tunable dual-gated
ITO-activated metasurface, which enables independent control
of the phase (full 360° coverage) and amplitude of reflected light
at wavelengths of 1340 nm and 1560 nm, with a modulation
speed of ∼5.4 MHz. As shown in Fig. 15(c), the active metasur-
face consists of electrically tunable channels, each consisting of
11 individually addressable plasmonic nanoresonators. Each
plasmonic nanoresonator (unit cell) comprises a 70 nm Au
nanoantenna, a 5 nm ITO active layer sandwiched between
two insulating layers composed of 1 nm Al2O3 and 7 nm HfO3

layers, backed by an Al mirror. To achieve independent phase
and amplitude control, they employed a two-control-parameter
approach enabled by the versatile top and bottom gate-voltage
combinations accessible in each unit cell. For proof-of-concept
investigation, they demonstrated dynamic beam steering within
a scan angle of 8°, achieving a detection range of up to 4.7 m in
the 3D light detection and ranging (LiDAR) experiment.

Leveraging carrier-induced refractive index modulation at
the ENZ condition accessible in TCO materials, metasurfaces
with considerable tunability can be achieved through meticu-
lously designed MOS-integrated meta-atoms. These designs
simultaneously ensure efficient carrier injection and optical res-
onance of enhanced light–matter interaction. Notably, a TCO
material thickness of just several nanometers is sufficient to

boost the efficacy of solid-state TCO tunable metasurfaces.
Additionally, the modulation of carriers within these nanome-
ter-thin TCO layers can be extremely fast, with promising
modulation speeds reaching up to GHz. Furthermore, the exper-
imentally demonstrated capabilities of dynamic, independent
amplitude and phase control through a dual-gated strategy in-
spire the development of other tunable metasurface configura-
tions, incorporating multiple tuning parameters to achieve
arbitrary complex amplitude dynamic control.

7 Electrically Tunable Metasurfaces Using
EO Nonlinear Effects

In this section, we will discuss electrically tunable metasurfaces
using EO nonlinear effects (i.e., Pockels and Kerr effects),
encompassing both inorganic (e.g., LN) and organic (e.g.,
EO polymer) materials[156–159]. The Pockels effect is a linear
EO phenomenon where the refractive index of a material
changes linearly with an applied electric field, expressed as
Δn � 1

2
n30rE, where n0 is the initial refractive index, r is the

Pockels coefficient, and E is the applied electric field. A signifi-
cant advantage of the EO Pockels effect is its inherently fast
modulation speed (up to hundreds of GHz), as the changes
in material refractive index result from rapid alternations in
the electronic distribution under an electric field, without
involving slower thermal or mechanical processes. It is impor-
tant to note that current research on tunable metasurfaces lever-
aging the EO Pockels effect primarily focuses on intensity

Fig. 15 Electrically tunable metasurfaces with multi-gated TCOs. (a) Multi-gated all-dielectric
metasurfaces for dynamic polarization and 1D wavefront shaping at λ � 1.4 μm. Adapted with
permission from Ref. [386] © John Wiley and Sons. (b) Dual-gated MIM metasurfaces with op-
posite top and bottom biases for enhanced (>300°) phase tunability at λ � 1.55 μm. Adapted with
permission from Ref. [392] © ACS. (c) Dual-gated ITO-integrated MIM metasurface with different
top and bottom biases for independent phase and amplitude control. A 3D depth image was pro-
duced using the ITO metasurface SLM. Adapted with permission from Ref. [393] © Springer
Nature.
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modulation, while a more complicated dynamic wavefront shap-
ing has yet to be explored experimentally.

In addition to the Pockels effect, the EO Kerr effect can also
be utilized to modulate the refractive index of the material. In
this case, the refractive index changes quadratically with the ap-
plied electric field, described by Δn � 1

2
n30KE

2, where K is the
Kerr constant. Although the Kerr effect is theoretically present
in all materials, it is relatively weak and has not been widely
investigated, even in simulations. Only recently have a few stud-
ies explored tunable metasurfaces based on the optical Kerr ef-
fect, utilizing metallic quantum well structures[394–397] to enhance
the Kerr effect.

7.1 Electrically Tunable Metasurfaces Based on
Thin-Film Inorganic Pockels Materials

Thin-film inorganic EO Pockels materials, including LN, ba-
rium titanate (BaTiO3 or BTO), aluminum nitride (AlN),
and silicon-rich silicon nitride (SRN), have been used to

develop electrically tunable metasurfaces when integrated with
metallic[398–407] and dielectric metasurfaces[408,409], or independ-
ently patterned[410–415].

Among all these materials, LN is the most used due to its
large EO coefficients, good thermal stability, wide transparency
window, and recent development in high-quality thin-film LN-
on-insulator (LNOI) technologies[157–159,416]. Recent research has
primarily focused on integrating thin-film LN into various meta-
surface configurations for amplitude modulation. In 2021,
Bozhevolnyi’s group explored an active Fresnel lens comprising
a 300 nm thick z-cut LN layer sandwiched between a thick bot-
tom Au film and a layer of semitransparent nanostructured Au
concentric rings, as illustrated in Fig. 16(a)[401]. The modulation
relies on FP resonance, which can be tuned by modulating the
refractive index of the LN layer (r13 � 10.12 pmV−1). The fo-
cusing efficiency of the Fresnel lens is ∼15% in the spectrum
from 800 to 900 nm, which changed by 1.5% when a driving
voltage of �10V was applied. However, the large bottom elec-
trode limits the 3 dB operation bandwidth to approximately

Fig. 16 Electrically tunable metasurfaces based on thin-film inorganic Pockels materials.
(a) Near-infrared active Fresnel lens in reflection. Adapted with permission from Ref. [401]
© ACS. (b) Reflective metasurface intensity modulator at λ � 1550 nm based on a MIM configu-
ration. Adapted with permission from Ref. [404] © ACS. (c) Transmissive metasurface intensity
modulator by tuning hybrid LSPR/FP resonances. Adapted with permission from Ref. [405]
© Optical Society of America (OSA). (d) Transmissive metasurface intensity modulator with struc-
tured LN meta-atoms on a SiO2∕LN substrate. Adapted with permission from Ref. [411] © ACS.
(e) Programmable plasmonic phase modulator consisting of a Si prism, an Ag thin film for surface
plasmon polaritons, an EO dielectric modulation layer of SRN or AlN, and a 4 × 4 electrode matrix
on a sapphire wafer, operating at λ � 1550 nm. A tunable phase shift between �0; π� was achieved
with [0 V, 18 V] applied voltages, which can be implemented for polarization contrast imaging.
Adapted with permission from Ref. [399] © Springer Nature.
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6.4 MHz. Using similar LN-integrated MIM configurations,
with topmost Au nanostrips carefully optimized for the excita-
tion of transverse magnetic (TM)[402] or transverse electric
(TE)[406] GMRs around 900 nm, reflection modulation depths
[defined as 1 − Rmin�λ�∕Rmax�λ�] of 20% (with TM GMR)
and 42% (with TE GMR) have been achieved with �10V bias.
To improve modulation efficiency, hybrid resonances have been
explored for narrow and high-contrast resonance dips. In 2022,
Levy’s group developed an LN-integrated MIM metasurface
combining three coupled resonant phenomena: LSPR, lattice
resonance, and FP resonance[404]. This configuration achieved
amplitude modulation with a modulation depth of 40% at a
�25V driving voltage, along with an absolute reflection of
80% in the telecom regime, as shown in Fig. 16(b). In addition
to reflection modulation, transmission modulation has been in-
vestigated using similar configurations with metasurfaces and
LN thin films, but without thick metallic reflectors. Various tun-
able resonances have been explored, including LSPR/FP[405],
quasi-BIC[407], and GMR resonances[407]. For example, Ju et
al. investigated transmissive metasurface modulators by design-
ing an Au nanodisk metasurface on an LNOI substrate[405]. They
achieved a tunable hybrid LSPR/FP resonance with an extinc-
tion ratio of 40% at the resonance wavelength (1480–1550 nm),
demonstrating dynamic modulation at 135 MHz, as shown in
Fig. 16(c). Furthermore, thin-film LN itself can also be pat-
terned into tunable LN metasurfaces[411,415], rather than relying
on LN-integrated hybrid metasurfaces. For example, Weigand
et al. explored a transmissive EO modulator using a resonant
LN metasurface[411]. The metasurface unit cell is pillar-shaped,
featuring a period of 500 nm and a height of 200 nm, created
from a 500 nm thick x-cut LN thin film on a 2 μm silicon di-
oxide buffer layer atop an LN substrate. Two electrodes placed
on the top LN layer generate an electric field along the extraor-
dinary axis (z-axis) of the LN (r33 � 34 pmV−1), enhancing
the light–matter interaction. By applying a 10 Vpp voltage,
the transmittance at the wavelength of 774 nm was changed
by 0.01%, with the measured operation bandwidth of
2.5 MHz, as shown in Fig. 16(d).

The capability of high-speed (up to GHz) EO metasurfaces
was experimentally confirmed by Smolyaninov et al. in 2019.
They achieved GHz modulation speeds with a programmable
plasmonic phase modulator (PPPM) using the Kretschmann
configuration, which is capable of phase-dominant, space-vari-
ant light modulation at a wavelength of 1550 nm, as illustrated
in Fig. 16(e)[399]. The PPPM consists of a Brewster angle Si
prism, a 48 nm Ag thin film, and a ∼100 nm thick EO dielectric
active layer of SRN or AlN, with a 4 × 4 electrode matrix on a
sapphire wafer. By leveraging the high second- and third-order
nonlinear susceptibility (primarily second-order, with r33≈
1.0 pmV−1 for AlN and r33 ≈ 0.1 pmV−1 for SRN) of the di-
electric thin film, the surface plasmon resonance (SPR) can be
tuned, achieving a tunable phase shift of up to π. However, this
comes at the cost of relatively high insertion losses of up
to 10 dB.

Other Pockels materials, such as BTO[400,412,413], are also ex-
plored for tunable metasurfaces. For example, one experimental
work by Karvounis et al. combined BTO nanoparticle films
(∼250 nm thick) with an Au nanowire metasurface to realize
reflection modulation. However, the reflection change was
rather limited, with ∼0.15% at λ � 1 μm wavelength upon
an applied voltage of 4 V[400].

7.2 Electrically Tunable Metasurfaces Based on EO
Polymers

Apart from inorganic materials, organic EO polymers (e.g.,
JRD1 and HLD) are also being explored for dynamic metasur-
faces[156]. These materials leverage their high Pockels coeffi-
cients (e.g., the r33 of HLD is 10 times larger than that of
LN) and their solution-processability, which offers greater flex-
ibility in fabrication. It is important to note that poling is a criti-
cal process for EO polymers, as it aligns the nonlinear optical
chromophores within the polymer matrix, significantly enhanc-
ing the EO coefficients.

By incorporating a subwavelength-thick EO polymer layer
into a MIM configuration, where both the EO polymer and
top-layer Au are structured, a GSP-like tunable metasurface
can be implemented. Notably, the solution-processable spin-
coating process of EO polymer, along with an easily employed
reactive ion etching method[417,418], offers more flexible fabrica-
tion compared to inorganic EO materials such as LN. In 2018,
Tanemura’s group demonstrated a tunable MIM metasurface
embedded with an EO polymer[417]. The device consists of an
EO side-chain polymer layer (540 nm thick) sandwiched be-
tween two layers of Au (200 nm thick), with the top Au layer
patterned to form a subwavelength grating. The in-plane FP res-
onance of the EO-polymer-activated MIM mode enhances
modulation efficiency, resulting in a modulation depth of
1.15% (due to the relatively small r33 of 2.4 pmV−1 achieved)
with �10V tuning voltages at the wavelength of 1630 nm, and
capable of operating at a modulation frequency of 5 MHz.
Furthermore, with a similar configuration, they explored the de-
sign of strongly coupled bimodal plasmonic resonances to pro-
duce a sharp dip in reflection, thereby enhancing modulation
efficiency[418,419]. In experiment[418], they achieved a high-Q res-
onance (Q ≈ 113) and nearly perfect absorption (∼27 dB) at a
resonant wavelength of 1650 nm. Along with an optimized po-
ling process of the EO polymer (r33 ≈ 48 pmV−1), the modu-
lation in reflectance was significantly enhanced, characterized
by a 9.5 dB modulation depth under an applied voltage of
�30V, and a high modulation frequency of 1.25 GHz, as shown
in Fig. 17(a).

Another configuration that features one side structured into
various dielectric or metallic metasurfaces with an unstructured
EO polymer in between has also been studied based on various
tunable resonances. In 2021, Sun et al. proposed an EO-
polymer- (r33 � 108 pmV−1) integrated SiN metasurface, con-
sisting of an Au backplane, an EO polymer (composite of
PMMA and chromophore) layer (1.8 μm thick), and a thin ITO
film on which a SiN grating array was patterned[420]. By tuning a
high-Q (∼145) resonance within this hybrid metasurface, they
achieved 1 dB modulation depth in reflectance with Vpp �
�10V at λ � 1244 nm, along with a modulation frequency
of 10 MHz. Shortly after, they explored high-Q (∼153) resonan-
ces in a similar configuration with Si metasurfaces[421], resulting
in an improved modulation depth of 4.5 dB at a 70 V bias and a
400 MHz modulation bandwidth. In another simulation work by
the same group, they utilized an in-plane inversion symmetry
structure within a Si nano-array to generate high-Q resonance,
enhancing the EO modulation effect[422]. In the simulation, they
achieved a high-Q (∼1910) resonance, and consequently a re-
flectance modulation up to 16 dB with a low driving voltage
of �2V at λ � 1327 nm. To further improve the modulation
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efficiency, they utilized high-Q dual BIC resonances[423]. The
dual BICs include symmetry-protected BIC (SP-BIC) and FP
BIC, achieved through a sandwich configuration using an Au
BIC metasurface (Q ≈ 203), an EO polymer, and an Au back
reflector. With this configuration, they achieved a modulation
depth of 77% (with 100 V tuning voltage) at λ � 1261 nm,
while the modulation speed reached nearly 100 MHz. As a step
towards the direct integration of the EO metasurface modulator
with fiber optics, another work in 2023 from Qiu’s group ex-
plored the direct integration of the EO-polymer metasurface
modulator on the end facet of a standard single-mode fiber[424].
As shown in Fig. 17(b), the EO modulator consists of an Au
plasmonic metasurface layer, an EO-polymer layer (with in-de-
vice r33 � 15 pmV−1), and an Au film, forming an FP nanocav-
ity. The metasurface uses a nanoeye structure to sustain dual-
band operation in the telecom O-band (1283 nm) and
S-band (1500 nm). Experimentally, they achieved around
11% modulation depth at a bias voltage of�9V for both bands,
along with modulation speeds up to 1 GHz.

Further improvements lie in the integration of interdigitated
electrode design (providing a larger electric field with a given
voltage, compared to the above-mentioned MIM configura-
tions) with EO-polymer-activated metasurfaces hosting various
high-Q resonances, including GMRs, quasi-BICs, and slot
mode resonances, to achieve transmissive and reflective inten-
sity modulation. In 2021, Capasso’s group demonstrated a trans-
missive SLM by integrating a layer of EO organic molecules
JRD1 mixed with PMMA and an Au grating on a quartz sub-
strate, as illustrated in Fig. 17(c)[425]. The high second-order non-
linear susceptibility (r33 ≈ 105 pmV−1) of the JRD1 facilitates
significant refractive index changes under an applied electric

field, modulating its GMRs and enabling efficient intensity
modulation. By applying �80V voltages, an intensity modula-
tion (ΔT∕T0) of up to 40% is achieved at the wavelength of
1400 nm. Furthermore, the demonstrated component is effective
over a broad band from 1100 to 1600 nm, and the modulation
frequency is up to 50 MHz. To further improve modulation ef-
ficiency and operation speed, they proposed the integration of
the JRD1:PMMA layer with Mie-resonant Si metasurfaces, with
two different metasurface configurations to achieve quasi-BICs
and GMRs for efficient tuning[426]. In their experiment, they
achieved transmittance modulation (ΔT∕Tmax) of 67% and
40% (Vswitch � 100V) with respective quasi-BICs and GMRs
at λ ≈ 1550 nm, along with a high modulation speed character-
ized by a 3 dB modulation bandwidth at 3 GHz. Another ex-
perimental investigation on HLD-activated Si metasurfaces
with tunable slot mode resonances has alleviated the voltage
required for efficient modulation, bringing it within CMOS-
level voltages. In 2024, Faraon’s group explored the integration
of organic EO materials (HLD, with in-device r33 of
45.7 pmV−1 at 1495 nm) within narrow gaps of high-Q slot-
mode metasurfaces[427], achieving a reflectance modulation of
38% (ΔR∕Rmax) within �17V at telecom wavelengths, as
shown in Fig. 17(d). The demonstrated 3 dB bandwidth is at
3 MHz, which has the potential improvement to GHz modula-
tion with appropriate circuit design.

The EO nonlinear Pockels effects in LN have proven highly
effective and reliable in various high-speed waveguide switches
and modulators[157,159,428–432]. However, tunable metasurfaces with
sub-wavelength-thin LN layers exhibit limited tuning ranges. A
general solution is to design high-Q resonances to enhance
light–matter interactions, which nevertheless results in tradeoffs

Fig. 17 Electrically tunable metasurfaces based on EO polymers. (a) Reflective EO-polymer-
activated metasurface intensity modulator. Adapted with permission from Ref. [418] © AIP
Publishing. (b) Plasmonic meta-fiber EO modulators with nanoeye plasmonic metasurfaces for
dual-band operation. Adapted with permission from Ref. [424] © Springer Nature. (c) Hybrid
Si-organic metasurfaces comprising a Mie-resonance Si metasurface layer, Au interdigitated elec-
trode array, and JRD1 layer for high-speed intensity modulation in transmission. Adapted with
permission from Ref. [426] © Springer Nature. (d) Hybrid Si-organic slot metasurfaces comprising
a Si slot metasurface, Au interdigitated electrode array, and HLD layer for intensity modulation in
reflection with CMOS-level voltages. Adapted with permission from Ref. [427] © Springer Nature.
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between bandwidth and tunability. EO polymers, which possess
higher Pockels coefficients than LN, have been explored for ef-
ficient tunable metasurfaces. Yet, the implementation of EO pol-
ymers requires meticulous poling before fabrication and a
crosslinking process afterward to enhance their EO activity
and ensure long-term stability. Additionally, the robustness at
high temperatures (>100°C) must be validated. Currently, ex-
perimental developments in tunable metasurfaces using EO
Pockel materials primarily focus on uniform amplitude and
phase modulation, with more complex dynamic polarization
control and wavefront engineering still relatively unexplored.

8 Electrically Tunable Metasurfaces Based
on MEMS and NEMS

MEMS and NEMS that integrate electronically actuate, mov-
able components represent a cutting-edge domain in micro-
and nanoscopic technologies[161,433–437]. When combined with
micro-optics, this technology facilitates the development of
MOEMS, which have found extensive commercial applications,
including digital micromirror devices, optical switches, variable
optical attenuators, tunable lasers, optical sensors, and optical
phase arrays[438–441]. The functional excellence of MOEMS in
manipulating light stems from their nanometer-precision move-
ments, ranging approximately from 100 nm to 100 μm. This
capability is ideally suited for optical applications, where move-
ment precision must be significantly smaller than the wave-
length, while the range of motion should be comparable to
or larger than the wavelength, ensuring precise and comprehen-
sive phase control from visible to infrared spectra. Integrating
MEMS and NEMS technologies into optical metasurfaces en-
ables dynamic actuation, offering a distinct advantage over other
tunable metasurfaces that rely on active materials with limited
refractive index changes modulated by external stimuli[160,162,442].
In contrast, the dynamic optical responses in MEMS- and
NEMS-based metasurfaces are achieved through precise
adjustments of geometric parameters, whether in-plane or
out-of-plane.

8.1 MEMS/NEMS-Integrated Homogeneous
Metasurfaces

Early efforts on MEMS/NENS-integrated dynamic metasurfa-
ces primarily featured configurations with suspended metasur-
faces consisting of periodically arranged homogeneous meta-
atoms, whose lateral separation can be dynamically adjusted
by applying an electrostatic force. Consequently, this approach
uniformly alters the optical responses (e.g., reflection and trans-
mission spectra). In 2013, Zheludev’s group published
a groundbreaking study on the development of an electrome-
chanically reconfigurable plasmonic metamaterial operating
in the near-infrared spectrum, which utilizes electrostatic forces
to dynamically alter its optical properties, as illustrated in
Fig. 18(a)[443]. The metamaterial is composed of plasmonic
metamolecules arrayed on flexible SiN strings with an area
of 12 μm × 35 μm. Applying a voltage to these strings caused
them to move closer or further apart due to electrostatic attrac-
tion, thus modifying the transmission and reflection character-
istics at near-infrared wavelengths between 1 and 2 μm. They
achieved a modulation depth of approximately 8% (ΔR∕Roff

and ΔT∕Toff ) at high speeds (up to 0.5 MHz). This seminal
work represents a pioneering demonstration of leveraging
MEMS to dynamically control plasmonic structures and their

resonances, leading to reconfigurable reflection, transmission,
and absorption properties. Shortly after, using a similar configu-
ration of NEMS-integrated metasurfaces, Yamaguchi et al. dem-
onstrated a transmissive optical filter with a tuning range of
∼60 nm at a fast-tuning speed of 20 MHz in the visible spec-
trum (around 500 nm) when a bias voltage of less than 10 V was
applied[444]. Besides in-plane MEMS actuation, out-of-plane
MEMS actuation has also been studied for intensity modulation.
For instance, a mechanically tunable metasurface comprises an
α-Si nanopillar array and a suspended α-Si membrane with in-
tegrated electrostatic actuators[445]. By mechanically displacing
the membrane, the device utilizes the tunable Mie-resonance-
enhanced absorption within the nanopillar array to vary the re-
flectivity. This configuration offers a contrast ratio of 1:3, with
reflectance varying from approximately 25% to 8%, over a spec-
tral range from 400 to 530 nm, as shown in Fig. 18(b).

Besides electrostatic actuation, electrothermal actuation of-
fers another method for implementing dynamic metasurfaces
by properly designing bimorph nanostructures. Zheludev’s
group designed an array of zigzag-shaped nanostructures (over-
all size of 35 μm × 20 μm) on an Au/SiN bilayer membrane
[Fig. 18(c)][446]. Each zigzag beam can be actuated for out-of-
plane movement by thermally induced expansion, thereby
modifying corresponding transmittances (ΔT∕T � 50%) at
the wavelength of 1550 nm. However, this electrothermal ad-
justment is relatively slow, constrained by the cooling rates
of the materials. Moreover, the performance is highly dependent
on the materials used, requiring careful selection and compat-
ibility analysis of different thermal and mechanical properties.

In addition to intensity modulation, dynamic polarization
control has been demonstrated. In 2018, Shimura et al. demon-
strated adjustable linear birefringence based on a MEMS-
integrated Au nanograting metasurface[447], where the birefrin-
gence arises from the different optical paths encountered by
light polarized along two perpendicular axes, known as the slow
and fast axes. The MEMS actuator physically deforms the nano-
grating, altering these paths and the corresponding birefrin-
gence. The metasurface comprises Au gratings fabricated on
a glass substrate with a thin Si layer in between. By integrating
ITO glass above the metasurface, it is possible to adjust the sus-
pended Au nanograting beams up and down. This mechanical
deformation enables dynamic control over the birefringence.
The modulation of retardation, observed at a wavelength of
633 nm, was achieved by varying the applied voltage from 0
to 200 V, resulting in a change from 21.5° to 46.8°, as shown
in Fig. 18(d).

Apart from low-Q plasmonic resonances, high-Q resonances
were investigated to achieve significant amplitude and phase
modulation with less intense external stimuli. For example,
Faraon’s group demonstrated a series of NEMS-enabled meta-
surfaces based on various tunable high-Q resonances, including
GMRs[448], quasi-BICs[448], high-order Mie resonances[449], and
slot resonance modes[450], to explore both intensity and phase
modulation capabilities. For example, in 2021, they demon-
strated a NEMS-enabled dynamic metasurface that hosts tuna-
ble high-Q resonances, including both GMRs and quasi-
BICs[448]. The designed system requires only several volts to
achieve spectral shifts of approximately 5 nm at telecom wave-
lengths. Impressively, it achieved an absolute intensity modula-
tion exceeding 40% and demonstrated a phase shift of up to 144°
with a 4 V bias. For more efficient phase modulation, they
explored asymmetric resonant Si nanobar metasurfaces that
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support perturbed high-order Mie resonances, as illustrated in
Fig. 18(e). This configuration achieves a continuous-tunable
phase shift up to 246° with over 50% reflectivity at a bias of
8 V at λ � 1529 nm[449], which offers the potential of a metasur-
face SLM with a large phase tuning range, high operation speed,
and wavelength-level pixel size. Another design introduces a
perturbation in the slot mode propagating between Si bars, en-
abling a high-Q resonance that is highly sensitive to mechanical
movement[450]. By applying a voltage of ∼1V, reflection modu-
lation of ∼10% was experimentally achieved at wavelengths of
around 1550 nm, as shown in Fig. 18(f). Furthermore, they em-
ployed a NEMS-based chiral metasurface to demonstrate tunable

chiroptical responses associated with orthogonal CP light[451].
The setup includes two sets of Si nanostructures, each outfitted
with an electrode for electrical biasing. By applying a voltage,
the physical separation between these structures can be modu-
lated, thereby altering the chiroptical properties. They demon-
strated a significant change in circular dichroism (CD,
jRRR − RLLj) from 0.45 to 0.01 with a tuning voltage of less than
3 V at a resonant wavelength of 1478 nm.

Individual gap-tunable NEMS-integrated coupled plasmonic
dimers have also been investigated [Fig. 18(g)]; these nano-
dimers have extremely sensitive optical properties when they
are nearly touching[452]. At sub-nanometer scales, the strong

Fig. 18 MEMS/NEMS-integrated homogeneous metasurfaces. (a) Electrically reconfigurable
plasmonic metamaterial for modulating reflected and transmitted telecom light using in-plane
electrostatic forces between parallel strings on a flexible SiN membrane. Adapted with permission
from Ref. [443] © Springer Nature. (b) Broadband tunable Si metasurfaces for intensity modulation
in the visible spectrum using out-plane electrostatic forces. Adapted with permission from
Ref. [445] © ACS. (c) Tunable plasmonic metasurfaces for intensity modulation at telecom wave-
lengths, activated by out-of-plane electrothermal actuation. Adapted with permission from Ref.
[446] © AIP Publishing. (d) Birefringent reconfigurable metasurfaces for visible wavelengths uti-
lizing MEMS-integrated Au nanogratings. Adapted with permission from Ref. [447] © AIP
Publishing. (e) NEMS integrated metasurfaces for dynamic amplitude and phase modulation
at telecom wavelengths with nanostructures meticulously designed for high-order Mie resonan-
ces. Adapted with permission from Ref. [449] © Springer Nature. (f) NEMS integrated metasur-
faces for dynamic amplitude and phase modulation at telecom wavelengths with nanostructures
meticulously designed for high-Q slot resonance modes. Adapted with permission from Ref. [450]
© ACS. (g) NEMS modulation of a strongly coupled plasmonic dimer for high-speed (∼10 MHz)
light-intensity modulator. Adapted with permission from Ref. [452] © Springer Nature.
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coupling effects and quantum mechanical behaviors signifi-
cantly influence the plasmonic resonance, making the system
highly tunable and capable of precise control over light–matter
interactions. The system demonstrated a dramatic shift in plas-
monic resonance energy with minute changes in the gap, show-
ing a sensitivity of approximately 250 meV/nm. A fabricated
prototype light-intensity modulator achieved operational speeds
up to 10 MHz and demonstrated energy efficiency with a power
consumption of only 4 fJ/bit. Despite high tunability, low power
consumption, and high-speed operation, this work involves so-
phisticated fabrication and control techniques, along with poten-
tial stability issues and limited scalability.

8.2 MEMS-Mirror-Integrated Dynamic Metasurfaces

The integration of MEMS/NEMS with homogeneous metasur-
faces typically results in uniform amplitude/phase modulation,
which makes it impossible to realize dynamic wave-shaping
functions such as beam steering, switchable focusing, or the
generation of versatile vortex beams with reconfigurable topo-
logical charges. Recently, by combining a MEMS mirror with a
phase-gradient metasurface and modulating the separation
between them, tunable phase-gradient metasurfaces with high
absolute and modulation efficiencies have been achieved by
exploring various tunable resonance mechanisms, including
Mie/FP[453], GSP[454], or plasmonic/FP resonances[455–458]. In
2019, Brongersma’s group made groundbreaking advancements
in the field of dynamic wavefront shaping by developing a
highly integrated, compact MEMS-based tunable phase-gra-
dient metasurface in reflection, as illustrated in Fig. 19(a)[453].
This metasurface, fabricated within a suspended Si membrane,
utilizes variable spacing between the metasurface (composed of
suspended nanobeams with different widths for phase engineer-
ing) and a thick Si substrate on the backside, which enables the
reconfiguration of hybrid resonances through the coupling of
Mie resonances, supported by the in-plane Si antennas, and
out-of-plane FP resonances, supported by both Si antennas
and the backside Si substrate. Leveraging this innovative plat-
form, the team demonstrated temporal color mixing as well as
dynamic 1D beam steering and focusing within the visible spec-
trum from 600 to 700 nm. This system achieves complete 0-2π
phase modulation over a relatively small voltage range of ap-
proximately 4 V and offers rapid operation speeds up to
∼1 MHz. Although this platform can be readily expanded to
incorporate other tunable phase engineering functionalities,
its limitations are still evident: (1) the material is limited to Si,
which can be lossy for visible wavelengths; (2) scaling up to a
large aperture size is challenging; (3) it is only capable of 1D
wavefront shaping.

To develop a universal platform, Bozhevolnyi’s group uti-
lized a thin-film piezoelectric MEMS mirror to create
MEMS-mirror-integrated metasurfaces. In this approach, the
MEMS mirror and the optical metasurface are designed and fab-
ricated independently, thus significantly increasing the DoFs for
metasurface design in terms of materials, geometries, and over-
all sizes. In 2021, Meng et al. demonstrated a dynamic phase-
gradient metasurface by integrating a MEMS mirror with an Au
plasmonic metasurface[454]. By precisely controlling the distance
between the MEMS mirror and the plasmonic metasurface, they
could switch GSP resonances on and off. This functionality
enables the realization of tunable phase-gradient metasurfaces
in reflection, characterized by high efficiencies (over 50%),

significant modulation depth, and broadband operation around
the wavelength of 800 nm. The response time, approximately
400 μs, is primarily determined by the design of the MEMS mir-
ror and could potentially be optimized to the MHz level. As
proof of concept, they demonstrated a MEMS-based metasur-
face grating capable of reconfiguring between the zeroth and
first diffraction orders, as well as a MEMS-tunable concave
mirror that could toggle between focusing and normal mirror
functionalities [Fig. 19(b)]. It is important to note that this con-
figuration achieves both a large bandwidth and high modulation
depth, which are typically mutually constrained in active-
material-triggered tunable metasurfaces. Achieving a larger
bandwidth requires a more substantial refractive index change,
which is often limited and very difficult to achieve in many ac-
tive materials, making it challenging to attain larger modulation
depths. In a follow-up work[455], the same group discovered that
even with the distance between the plasmonic metasurface and
the MEMS mirror exceeding 1 μm, thereby eliminating the pres-
ence of GSP resonances, it was still possible to achieve tunable
phase-gradient metasurfaces for dynamic wavefront control.
The underlying mechanism transitioned to hybrid plasmonic/
FP resonances, as shown in Fig. 19(c). While this mechanism
eliminates the need for an ultra-small separation between the
MEMS mirror and the metasurface to activate GSP resonances,
operating in this regime leads to a reduction in the operation
bandwidth due to the increased FP orders.

By leveraging the design flexibility of the metasurface, the
MEMS-mirror-integrated metasurface can be further developed
for dynamic polarization control by incorporating anisotropic
antenna arrays, which exhibit distinct optical responses to
orthogonal linear polarization incidences. In one study, Meng
et al. employed a plasmonic metasurface composed of aniso-
tropic periodic Au nanobrick arrays (200 nm in length,
100 nm in width, and 50 nm in thickness) to demonstrate a tun-
able waveplate with high efficiency (>75%) and full 2π acces-
sible birefringence at an 800 nm wavelength, as shown in
Fig. 19(d)[456]. In another investigation, Deng et al. showcased
a MEMS-based metasurface linear polarizer with a tunable ex-
tinction ratio ranging from 13.3 to 1.0 by activating the sepa-
ration [Fig. 19(e)][457]. Using this tunable polarizer, they
demonstrated potential applications in dynamic grayscale dis-
play and tunable vector vortex beam generation. Moreover,
by integrating chiral nanostructures, the MEMS-mirror-inte-
grated metasurface can enable topological phase transitions
under an orthogonal circular polarization basis. In 2024,
Ding et al. demonstrated MEMS-based chiral metasurfaces
capable of operating between chiral exceptional points (EPs)
and diabolic points (DPs) through the careful design of chiral
nanostructures[458]. At the chiral EP, the entire MEMS-metasur-
face system is characterized by simultaneously degenerate
eigenstates and eigenvalues, whereas at the DP, it exhibits de-
generate eigenvalues and orthogonal eigenstates. This configu-
ration enabled the creation of a tunable circular polarizer,
capable of switching the output light between left and right cir-
cular polarizations with a voltage change as small as 0.8 V when
using RCP incident light, as shown in Fig. 19(f).

From a comprehensive perspective, it is important to note
that the underlying mechanism of tunable MEMS-mirror-
integrated metasurfaces for efficient dynamic wavefront and
polarization control can also be understood and elucidated from
the viewpoint of parameter space phase singularities, which
have been recently discussed by several research groups[459–469].
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8.3 MEMS-Tunable Metalenses

Metalenses represent a pivotal advancement in metasurface tech-
nology to revolutionize compact and lightweight imaging sys-
tems by potentially replacing conventional bulky lenses[29–31,33,34].
Recent progress in MEMS-integrated metalenses has further en-
hanced the capabilities of traditional metalenses, broadening
their applicability in various practical imaging applications. One
strategy for implementing tunable metalenses with a MEMS
configuration involves transferring an as-fabricated single meta-
surface lens onto a MEMS structure to stretch it[470] or control its
orientation[471]. In 2018, She et al. proposed adaptive metalenses
by directly integrating (transferring) a metasurface lens onto di-
electric elastomer actuators (DEAs). By applying voltages to the

DEAs, an in-plane strain field can stretch or shift the metalens,
thereby allowing control over its focal length, astigmatism, and
shift. As shown in Fig. 20(a), they experimentally achieved a
polarization-insensitive transmissiveMEMS-integrated metalens
with focal length tuning from 50.1 to 53.1 μm using applied volt-
ages ranging from 0 to 1 kV, at a wavelength of 1550 nm.
Furthermore, adjustments to the astigmatism and focal point
shifts can also be made by applying different voltages to the elec-
trodes to induce asymmetric in-plane strains. Although these ul-
tracompact, electrical-controlled, adaptive metalenses showcase
high efficiency and tunability, this configuration is characterized
by a relatively slow speed (response time ∼33 ms) limited by the
viscoelasticity of the elastomer and requires high operating volt-
ages (up to∼kV) constrained by Young’s modulus and thickness

Fig. 19 MEMS-mirror-integrated dynamic metasurfaces. (a) Suspended Si metasurfaces for dy-
namic wavefront shaping in the visible spectrum via voltage-controlled electrostatic forces be-
tween the suspended metasurfaces and the underlying Si substrate. Adapted with permission
from Ref. [453] © AAAS. (b) MEMS-mirror-integrated phase-gradient GSP metasurfaces for
broadband polarization-independent dynamic wavefront shaping. Adapted with permission from
Ref. [454] © AAAS. (c) MEMS-mirror-integrated plasmonic metasurfaces for dynamic wavefront
shaping through tunable hybrid plasmonic/FP resonances. Adapted with permission from Ref.
[455] © ACS. (d) MEMS-mirror-integrated tunable waveplate with full 2π birefringence coverage.
Adapted with permission from Ref. [456] © Springer Nature. (e) MEMS-mirror-integrated tunable
linear polarizer. Adapted with permission from Ref. [457] © OSA. (f) MEMS-mirror-integrated chiral
metasurfaces for voltage-controllable topological phase transitions and tunable CP light filtering.
Adapted with permission from Ref. [458] © AAAS.
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of the elastomer layer in DEA configurations. To reduce the re-
quired voltages and enhance both tunability and switching
speed, electrostatic or piezoelectric MEMS actuators can be uti-
lized instead of DEAs. In 2018, Roy et al. demonstrated a re-
flective metalens mounted on an electrostatic MEMS mirror
[471]. The metalens, consisting of a 50 nm Au nanodisk, a
400 nm SiO2 layer, and a 200 nm Au film, was designed to focus
light at mid-infrared wavelengths (λ � 4.6 μm) with a focusing
efficiency of approximately 83%. By adjusting the MEMS mir-
ror, the angle of the metalens can be controlled within �9°,
allowing for dynamic steering of the focused beam at an operat-
ing speed of around 1 kHz [Fig. 20(b)].

Another strategy to implement tunable metalenses involves a
configuration of cascaded metasurfaces, with their longitudinal
separation[472,473] or lateral shifts[474,475] precisely controlled and
modulated by MEMS actuators. In 2018, Faraon’s group show-
cased a groundbreaking integration of MEMS with dielectric
metalenses to create a transmissive varifocal doublet, as illus-
trated in Fig. 20(c)[472]. Composed of high-index Si nanoposts,
the dielectric metalens facilitates phase transmission adjust-
ments from 0 to 2π by altering the width of the nanoposts, opti-
mized for a design wavelength of 915 nm. One metalens was
mounted on a movable MEMS membrane, while the other
was affixed to a stationary fused SiO2 substrate; the two lenses
were then meticulously aligned and bonded. Electrostatic force
actuation enables adjustment of the separation between these
two metalenses, thereby tuning the focal length of the com-
pound MEMS-based doublet. This adjustment achieved a
significant change in the optical power of about 60 diopters
by altering the metalens separation by approximately 1 μm, with
operation frequencies around 4 kHz. Moreover, the study also
introduced a tunable focus metasurface microscope utilizing
this MEMS-tunable metalens. Most MEMS-integrated tunable

metasurfaces utilize electrostatic MEMS that, although easy to
implement, typically offer limited out-of-plane displacement
and require relatively high voltages. In 2022, Dirdal et al. ad-
vanced MEMS-tunable metalenses by incorporating thin-film
piezoelectric MEMS into a metalens doublet[473]. This innova-
tion demonstrated an out-of-plane displacement of one metasur-
face lens up to 7.2 μm under an applied voltage of 23 V, roughly
twice the displacement at a quarter of the voltage required by
conventional electrostatic out-of-plane actuating MEMS meta-
surfaces. Utilizing this enhanced tunability, the team success-
fully demonstrated a varifocal metalens doublet, achieving a
focal shift of approximately 250 μm at the design wavelength
of 1.55 μm.

Apart from metalens doublets, the concept of Alvarez lenses
was also explored as varifocal lenses[474,475]. In 2020, Han et al.
constructed varifocal metalenses using two complementary cu-
bic surface-profiled metalenses that shift laterally to adjust the
lens’s optical power[474]. The integration of the metalens with
MEMS technology facilitates precise and dynamic control of
the focal length through in-plane electrostatic actuation.
Compatible with standard semiconductor fabrication processes,
the entire metalens assembly is scalable and potentially cost-
effective for mass production. The fabricated metalens operating
at λ � 1550 nm achieved a focal length change of over 68 μm
within an actuation range of 6.3 μm.With a nominal focal length
of 216 μm, this modification corresponds to a significant 1460
diopter change in optical power. Furthermore, they demon-
strated MEMS-integrated Alvarez meta-optics with a 0.5 mm
aperture, utilizing flip-chip bonding to improve alignment be-
tween the meta-optic elements [Fig. 20(d)]. In this new demon-
stration, a substantial focal length tuning of 3.1 mm (equivalent
to 200 diopters) was achieved using actuation voltages below
40 V[475].

Fig. 20 MEMS-integrated tunable metalenses. (a) Transmissive silicon metasurface integrated
with dielectric elastomer actuators for controlling focal length, astigmatism, and shift. Adapted with
permission from Ref. [470] © AAAS. (b) Reflective plasmonic metalens directly transferred to a
MEMS mirror for angled MIR focusing. Adapted with permission from Ref. [471] © AIP Publishing.
(c) MEMS-tunable varifocal transmissive Si metasurface doublet with adjustable separation con-
trolled by out-of-plane electrostatic forces between the substrates supporting the two metalenses.
Adapted with permission from Ref. [472] © Springer Nature. (d) MEMS-actuated varifocal
transmissive Alvarez metalens by introducing lateral displacement between two static metalenses
using comb-drive actuators. Adapted with permission from Ref. [475] © Springer Nature.

Ding, Meng, and Bozhevolnyi: Electrically tunable optical metasurfaces

Photonics Insights R07-39 2024 • Vol. 3(3)



8.4 MEMS-Activated Metasurfaces with 2D-to-3D
Transformations

Leveraging the high versatility of MEMS, it is possible to recon-
figure properly designed metasurfaces between 2D and 3D con-
figurations by applying out-of-plane electrostatic forces. This
capability opens up a new design dimension for versatile light
field manipulation[160], including uniform intensity[476,477] and
phase[478,479] modulation, dynamic wavefront shaping[477–479], and
tunable chirality[476]. In a notable example [Fig. 21(a)], Li’s
group demonstrated electromechanically reconfigurable optical
nano-kirigami[476]. By applying voltages between the nanostruc-
tured top Au layer and the Si substrate, a 2D-to-3D transforma-
tion is achieved, modulating optical properties like reflectance
and helicity at visible and near-infrared wavelengths, as de-
picted in Fig. 21(a). Notably, with deformable pinwheel
arrays, they achieved a 50% modulation contrast [defined as
ΔR∕R�V � 0V�] in reflection at an actuation voltage range
of 0 to 35 V, at a wavelength of 750 nm. Another nano-kirigami
configuration showed reconfigurable helicity in reflectance,
characterized by a CP-dependent reflection spectrum.

Besides intensity/phase modulation and dynamic wavefront
control, MEMS-integrated transmissive metasurfaces were used
for fast-tunable spectral filter arrays, potentially motivating
new-generation displays. In 2022, Han et al. utilized the out-
of-plane movement freedom of a MEMS cantilever to achieve
plasmonic colors for sustainable optical displays[480]. As shown
in Fig. 21(b), this system combines a static plasmonic metasur-
face (Al nanohole arrays with three different sizes, acting as
three transmissive bandpass filters for RGB colors) with a
MEMS cantilever that controls transmittance, which can be
modulated freely from 35% to 100%. The pixels can operate
at around 1 kHz. This component showcases a CMOS-compat-
ible design that is simple to fabricate for both MEMS and meta-
surfaces, offering advantages such as a simplified configuration,
energy efficiency, and a fast refresh rate compared to state-of-
the-art liquid crystal displays, which could be particularly useful

in developing innovative optical displays that align with future
circular economic goals.

Concluding the MEMS/NEMS-tunable metasurface section,
the integration of MEMS/NEMS-actuators enables the realiza-
tion of tunable metasurfaces for a range of applications, includ-
ing intensity/phase modulators, tunable polarization optics,
and dynamic wavefront shaping components. The design ap-
proaches are primarily based on three concepts: (1) altering
the geometry of individual meta-atoms to modulate its reso-
nance properties; (2) redefining the overall phase profiles by
stretching or shifting the entire metasurfaces; (3) adjusting
the overall response by modifying the relative positions of sev-
eral cascaded metasurfaces. MEMS/NEMS-enabled electro-
mechanical movements offer controllable, nanometer-scale
resolution and precision, making them ideal for optical applica-
tions. Unlike tunable metasurfaces reliant on active materials,
where modulation efficiency is limited by the extent of refrac-
tive index changes, MEMS/NEMS-integrated metasurfaces op-
erate through modifications in meta-atom geometries or the
overall configuration, typically yielding high modulation effi-
ciency but at the expense of relatively slow responses. The op-
erational speed of these devices is governed by the intrinsic
resonance frequency of the MEMS structures, which generally
spans from kHz to MHz bandwidth. The reliability of MEMS
technology has been confirmed through the widespread com-
mercial availability of various MEMS components. Notably,
in certain configurations, especially those involving piezoelec-
tric MEMS, hysteresis behavior is observed, necessitating the
implementation of closed-loop feedback control for further ad-
vancements of MEMS-tunable meta-optics.

9 Conclusion and Perspectives
Electrically triggered optical metasurfaces represent a trans-
formative leap in photonics, offering unprecedented control over
light–matter interactions with dynamic tunability that can be ex-
ercised with existing electronic control systems. In this work,

Fig. 21 MEMS-activated metasurfaces with 2D-to-3D transformations. (a) Optical nano-kirigami
with pinwheel and spiral arrays for reflective intensity modulation and tunable circular dichroism.
Adapted with permission from Ref. [476] © Springer Nature. (b) MEMS cantilever-controlled plas-
monic color filter demonstrating dynamic plasmonic colors with adjustable transmittance, de-
signed for sustainable optical displays. Adapted with permission from Ref. [480] © AAAS.
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we have conducted a comprehensive overview of cutting-edge
technologies and methodologies employed in the domain of
electrically tunable optical metasurfaces. The fundamental prin-
ciples of electrical modulation have been elucidated, providing a
detailed consideration of various materials and mechanisms that
facilitate the metasurface tunability with electrical stimuli
(Table 1). Typical applications, such as tunable wavelength
filters, optical modulators, dynamic beam steering, adaptive
lenses, and holographic displays, have been highlighted to dem-
onstrate the vast potential and versatility.

Despite significant progress, several challenges remain
(Table 1), which include optimizing the efficiency and response
time of modulation, improving the stability and durability of
materials, and developing scalable fabrication techniques.
Addressing these challenges is essential for implementing in
practice and commercializing electrically tunable optical meta-
surfaces. Looking forward, the future of electrically triggered
optical metasurfaces is promising, with numerous exciting ave-
nues for research and innovation, as follows.

(1) Advanced design methods. Conventional metasurface
design involves selecting the topologies and tuning the geom-
etries of meta-atoms to meet the specific constraints of the in-
tended scenarios, which is time- and resource-consuming and
heavily relies on knowledge and experience. With increased in-
formation channels in multiple tuning states, this method makes
it impossible to meet all criteria. In contrast to typical design
standards, advanced design methods such as machine learn-
ing[481–488], deep learning[489–492], inverse design[490,491,493–496], and
topology optimization[497–501] seem better equipped to boost the
development of dynamic metasurfaces with enhanced effi-
ciency, functionality, and adaptability. Machine learning enables
the processing of vast datasets to uncover intricate patterns,
allowing for highly accurate prediction and optimization of
metasurface structures, accelerating the design process, and
facilitating the discovery of novel configurations that traditional
methods might overlook. Inverse design further enhances this
capability by enabling designers to specify desired outcomes
and use computational algorithms to determine the optimal

Table 1 Comparison of Different Platforms to Realize Electrically Tunable Optical Metasurfaces.

Platform Advantage Disadvantage Modulation Speed

LCs • Compatibility with existing technologies
• High resolution and precision
• Low power consumption
• Wide wavelength range
• Flexibility

• Limited modulation speed
• Temperature and environmental
sensitivity

• Limited tuning range
• Polarization dependency

∼kHz

PCMs • Large refractive index change
• Wide wavelength range
• Fast modulation speed
• Durability
• Scalability and integration
• Multi-state operation
• Non-volatile tuning (PCCs)

• Non-uniform heating
• Optical losses in visible
• Energy consumption for large-area
transitions

• Complex fabrication processes

∼kHz −MHz

Electrochemical
materials

• Precise and reversible tuning
• Large refractive index change
• Low power consumption

• Slow modulation speed
• Material degradation
• Temperature and environmental
sensitivity

• Complex fabrication processes

∼Hz − kHz

2D materials • Fast modulation speed
• Atomic thickness
• Compatibility with existing
microfabrication techniques

• Optical losses
• Poor long-term stability
• Challenges in large-scale integration

∼GHz

TCOs • High modulation speed
• High transparency in visible
• Versatility across different wavelengths
• Compatibility with existing semiconductor
processes

• Limited modulation depth
• Optical losses
• Complex fabrication processes
• Material stability and degradation

∼GHz

EO nonlinear
materials

• High modulation speed
• Low power consumption
• Integration with photonic circuits
• Durability

• Limited modulation depth
• Optical losses
• Complex fabrication processes

∼GHz

MEMS/NEMS • Large tuning range
• Durability
• Compatibility with existing
microfabrication techniques

• Limited modulation speed
• Hysteresis in piezoelectric
MEMS/NEMS

• Complex fabrication processes

∼kHz −MHz
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metasurface structures for achieving these goals, thereby
streamlining the design process and expanding the range of
practical applications. Topology optimization provides a sys-
tematic approach to identifying the most suitable spatial distri-
bution of materials within a metasurface, producing highly
sophisticated and efficient designs with complex, multi-func-
tional capabilities. The synergy of these advanced design strat-
egies presents an exciting frontier for optical metasurfaces in
general and for electrically triggered tunable metasurfaces with
enhanced design precision and efficiency, in particular.

(2) Advanced materials. Developing novel materials with
enhanced EO properties, wider transparency windows, greater
durability, better scalability, and compatibility with existing
technological platforms (such as microelectronics), reduced
fabrication costs, and improved environmental stability will be
critical for electrically triggered optical metasurfaces. While
emerging materials such as PCMs, 2D materials, or organic pol-
ymers show great promise, none have yet met all the necessary
criteria. Thus, the quest for advanced materials remains a chal-
lenging but essential endeavor. This process typically involves a
multifaceted approach that combines theoretical predictions, ex-
perimental validation, and interdisciplinary collaboration.
Researchers start by identifying materials with intrinsic proper-
ties that are amenable to electrical modulation, such as high con-
ductivity, tunable refractive index, and stability under various
operating conditions. Computational methods, including den-
sity functional theory and machine learning algorithms[502,503],
are employed to predict and screen potential materials from ex-
tensive databases, focusing on those with promising EO char-
acteristics. Experimental validation follows, where selected
materials undergo rigorous testing to assess their performance
in practical metasurface configurations, including their response
time, modulation depth, durability, and environmental stability.
Significant advancements often come from hybrid materials
that integrate organic and inorganic components or from novel
nanofabrication techniques that enhance material properties.
Effective integration of these materials into functional metasur-
faces requires close collaboration among materials scientists,
electrical engineers, and physicists. By combining theoretical
insights with experimental innovations, the discovery and
optimization of materials for tunable metasurfaces can be sig-
nificantly accelerated, paving the way for new and transforma-
tive applications in photonics and beyond.

(3) Application expansion. The potential applications of
electrically tunable optical metasurfaces extend well beyond tra-
ditional photonics, offering transformative possibilities across
various fields. In medical imaging, these metasurfaces could
be utilized to develop real-time imaging systems with the ability
to dynamically adjust focus and contrast, thereby improving the
detection and diagnosis of diseases[504–507]. For augmented reality
and virtual reality, tunable metasurfaces could revolutionize the
way visual information is projected and perceived, enabling
lightweight, compact devices with enhanced depth perception
and expanded FOV[84,208,508–512]. Additionally, tunable metasurfa-
ces hold promise in the development of adaptive optics systems
for astronomy, where they could be used to correct atmospheric
distortions in real time, leading to clearer and more detailed
observations of celestial objects. Furthermore, electrically trig-
gered metasurfaces can enter the realm of quantum metaphoton-
ics[513–516]. While current quantum metasurfaces facilitate the
generation[517–528] and manipulation[529–537] of nonclassical states
of light, their functionalities are largely passive and constrained

by fixed material compositions and configurations. This limita-
tion underscores the need for dynamic, or more broadly, space-
time quantum metasurfaces that can continuously tune quantum
light in both time and space[538]. The advancements achieved in
electrically triggered metasurfaces for classical light can be ex-
tended into the quantum domain, paving the way for electrically
controlled space-time quantum metasurfaces that offer unprec-
edented control over quantum photonic processes.

(4) Scalability and manufacturing. Achieving scalability
and efficient manufacturing is already, as noted above, on the
agenda, being essential for facilitating the transition of electri-
cally triggered optical metasurfaces from the laboratory to wide-
spread industrial applications. Traditional fabrication methods,
such as EBL, although precise, are not compliant with large-
scale production due to their high cost and time-consuming
nature[539]. To address this, alternative techniques like deep-
ultraviolet projection lithography[540–543], nanoimprint lithogra-
phy[544–548], and roll-to-roll printing[549–552] are being explored
for their ability to replicate nanoscale patterns over large areas
more cost-effectively. Advanced deposition methods, such as
atomic layer deposition and chemical vapor deposition, enable
precise control over material properties, facilitating the integra-
tion of advanced materials like PCMs and 2D materials into
scalable processes. Modular manufacturing approaches, which
combine different techniques, and hybrid methods integrating
additive and subtractive processes, offer flexibility in creating
complex designs. Additionally, eco-friendly fabrication proc-
esses that minimize waste and energy consumption are critical
for sustainable manufacturing. Collaboration between academia
and industry is necessary to establish best practices and industry
standards, accelerating the commercialization of these innova-
tive metasurfaces.

While electrically triggered tunable optical metasurfaces
have already demonstrated remarkable capabilities, the journey
toward fully realizing their potential is ongoing[553]. Through
continued innovation and interdisciplinary collaboration, these
metasurfaces promise to revolutionize a wide range of technol-
ogies and applications, heralding a new era in photonic device
engineering.
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