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ABSTRACT. In recent years, bidirectional encoder representation from transformers (BERT)
models have achieved superior performance in hyperspectral images (HSIs). It can
capture the long-range correlations between HSI elements, but the local space and
spectral band information of HSI is insufficient. We propose a spatially augmented
guided sequence BERT network for HSI classification study, referred to as SAS-
BERT, which makes more effective use of HSI’s spatial and spectral information
by improving the BERT model. First, a spatial augmentation learning module is
added in the preprocessing stage to obtain more significant spatial features before
the input network and better guide the spatial sequence. Then a spectral correlation
module was used to represent the spectral band features of the HSI and to establish
a correlation with the spatial location of the images to obtain better classification
performance. Experimental results on three datasets show that the method proposed
achieves better classification performance than other state-of-the-art methods.
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1 Introduction
With hundreds of narrow continuous spectral bands, hyperspectral images (HSIs)1 better
represent the semantic information of remotely sensed features.2,3 Their rich spectral features
provide a powerful tool for achieving accurate pixel-level classification.4,5 HSI classification
is widely used in precision agriculture,6–8 mineral surveying,9 anomaly detection,10 and land
cover mapping.11 Compared with traditional visual images, HSIs have two unique features.12

The first is that the heterogeneity of matter leads to the high-dimensional and nonlinear spectral
characteristics of hyperspectral data. Second, there is a high correlation between adjacent hyper-
spectral spectra, and spatial correlation can supplement spectral information to provide a more
accurate interpretation of surface cartography.

Classification of hyperspectral remote sensing images is fundamental to HSI processing and
applications. Its ultimate aim is to assign a unique identity to each image element. Analyzing and
processing the spectral and spatial characteristics of the various types of land features in the HSIs
classify each image element into a category corresponding to the actual land features, thus ena-
bling the classification of land features. Conventional methods generally use band selection and
feature extraction for dimensionality reduction, compressing the original spectral image elements
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into a low-dimensional space, such as principal component analysis,13 support vector machines
(SVM),14 and random forests.15 The properties of HSIs constrain these methods, and their clas-
sification results could be better. HSIs possess both spectral properties and spatial dependence,
which implies a joint representation of spectral and spatial features. Therefore some researchers
have proposed using a spatial–spectral feature extractor to extract HSI features. For example,
spatial information was combined with multinomial logistic regression for HSI feature
extraction.16 Li et al.17 proposed an edge-preserving filtering-based framework for spectral–
spatial classification, significantly improving the classification accuracy of SVM with fewer
computer resources. However, the above models all consist of shallow structures, such network
models contain fewer hidden layers but require a more significant number of neurons, so shallow
network structures do not provide a better description of HSIs.

With the development of artificial intelligence, deep-learning-based methods are widely
used in remote sensing classification. For example, the spatial update super voxel stacking
autoencoder method is an improved depth network. This method uses the spatial context of
similar spectra within consecutive pixels for effective HSI classification.18 The convolution neu-
ral network (CNN) has a unique advantage in processing high-dimensional HSI data among these
deep-learning models. For example, Chen et al.19 designed a 3D convolutional neural network
capable of efficiently extracting spectral and spatial features with good classification perfor-
mance. Li et al.20 proposed a deep-learning framework for fully convolutional neural networks,
applying deconvolution to HSI for the first time. Zhong et al.21 proposed a deep residual network
for HSI classification, which used ResNets and CNNs of different depths and widths to inves-
tigate the effect of deep-learning model size on HSI classification accuracy. Kanthi et al.22 pro-
posed a new 3D depth feature extraction CNN model for HSI classification using spectral and
spatial information, which divides the HSI data into 3D patches and feeds them into the proposed
model for depth feature extraction.

However, CNN’s reliance on a geometrically fixed structure of convolutional kernels hin-
ders long-range dependencies between features from nonlocal locations. Transformers can effec-
tively alleviate the problem of small perceptual range and low description efficiency caused by
geometrically structured convolutional filter banks like CNN. Originally proposed as a sequence-
to-sequence (seq2seq) model for machine translation, the transformer has become a mainstream
model in natural language processing (NLP). This simple and efficient architecture also performs
well in HSI classification. He et al.23 applied for the first time a spatial transformation network to
obtain the optimal input to a CNN for HSI classification. Zhao et al.24 proposed a convolutional
transform network for the fusion of spectral information and spatial location of HSIs using
central position coding. Hong et al.25 proposed the spectral–spatial transformer to capture the
relationship between spectral bands along the spectral dimension. Meanwhile, spectral-spatial
transformer network (SSTN) designed a spectral–spatial transformer network consisting of a
spectral association module and a spatial attention module, using a new factorized architecture
search framework to determine the hierarchical operations and block order of SSTN.26

The bidirectional encoder representations from transformers (BERT) model27 is based on the
transformer taking its encoder part to obtain a bidirectional encoder representation model, a self-
coding language model. BERT is structurally more superficial than the transformer in that it only
uses the encoder part of the transformer. The BERT model was proposed in October 2018 by the
Google AI Institute, and the model was initially popular in NLP. Because it is built on the trans-
former, BERT has powerful linguistic representation and feature extraction capabilities.
However, BERT models consume substantial hardware resources so that reproducibility could
be better and model convergence could be faster. RoBERTa, proposed by Liu et al.,28 the model
does not change the network structure of BERT but only modifies some pretraining methods,
including dynamic masking and discarding the next sentence predict task. Chen et al. proposed
ALBERT, which argued that the model parameters of BERT were too large and too resource-
intensive. They proposed using word vector factorisation, cross-layer parameter sharing or sen-
tence order prediction to reduce the model size and thus improve the training speed.29 Cui et al.30

proposed MacBERT, the model that proposes not using a mask, replacing the mask-tagged
position with another similar word, and then allowing the model to correct errors to achieve
better results automatically. Related improved models are MASS,31 UNILM,32 and SpanBert,33

all of which have achieved good results.

Zhang et al.: Spatially augmented guided sequence-based bidirectional encoder. . .

Optical Engineering 103103-2 October 2023 • Vol. 62(10)



He et al. argued that neurolinguistic models are more similar to HSIs in some aspects. They
assembled multiple self-attention layers into transformer units. They converted the image
elements of HSIs into sequences as input data to be applied to HSI classification tasks with
satisfactory results. Their proposed HSI-BERT converts spectral image sets into sequences for
characterization. This approach not only does not disrupt the inherent continuous spectral dis-
tribution of HSIs but also supports more flexible and dynamic input regions and is more easily
generalized.34 The BERT model captures richer nonlocal image element information. However,
the complex distribution of spectral space in HSIs results in low efficiency of BERT model fea-
ture extraction and inconspicuous feature description in high-dimensional spectral space. Each
pixel of HSI is marked by BERT sequence mode, and a multihead self-attention mechanism
extracts nonlocal spatial information of HSI. Still, the representation of local spatial features
of HSIs needs to be improved. Moreover, the multihead self-attention mechanism only considers
the feature characterization of the spatial pixel rotation sequence. It needs to utilize the rich
spectral features unique to HSIs more effectively. In order to solve the above problems based
on the BERT model, this paper proposes a spatially augmented guided sequential BERT network
for HSI classification studies called SAS-BERT.

The main contributions of this paper are as follows.

• This paper uses a new framework for HSI classification based on unsupervised BERT net-
works. The framework adds a spatial augmentation module to the BERT model to capture
the local spatial information of HSI and to guide the sequence patterns. The nonlocal and
local spatial information of HSI is utilized more effectively.

• In order to enhance the ability of the BERT model to describe remotely sensed features,
this paper combines the rich spectral information of HSIs to extract spectral features and
establish correlations-spatial locations to better account for the intraclass consistency and
interclass variability between spectral bands.

• Compared with the BERT model, the network proposed in this paper aggregates the spatial
augmentation module and the spectral association module to integrate and invert the spatial
information of HSIs. The experimental results illustrate that the model obtains a more
satisfactory classification accuracy than the state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 presents a relevant introduc-
tion to the BERT model. Section 3 presents the scheme of the proposed SAS-BERT network and
its components. Section 4 presents the experimental results and analytical findings. In Sec. 5,
conclusions are drawn.

2 Related Introduction

2.1 BERT Network Structure
The BERT model has been fine-tuned with good results on some downstream NLP tasks.
The general framework of the BERT model is shown in Fig. 1, which is mainly based on the

Fig. 1 Diagram of the general framework of the BERT model. The BERT model consists of
an embedding layer, an encoder layer, and an FCL. The encoder layer is obtained by stacking
multiple TEn.
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transformer’s encoder module, which will be referred to as TEn, as shown in Fig. 2, and the
BERT model is obtained by stacking the TEn.

The BERT model consists of two main modules: embedding and encoder layers. The
embedding layer includes token embedding, position embedding, and segment embedding, and
segment embedding is not required for HSI classification. The token embedding implements a
vector representation of the image element itself, and the position embedding learns the position
properties of the image element.

The embedding layer is followed by the encoder layer, which contains the multiheaded self-
attention (MHSA) module (Fig. 3). This mechanism improves the model’s ability to focus on
different locations and multiple focus regions simultaneously. The self-attentive mechanism
requires the generation of three-word vectors Q, K, and V to calculate the attention of each
image element, which is obtained by multiplying the image element with three training learned
weight matrices. However, in multiheaded attention, multiple learned weight matrices of Q, K,
and V are randomly initialized and independently map the input vectors to different subspaces,
thus enriching the feature representation of the information. Different heads of the MHSA
mechanism obtain different attentions. For the input vector, if multiple attention is used and the
number of heads used is p, the input vector is divided into p independent vectors, each using self-
attention to calculate the attention weight. When completed, it will be merged. Therefore,
it is a parallel mechanism within a submodule. All heads work independently and in parallel.
Internal to the multihead self-attention mechanism is a scaled dot product attention (Fig. 4),
calculated as follows:

EQ-TARGET;temp:intralink-;e001;114;350attentionðQ;K;VÞ ¼ softmax

�
QKTffiffiffiffiffi
dk

p
�
V; (1)

Fig. 2 Structural diagram of TEn.

Fig. 3 Schematic diagram of the MHSA mechanism.
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where Q, K, and V denote query, key, and value, respectively, and dk denotes the dimension of
the vector key. After the input image is converted into a sequence, all the pixel vectors on the
sequence are multiplied by three randomly initialized matrices, and three vectors, Q, K, and V,
are obtained. As shown in Fig. 4, the attention mechanism takesQ as the target pixel that needs to
predict the label, and the number of pixel vectors generates the number of Q vectors, so each
pixel in the sequence can be the target pixel. K, as the Q context pixel, matches the similarity
withQ. The similarity between the query and each key is used as the weight, and then the value of
the target pixel is weighted and fused with the value of the individual pixels of the context as the
output of attention.

The MHSA contains p heads ðH1; H2; : : : ; HpÞ:
EQ-TARGET;temp:intralink-;e002;117;460MHSAðXÞ ¼ concatðH1; H2; : : : ; HpÞWO; (2)

where WO is the matrix of learned parameters, and hi is the result of the attention structure of i.
The hi of self-attention structure can be described as follows:

EQ-TARGET;temp:intralink-;e003;117;411hi ¼ attentionðXWQ
i ; XW

K
i ; XW

V
i Þ; (3)

where X is the target image element, and the learning parameter matricesWQ;WK;WV ∈ Rd×d∕p

are used for the affine projection.

3 Modified BERT Network Structure
In this paper, the BERT network is modified by adding a spatial augmentation module and a
spectral correlation module. The modified network is named the spatially augmented guided
sequence-based BERT network (SAS-BERT). The spatial augmentation module guides the
sequence patterns and obtains local spatial information of the HSI. The spectral correlation mod-
ule establishes correlations between spectral kernels and spatial locations, enhancing the descrip-
tion of the spectral information of the image. A schematic diagram of the SAS-BERT framework
is shown in Fig. 5. Random in Fig. 5 refers to random seeds, it means that the input samples

Fig. 4 Schematic diagram of the scaled dot product attention mechanism.

Fig. 5 Schematic diagram of the SAS-BERT framework.
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for the 10 repeated experiments were randomly selected. Assume the original HSI dataset
I ∈ RH×W×b, where H ×W is the spatial size and b is the spectral dimensions. When fed into
the network, it forms a one-hot category vector Y ¼ fy1; y2; · · · ; yCg ∈ R1×1×C, where C is the
number of land cover categories. Taking the Pavia dataset as an example, the spectral dimensions
are 103, and the land cover category is 9, which is introduced explicitly in the experimental
dataset part of the fourth part. The spectral size is set to 11 × 11. SAS-BERT consists of the
spatially augmented learning module and the spe-BERT module, which contains the spectral
correlation module and the multiheaded self-attentive module.

3.1 Spatially Augmented Learning Module
The MHSA mechanism of the BERT model captures rich nonlocal spatial contextual information
but ignores the representation of local spatial information on HSIs. In this paper, we guide HSI’s
local spatial feature extraction through the spatial augmented learning module to obtain an opti-
mal input and then send it to the BERT module for further feature extraction and classification
tasks.35 The diagram of the spatially augmented learning module is shown in Fig. 6, which con-
tains three parts that are described below.

The first section is the localization network (Floc). The localization network in Fig. 6 com-
pletes the extraction of local spatial information. The affine transformation of Eq. (4) through
several hidden layers (convolution, pooling, full connection, etc.) map the coordinate point rela-
tionship between the input and output feature maps. The parameters in affine transformation are
used to rotate, translate, and scale the original input image, and then the optimal input image for
BERT model. The ultimate goal of using localization network is to obtain a good classification
performance (as shown in red in Fig. 6). It learns the affine transformation matrix Aθ. After
several convolutions or entire connection operations, the network will input image I, and then
a regression layer output affine transformation matrix Aθ ∈ R2×3, Aθ is a learnable parameter.
Four transformations are carried out by changing the parameters of Aθ: translation, scaling,
rotation, and clipping. These parameters map the coordinate point relationship between the input
and output feature maps. The coordinate points of the input feature map are obtained according
to Aθ:

EQ-TARGET;temp:intralink-;e004;114;382FlocðIÞ ¼ Aθ ¼
�
a b c
d e f

�
; (4)

where I is the input image; Aθ is an affine transformation matrix; Flocð·Þ denotes a function
formed by a fully connected and other layers; a; b; c; d; e; f denotes different transformations
by changing the values of these six parameters. For example, c; e for translation, a; e for scaling,
a; b; d; e for rotation, and b; d for cropping.

The second section is the grid generator, as shown in the yellow section of Fig. 6. The posi-
tion mapping relationship is based on the affine transformation matrix Aθ. The affine transfor-
mation matrix Aθ and the lattice points of the output feature map are used to find the coordinates
of each pixel point of the output feature map corresponding to the input image:

Fig. 6 Diagram of the spatially augmented learning module.
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EQ-TARGET;temp:intralink-;e005;117;736SθðGði;jÞÞ ¼
�
xIi
yIj

�
¼ Aθ

0
@ xOi

yOj
1

1
A; (5)

where Sθð·Þ denotes the function formed by parametric grid sampling; Gði;jÞ ¼ ðxOi ; yOj Þ denotes
the individual grid coordinates of the output feature map; and ðxIi ; yIjÞ denotes the corresponding
grid coordinate points of the output feature map on the input image.

The third section is the sampler, as shown in the blue section of Fig. 6. That is, the pixel
value of the output image is calculated using ðxIi ; yIjÞ corresponding to the pixel value of the input
image as the pixel value of the output image at ði; jÞ. The interpolation algorithm calculates the
pixel values of the output image based on the location mapping. Because the grid coordinate
point corresponding to the input image in the second part may be a fractional number, the inter-
polation algorithm is used to correct the pixel values at that location. Bilinear interpolation is
used here for interpolation:

EQ-TARGET;temp:intralink-;e006;117;567Vl
i;j ¼

XH
0

XW
0

Iln;m · maxð0;1 − jxIi −mjÞmaxð0;1 − jyIj − njÞ; (6)

where Vl
i;j is the pixel value of the output feature map at channel l and coordinate ðxOi ; yOj Þ, Iln;m is

the pixel value of the input feature map at channel l, coordinate ðn;mÞ (ðn;mÞ traverses all
coordinate points of the input feature map). The smaller the values of jxIi −mj and jyIj − nj are,
the closer the distance between ðxi; yjÞ and ðn;mÞ is. The larger the values of 1 − jxIi −mj
and 1 − jyIj − nj are, the larger the value of max is, and the greater the weight will be.

ðxIi ; yIjÞ → ðn;mÞ is in a lattice point, and finally, four corresponding weights are obtained,

summed, and output Vl
i;j.

The spatial augmentation module can be trained end-to-end with the entire convolutional
network. It is inserted directly into the convolutional network and runs with good classification
performance.

3.2 spe-BERT Module
The spe-BERT module contains an MHSA module and a spectral correlation module. One of the
essential concepts in the original BERT model is the MHSA mechanism, as shown in Fig. 4,
which can link information at different positions on the input image element to obtain nonlocal
long-range dependencies. However, the MHSA mechanism only considers the spatial key to
the image element’s feature representation, ignoring the spectral band’s characteristics for
HSI interpretation. Spectral features are the key features to distinguish ground objects in HSI.
So this paper adds a spectral correlation module to the BERT module to aggregate HSI’s spectral
and spatial features for better classification performance.

The schematic diagram of the spectral combined module is shown in Fig. 7. It comprises a
multibranch network structure that uses two-dimensional convolution to integrate and invert the
spatial information of the image element sequences along the spectral dimension. The sequenced

Fig. 7 Schematic diagram of the spectral combined module.

Zhang et al.: Spatially augmented guided sequence-based bidirectional encoder. . .

Optical Engineering 103103-7 October 2023 • Vol. 62(10)



feature cube X feed into the spectral correlation module and its spectral correlation kernel is
calculated as follows:

EQ-TARGET;temp:intralink-;e007;114;712M1 ¼ σðζðX;WM1
ÞÞ ∈ Rmn×k; (7)

EQ-TARGET;temp:intralink-;e008;114;676Asso ¼ MT
1 · XT ¼ ðX · M1ÞT ∈ Rk×l; (8)

where ζð·Þ denotes a convolution operation and generates a tensor mn × k; σð·Þ is the softmax
function, which assigns independent weights to each image element. M1 is the generated mask,
which integrates the spatial information in conjunction with the input features X to obtain a
feature map of the spectral kernel concerning the spatial location. The output of the spectral
correlation kernel is as follows:

EQ-TARGET;temp:intralink-;e009;114;609M2 ¼ σðζðX;WM2
ÞÞ ∈ Rmn×k; (9)

EQ-TARGET;temp:intralink-;e010;114;572SpeAsso ¼ AssoT · MT
2 ¼ ðM2 · AssoÞT ∈ Rm×n×l; (10)

whereM2 is another generated mask and ζð·;WM1
Þ shares the training parameters with ζð·;WM2

Þ.
The spectral correlation module establishes the correlation between spectral kernels and

spatial locations, complementing the BERT model for HSIs with missing spectral information.

3.3 SAS-BERT
In this paper, we have chosen the Pavia University dataset of dimensions 610 × 340 × 103 as an
example to illustrate the designed SAS-BERT model. The Pavia University dataset is a selection
of hyperspectral data from images taken in 2003 of the Italian city of Pavia, containing nine
feature classes. Figure 8 details the SAS-BERT algorithm flow. The entire network consists of
a spatial augmentation module, a spe-BERT module, and a fully connected layer (FCL). The spe-
BERT module, in turn, contains the MHSA mechanism module (a module of the BERT model
itself) and the spectral correlation module.

SAS-BERT uses a cross-entropy loss function to minimise losses:

EQ-TARGET;temp:intralink-;e011;114;408Lce ¼ −
1

B

XB
i¼1

XC
j¼1

yi;j logðy 0
i;jÞ; (11)

where y and y 0 denote the actual and predicted one-hot label vectors, respectively. B is the num-
ber of samples in a batch, and C is the number of categories. yi;j denotes the scalar of the j’th
category for the i’th sample.

Algorithm 1 describes the detailed training process of SAS-BERT in detail.

Fig. 8 Detailed framework diagram of SAS-BERT.
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4 Experimental Results
All experiments in this paper are implemented on an Ubuntu 18.04 system using a GeForce RTX
2080 GPU and TensorFlow with CUDA 9.0 and Python 3.6. All subsequent training and testing
experiments were conducted based on this environment.

4.1 Experimental Datasets
In this paper, three classical real datasets, Indian Pines (IN), Pavia University (PU), and Houston
(HOU), are used for the experiments.

• Indian Pines. IN was acquired by the airborne visible, infrared imaging spectrometer to
image a patch of Indian pine trees in Indiana, United States, in 1992. They then captured a
145 × 145 size image for annotation as an HSI classification study. The spatial resolution
was 20 m and contained 16 vegetation classes. Bands 104 to 108, 150 to 163, and 220,
which cannot reflect by water, were removed, and the remaining 200 bands retain.

Algorithm 1 SAS-BERT algorithm.

Input: Hyperspectral image cubes I, model depth d , attention to the number of heads h, training batch b,
training epoch e.

Output: Classification evaluation results for X test and predicted classification charts.

1: Begin

2: Input hyperspectral image cubes I;

3: for i ¼ 0 to epoch e do

4: for j ¼ 0 to batch b do

5: Generate the affine transformation matrix Aθ using the localization network;

6: The grid generator calculates the coordinates of each pixel point of the output feature map
corresponding to the input image according to Aθ;

7: As shown in Eq. (6), calculate the pixel values of the output image using bilinear interpolation to obtain
a spatially augmented input image;

8: Spatially augmented images for sequence conversion;

9: for k ¼ 1 to depth d do

10: The sequenced image is fed into the spectral correlation module to obtain a spectral kernel relation
to the spatial location of the feature map SpeAsso;

11: Divide the last dimension of the feature map into h attention heads.

12: The attentional characteristics of each attentional head are obtained by Eq. (1);

13: Concat up the attentional features of h attentional heads;

14: Combined with the spectral correlation of the relational feature map SpeAsso;

15: k þþ;

16: end for

17: jþþ;

18: end for

19: i þþ;

20: end for

21: Load the model and feed X test into the model prediction;

22: Obtaining classification evaluation results and predicted classification maps.
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• Pavia University. The PU image by an airborne reflectance optical spectroscopic imager of
Pavia, Italy, was then selected for HSI classification studies after annotating images with
dimensions 610 × 340 in size. The spatial resolution is 1.3 m and contains nine classes of
land features. Twelve bands were affected by noise removal, leaving 103 bands.

• Houston. The HOU data acquired by the ITRES CASI-1500 sensor. Initially used in the
IEEE GRSS Data Fusion Competition 2013, it was provided by the Hyperspectral Image
Analysis Group and the NSF-funded Center for Airborne Laser Mapping (NCALM) at the
University of Houston, USA, with a size of 349 × 1905 and containing 15 feature classes.
Contains 144 spectral bands in the range of 364 to 1046 nm.

4.2 Evaluation Indicators
In this paper, three classification evaluation metrics, overall accuracy (OA), average accuracy
(AA), and kappa coefficient (Kappa), are used as evaluation metrics to validate the experimental
performance of SAS-BERT. OA indicates the percentage of correctly classified pixels to the total
number of pixels; AA indicates the average percentage of the sum of the ratio of the number of
correctly classified pixels in each category to the overall number of pixels in that category. The
Kappa coefficient indicates the percentage of good or bad classification of the image as a whole.
Higher OA, AA, and Kappa values indicate better classification results, whereas AA measures
the category’s excellent or lousy classification results.

4.3 Parameter Adjustment
In order to improve the efficiency of the SAS-BERT network, this paper sets the neighbourhood
size to 11 × 11, the learning rate to 3 × 10−4, the batch size to 16, the training times to 200,
the dropout rate to 0.3, and samples 5%, 1% and 2% for IN, PU, and HOU, respectively, for
training. This paper experiments with several factors affecting SAS-BERT’s representation of
HSIs.

4.3.1 TEn layers

Evaluating the number of TEn layers at different depths in BERT: the effects of TEn layers on
HSIs classification were evaluated. The effect of TEn layer depth on classification accuracy veri-
fies for the BERT network for the three datasets above. Letting the number of attention heads
h ¼ 10, the classification results for different TEn layer depths on the IN, PU, and HOU datasets
show in Fig. 9.

As shown in Fig. 9, the highest evaluation results for HSI classification accuracy were
obtained on the IN and HOU datasets when the TEn layer depth was 5. When the TEn layer
depth is 2, the highest evaluation result is received on the PU dataset. Therefore, the TEn layer
depths selected in this paper are 5, 2, and 5 for the IN, PU, and HOU datasets, respectively.

4.3.2 Number of self-attended heads

Evaluation of the number of heads for the MHSA mechanism: different numbers in the MHSA
mechanism in the BERT model significantly impact classification performance, and this paper

Fig. 9 Line graphs of classification accuracy for different TEn layer depths on the (a) IN, (b) PU,
and (c) HOU datasets.
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evaluates the effect of other numbers of attention heads on the classification results. Let the TEn
layer depths d of the IN, PU, and HOU datasets be 5, 2, and 5, respectively. The classification
accuracies of different numbers of attention heads on the IN, PU, and HOU datasets show
in Fig. 10.

As shown in Fig. 10, different attention heads are set for the proposed model. The highest
evaluation results were obtained when the number of attention heads was 10 on the IN and PU
datasets. When the number of attention heads is 4, the highest evaluation result is received on the
HOU dataset. Therefore, the number of attention heads selected in this paper for the IN, PU, and
HOU datasets are 10, 10, and 4, respectively.

4.4 Experiments Related to the Spatial Augmentation Learning Module and
the Spectral Correlation Module

4.4.1 Affine transformation

Evaluation of various affine transformations of the spatial augmentation learning module: since
the affine transformation of the spatial augmentation module includes translation, rotation, and
scaling, the results of each shift may significantly impact the experiments. In this paper, several
experiments of mapping, translation, scaling, and process of the image elements were evaluated,
such that the TEn layer depth d was 5, 2, and 5 for the IN, PU, and HOU datasets, respectively;
the number of attention heads selected for the IN, PU, and HOU datasets were 10, 10, and 4,
respectively. The classification accuracies of the different transformations on the IN, PU, and
HOU datasets are shown in Table 1. Let the classification accuracy be as CA and the method
in this paper as SAL.

The affine transformations from left to right in Table 1 are direct mapping (dm), translation
(tra), doubling (dou), halving (hal), rotation by 30 deg, rotation by 45 deg, and rotation by 60 deg,
with rotation being a clockwise rotation by an angle around the origin. The IN dataset gives
higher results for the transformations doubling the image element and rotating it by 60 deg, with
the AA for the 60 deg rotation being almost 2% less accurate than the experimental results for
doubling the image element and the overall higher classification accuracy for doubling the image
element when considered together. The Pavia dataset sees the results of the doubled transfor-
mation outperforming the other transformations. The HOU dataset shows better classification
results when the image elements reduce by half than the other transformations.

The classification accuracy is better than the original BERT module for most affine trans-
formations when only the spatial augmentation module adds. The OA and Kappa for the IN
dataset are smaller than the original BERT module for translation and halving. Still, the clas-
sification results for AA are higher than the direct use of the BERT module. The results for the
PU dataset were all better than the original BERT module classification accuracy, or the clas-
sification accuracy was not significantly different. The classification results of the HOU dataset
and PU dataset are basically the same, and the classification accuracy of the HOU dataset is
slightly worse than that of the original BERT module in translation transformation.

The effect of using the spatial augmentation and spectral correlation modules together needs
to be clarified, combined with affine transformations separately with the spectral correlation
module in this paper, as explained later.

Fig. 10 Line graphs of classification accuracy for different numbers of attention heads on the
(a) IN, (b) PU, and (c) HOU datasets.
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4.4.2 Spectral correlation modules

Experiments on spectral correlation modules: the results of the experiments with the addition of
a separate spectral correlation module are shown in Table 2.

As shown in Table 2, including the spectral correlation module resulted in a corresponding
improvement in the classification accuracy of the IN, PU, and HOU datasets compared to when
the spectral module was not added, with a significant increase in the AA accuracy of the IN
dataset in particular. Therefore, the classification effect of the spectral correlation module is
noticeable.

4.4.3 Experiments combining spatial augmentation and spectral correlation
modules

Experiments on spatial augmentation and spectral correlation modules were used together, and
the results are shown in Table 3.

As shown in Table 3, comparing the results of the experiments, we found that the classi-
fication accuracy of the IN, PU, and HOU datasets was the best when combined with the spectral
correlation module at a rotation of 60 deg. The classification accuracy was also the best when
comparing the spatial augmentation and the spectral correlation module separately. The two
modules of the HOU dataset were the same as the separate experiments, so the effect of using
the spatial augmentation and spectral correlation module separately on the HOU dataset was
not significant.

4.5 Comparison with Various Algorithms
The SAS-BERT algorithm proposed in the paper is experimentally compared with other deep-
learning methods. There are two types of deep-learning methods for comparison, CNN-based
algorithms: CNN,19 SSRN,36 HybridSN,37 and LS2CM,38 and transformer-based methods:
CTN,24 SSTN,26 and HSI-BERT.34

In these experiments, the SAS-BERT input hyperspectral cube has a spatial size of 11 × 11.
The Adam optimizer optimizes 200 epochs. The learning rate set to 3 × 10−4, the batch size to 16,
and the dropout rate to 0.3. Various other settings for the comparison algorithms follow the
original paper. The classification accuracy for the comparison experiments is shown in Table 4.

Table 4 shows the classification results of the various classification methods. It can be
analyzed that SAS-BERT outperforms the compared CNN and transformer methods on the
IN, PU, and HOU datasets, significantly improving the HSI-BERT method in particular.
Overall, the SAS-BERT classification method performs better than the current state-of-the-art
methods.

Table 2 Classification accuracy of the spectral correlation module on
the IN, PU, and HOU datasets.

Datasets CA HSI-BERT spe-BERT

IN OA (%) 93.36 ± 0.88 94.95 ± 0.89

AA (%) 85.01 ± 1.90 90.47 ± 2.25

k × 100 92.42 ± 1.02 94.24 ± 1.02

PU OA (%) 96.38 ± 0.58 97.41 ± 0.54

AA (%) 93.41 ± 0.90 95.24 ± 1.71

k × 100 95.19 ± 0.77 96.56 ± 0.72

HOU OA (%) 89.59 ± 2.10 91.12 ± 0.69

AA (%) 87.55 ± 3.17 91.06 ± 0.83

k × 100 88.74 ± 2.28 90.40 ± 0.75

Note: Bold values represent the optimal results under the same evaluation index.
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Figures 11–13 show the classification mapping of the comparison experiments on the
Indian, Pavia, and Houston datasets. From these figures, the SAS-BERT algorithm shows more
accurate classification mapping results with smoother and clearer edges, and SAS-BERT has
better classification results.

Fig. 11 Classification maps on the Indian dataset: (a) a reference map of the real ground category
on the Indian dataset; a classification map of (b) CNN; (c) SSRN; (d) HybridSN; (e) LS2CM;
(f) CTN; (g) SSTN; (h) HSI-BERT; (i) SAS-BERT; and (j) each ground cover category marker colour
for the Indian dataset.

Fig. 12 Classification maps on the Pavia dataset: (a) a reference map of the real ground category
on the Pavia dataset; a classification map of (b) CNN; (c) SSRN; (d) HybridSN; (e) LS2CM; (f) CTN;
(g) SSTN; (h) HSI-BERT; (i) SAS- BERT; and (j) each ground cover category marker colour for
the Pavia dataset.
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5 Conclusion
This paper proposes a SAS-BERT method for HSI classification based on the BERT model for
feature extraction of spatial and spectral information. The method improves the performance of
BERT model-based classification by aggregating augmented spatial features and spectral fea-
tures to represent HSI features. It improves the representative characteristics of the local spatial
information using a spatial augmentation module. The module transforms the input image so that
distinct representational features characterise this input. It allows for better performance in clas-
sification tasks, which helps to minimize the overall cost of the network during training. In addi-
tion, it uses the spectral properties of HSIs so that they fully reflect the internal physical structure
of matter. And correlation with spatial location is established, which significantly improves the
interpretation of HSIs through feature description. Results from experiments on three widely
used datasets show that the SAS-BERT model outperforms the current state-of-the-art CNN and
transformer network classification models.

Code, Data, and Materials Availability
The data presented in this paper are publicly available in Ref. 39. The archived version of the code
described in this manuscript can be freely accessed through Github: https://github.com/
zyy1234aiyou/SAS-BERT.
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Fig. 13 Classification maps on the Houston dataset: (a) a reference map of the real ground
category on the Houston dataset; a classification map of (b) CNN; (c) SSRN; (d) HybridSN;
(e) LS2CM; (f) CTN; (g) SSTN; (h) HSI-BERT; (i) SAS-BERT; and (j) each ground cover category
marker colour for the Houston dataset.
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