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Abstract. This work describes an accurate method for simulating turbulent phase screens. The phase screen is
divided into a fast Fourier transform (FFT)-based screen and a tilt screen. The simulation of the FFT-based
screen is different from that of the standard method. In the simulation, the discrete power spectrum of the tur-
bulence is obtained from the discrete Fourier transform of the phase autocorrelation matrix, not from the theo-
retical power spectrum. This method avoids the drawbacks of the undersampling of the low frequency and
high frequency components which occurs in the standard FFT-based method. The maximum error in the
phase structure function can be reduced to <0.13%, and the additional execution time increases by only several
percents. This method is only suitable for square screens.© The Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI:
10.1117/1.OE.53.1.016110]
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1 Introduction
Simulation of the turbulent phase screens is very important
for studying the light propagation and imaging through
atmospheric turbulence. There are several methods for sim-
ulating turbulent phase screens, e.g., the discrete Fourier
transform (DFT) method,1 the Zernike polynomials method,2

and the covariance-based method.3 The Zernike polynomial
method is very fast, but it has the drawbacks of inaccurate
simulation of the high-spatial frequency turbulence compo-
nents and difficulty of simulating the effects of the outer
scale of turbulence. In the covariance-based method, the sim-
ulation is very accurate, but the supported points of the
screen are very small. Some interpolation methods can be
used to improve the resolution4–6 or to extend the screen
size,7 but the interpolation decreases the accuracy and speed.
The DFT method can take the advantage of the fast Fourier
transform (FFT) computational performance. This FFT-based
method is simple, fast, and less constrained by the computer
memory size, it has the ability to generate an extra-large
phase screen, and has been widely used for the simulation
of the laser beam propagation through atmospheric turbu-
lence. The main drawbacks of the FFT-based screen are
the undersampling of the low spatial frequency components
and the periodicity induced by the FFT algorithm.

For a square screen with D ×D sizes and M ×M points,
according to Refs. 8 and 9, the FFT-based phase screen can
be written as

ϕFFTðmΔ; nΔÞ ¼
XM∕2−1

m 0¼−M∕2

XM∕2−1

n 0¼−M∕2

½Raðm 0; n 0Þ þ iRbðm 0; n 0Þ�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φtheoryðm 0Δ 0; n 0Δ 0Þ

q
exp½i2πðm 0mþ n 0nÞ∕M�; (1)
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where m, n, m 0, n 0 ¼ −M∕2; : : : ;M∕2 − 1 are the integer
indices, Raðm 0; n 0Þ and Rbðm 0; n 0Þ are the independent
Gaussian random numbers with zero-mean and unit-variance,
i ¼ ffiffiffiffiffiffi

−1
p

denotes the imaginary unit, Φtheoryðm 0Δ 0; n 0Δ 0Þ is
the discrete power spectrum of turbulence, Δ 0 ¼ 2π∕D and
Δ ¼ D∕M are the sampling intervals in the spatial frequen-
cies and spatial domains, respectively, L0 is the turbulence
outer scale, and r0 is the Fried parameter. Equation (1)
can be implemented by using an FFT. One FFT operation
can generate two independent phase screens, the real part of
ϕ is one and the imaginary part is another.

The FFT-based screen is deficient in the low-spatial fre-
quency and high-spatial frequency turbulence components.
The low frequency components have important influence
on the low-order turbulent effects. For higher accuracy
simulation, the low frequency components should be com-
pensated. Over the past two decades, subharmonic meth-
ods4,8,10 or weighted subharmonic methods11,12 have been
the main solutions to compensate the low frequency compo-
nents. The subharmonic compensation screens have smaller
frequency sampling intervals in the low frequency region, so
the discretization error of the power spectrum is reduced. In
the subharmonic method of Johansson and Gavel,8 the low
frequency error can be reduced to about 5%. In the weighted
subharmonic method of Sedmak,11 the discrete subharmonic
power spectrum at low frequency has been weighted to com-
pensate the low frequency error, and the power spectrum
Φtheory around the folding frequency π∕Δ has also been
weighted to compensate the high frequency error. After
those compensations, the error from the low frequency
to high frequency can be reduced to about 1%, but the
additional execution time increases by more than two

*Address all correspondence to: Jingsong Xiang, E-mail: xiangjs1923@163
.com

Optical Engineering 016110-1 January 2014 • Vol. 53(1)

Optical Engineering 53(1), 016110 (January 2014)

http://dx.doi.org/10.1117/1.OE.53.1.016110
http://dx.doi.org/10.1117/1.OE.53.1.016110
http://dx.doi.org/10.1117/1.OE.53.1.016110
http://dx.doi.org/10.1117/1.OE.53.1.016110
http://dx.doi.org/10.1117/1.OE.53.1.016110
http://dx.doi.org/10.1117/1.OE.53.1.016110


times compared to the standard FFT-based method and the
compensation processes are complicated. Charnotskii13 pro-
posed a sparse spectrum-based simulation method to reduce
the low frequency error. The sampling intervals in the fre-
quency domain are not constant, its exponential increases
as frequency increases. In the low frequency region, the sam-
pling intervals are very small and the discretization error is
reduced. But this method cannot use the FFT algorithm.

All of those methods are processed in the power spectrum
domain. Because the power spectrum is discretely sampled,
no matter how the power spectrum is processed the discre-
tization error always exists. The ladder-like discrete power
spectrum does not agree well with the theoretical continuous
power spectrum and the simulation error always exists.

Xiang14 proposed a low frequency compensation method.
The compensation screen is generated by the covariance-
based method. This method avoids the discretization error
of the power spectrum in the low frequency region, and
the low frequency error can be reduced to <0.1%, but the
high frequency error still exists and the execution time
increases about 50%.

In this paper, we proposed a very simple and fast method
to generate the square phase screen with negligible low fre-
quency and high frequency errors. The screen is divided into
an FFT-based screen and a tilt screen. The generating of the
FFT-based screen is unlike the conventional method, the dis-
crete power spectrum is obtained from the DFT of the phase
autocorrelation matrix, not from the theoretical power spec-
trum given by Eq. (2). By this means, the discretization error
of the power spectrum is avoided.

2 FFT-Based Phase Screen Simulation According
to the Phase Autocorrelation Function

Generally, we use the phase structure function to evaluate the
simulation accuracy. The theoretical phase structure function
is given by

DtheoryðrÞ ¼ 2½Btheoryð0Þ − BtheoryðrÞ�; (3)

where BtheoryðrÞ is the theoretical phase autocorrelation and r
is the separation distance between two points.

The theoretical phase autocorrelation function can be
expressed as7

BtheoryðrÞ ¼ ðL0∕r0Þ5∕32−5∕6π−8∕3Γð11∕6Þ
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where K5∕6ð·Þ is the modified Bessel function of the third
kind and Γð·Þ is the gamma function.

When r ¼ 0, the theoretical phase autocorrelation func-
tion is given by

Btheoryð0Þ ¼ ðL0∕r0Þ5∕32−5∕6π−8∕3Γð11∕6Þ
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2−1∕6Γð5∕6Þ: (5)

For the FFT-based phase screen, the expected phase auto-
correlation matrix is an inverse discrete Fourier transform
(IDFT) of the power spectrum matrix8

BexpðmΔ; nΔÞ ¼
XM∕2−1

m 0¼−M∕2

XM∕2−1

n 0¼−M∕2

Φtheoryðm 0Δ 0; m 0Δ 0Þ

× exp½i2πðm 0mþ n 0nÞ∕M�: (6)

Conversely, we also can get a power spectrum matrix by
using a DFT to the theoretical phase autocorrelation matrix

ΦFFTðm0Δ0;n0Δ0Þ¼ 1

M2

XM∕2−1

m¼−M∕2

XM∕2−1

n¼−M∕2
Btheory

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2þn2Þ

q
Δ
�

×exp½−i2πðm0mþn0nÞ∕M�: (7)

If the theoretical power spectrum Φtheory in Eqs. (1) and
(6) is replaced by ΦFFT given by Eq. (7), according to the
inverse relationship of Eqs. (6) and (7), and assuming no
other errors occurred (an invalid assumption), then the
expected phase autocorrelation Bexp will be consistent with
the theoretical phase autocorrelation Btheory, and the simula-
tion error of phase structure function will be eliminated.
This is the starting point of our new method.

Figure 1 shows the phase structure functions of the phase
screen simulated from Eqs. (1) and (7). For the case of
L0∕D < ∼1∕2, the simulation error is very small. For the
case of large L0∕D, the simulation error is very large. This
condition is similar to that of the traditional FFT-based
method. If there is no additional processing, this simulation
method has no especial advantage over the traditional FFT-
based method.

Let us see the reason of the error. The power spectrum
ΦFFT given by Eq. (7) is not completely consistent with
the theoretical spectrum Φtheory given by Eq. (2), as shown
in Fig. 2. Power spectrum ΦFFT oscillates around the theo-
retical spectrum Φtheory, and some elements in ΦFFT may be
negative, whereas the power spectrum in Eq. (1) is required
to be non-negative. The negative elements in ΦFFT induce
simulation error.

Theoretically, the power spectrum should be real and non-
negative. But here, the power spectrum ΦFFT is obtained
from the DFT of the autocorrelation matrix. The autocorre-
lation matrix cannot contain all autocorrelation information

Fig. 1 Phase structure functions of the simulated screen as a function
of the separation distance. The curves are averaged over 105 phase
screens. For the case of L0 ¼ 1 m, the simulated curve agrees well
with the theoretical curve, it is hard to distinguish them.
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(as shown in Fig. 3), so negative values may appear in ΦFFT,
resulting in simulation errors.

3 Preprocessing of the Phase Autocorrelation
Function

In order to eliminate the negative values in ΦFFT, the phase
autocorrelation function should be preprocessed. First, we
can extract some piston and tilt components from the
phase autocorrelation function, and these piston and tilt
components are chosen to ensure that the rest of the phase
autocorrelation function and its derivative are both zero at
r ¼ D∕2. Second, set the phase autocorrelation function
to zero when r > D∕2. After such treatments, the phase auto-
correlation function with a large L0∕D is very similar to that
with a small L0∕D, and the number of negative values in
ΦFFT can be greatly reduced. In the following, we describe
these steps in detail.

The extracted tilt screen can be expressed as

φtiltðx; yÞ ¼ ðθxxþ θyyÞσtilt; (8)

where θx and θy are the independent Gaussian random
numbers with zero-mean and unit-variance, and σtilt is the

standard deviation of the random tilt angle in the x- or y-
directions.

The phase structure function and the autocorrelation func-
tion of the tilt phase screen can be expressed as

DtiltðrÞ ¼ h½ϕtiltðx1; y1Þ − ϕtiltðx2; y2Þ�2i ¼ r2σ2tilt; (9)

BtiltðrÞ ¼ Btiltð0Þ − r2σ2tilt∕2; (10)

where Btiltð0Þ can take on any value, which only influences
the piston component, but does not influence the shape of the
phase screen.

The extracted piston component is chosen to ensure that
the rest of the phase autocorrelation is zero at r ¼ D∕2. After
extracting out the tilt and piston components, the remaining
phase autocorrelation is given by

BFFTðrÞ ¼ BtheoryðrÞ − BtiltðrÞ − BtheoryðD∕2Þ þ BtiltðD∕2Þ:
(11)

For the case of infinite turbulence outer scale (L0 → ∞),
the phase autocorrelation function Btheory cannot be obtained
by Eq. (4). In this case, Btheory can be obtained by

BtheroyðrÞ ¼ Btheroyð0Þ − 6.88ðr∕r0Þ5∕3∕2; (12)

where Btheroyð0Þ can take on any value, which does not in-
fluence the shape of the phase screen.

The tilt screen ϕtilt should be chosen to ensure that the
derivative of BFFTðrÞ is zero at r ¼ D∕2. This condition
can be expressed as

½BFFTðD∕2Þ − BFFTðD∕2 − εÞ�∕ε ¼ 0; (13)

where ε is a very short distance <Δ∕100.
Inserting Eq. (11) into Eq. (13) leads to

BtheoryðD∕2Þ − BtheoryðD∕2 − εÞ
¼ BtiltðD∕2Þ − BtiltðD∕2 − εÞ: (14)

By inserting Eq. (10) into Eq. (14), then σ2tilt can be
obtained as

σ2tilt ¼
½BtheoryðD∕2 − εÞ − BtheoryðD∕2Þ�

εðD − εÞ∕2 : (15)

When r > D∕2, set the phase autocorrelation BFFTðrÞ to
zero

BFFTðrÞ ¼ 0; for r > D∕2: (16)

From Eq. (16), it is obvious that the simulated phase
screen is only valid in the range of r ≤ D∕2. For a rectan-
gular screen with Dx ×Dy sizes, the valid range is
r ≤ minðDx∕2; Dy∕2Þ, so this simulation method is mean-
ingless for the rectangular screens.

We can obtain the discrete power spectrumΦFFT using the
above phase autocorrelation BFFT to replace Btheory in Eq. (7).
Because some elements in ΦFFT may still be negative, we
throw away the negative values to ensure that the discrete
power spectrum is non-negative

Fig. 2 Comparison of power spectrum density given by Eqs. (7) and
(2). Simulation parameters are D ¼ 2 m, M ¼ 256, r 0 ¼ 0.2 m, and
L0 ¼ 1 m.

Fig. 3 The diagrams of the phase autocorrelation. Simulation param-
eters are D ¼ 2 m, M ¼ 256, and r 0 ¼ 0.2 m. The left is for the case
of L0∕D ¼ 0.5, the autocorrelation matrix contains almost all auto-
correlation information (when r > D∕2, Bðr Þ ≈ 0). The right is for
the case of L0∕D ¼ 2.5, the autocorrelation matrix cannot contains
all autocorrelation information, some autocorrelation information for
r > D∕2 is lost.
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ΦFFTðm 0Δ 0;m 0Δ 0Þ ¼ 0; for ΦFFTðm 0Δ 0; m 0Δ 0Þ < 0: (17)

Finally, using the above discrete power spectrum ΦFFT to
replace Φtheory in Eq. (1), then the FFT-based phase screen
ϕFFT is obtained.

The final desired phase screen is the sum of the FFT-based
screen and the tilt screen, which can be expressed as

ϕðmΔ; nΔÞ ¼ ϕFFTðmΔ; nΔÞ þ ϕtiltðmΔ; nΔÞ: (18)

4 Evaluation of the Simulation Error
The expected phase structure function of the simulated phase
screen is given by

Dexp
ϕ ðmΔ; nΔÞ ¼ Dexp

FFTðmΔ; nΔÞ þDtilt

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ n2Þ

q
Δ
�
;

(19)

where Dexp
FFT is the expected phase structure function of the

FFT-based phase screen ϕFFT, which can be expressed as

Dexp
FFTðmΔ; nΔÞ ¼ 2½Bexp

FFTð0; 0Þ − Bexp
FFTðmΔ; nΔÞ�; (20)

where Bexp
FFT is given by8

Bexp
FFTðmΔ; nΔÞ ¼

XM∕2−1

m 0¼−M∕2

XM∕2−1

n 0¼−M∕2

ΦFFTðm 0Δ 0; m 0Δ 0Þ

× exp½i2πðm 0mþ n 0nÞ∕M�: (21)

The expected relative simulation error can be defined as

re errDðmΔ;nΔÞ¼Dexp
ϕ ðmΔ;nΔÞ∕Dtheory

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2þn2Þ

q
Δ
i
−1:

(22)

In the range of r ≤ D∕2, the simulation error is mainly
induced by the negative values in ΦFFT obtained by Eq. (7),
and essentially no other errors appear in the simulation.

The expected simulation errors are shown in Fig. 4. The
high frequency error is a few percents and the low frequency
error is near zero. The high frequency errors increase with an
increasing M or L0∕D. When L0∕D > 50, the errors are

reaching saturation and no longer increase noticeably. The
saturation errors are about 4.5%, 2.4%, and 1.1% for
M ¼ 2048, 1024, and 512, respectively. The relative error
is independent of r0.

5 Compensation of the High Frequency Error
Although this level of simulation accuracy is adequate for
most applications, here we will introduce a predistortion
method to compensate for the high frequency error. Before
using the IDFT to obtain the discrete power spectrum, we
distorted the phase autocorrelation value in the opposite
direction of the error.

The error of the phase autocorrelation is given by

errBðmΔ; nΔÞ ¼ Bexp
FFTðmΔ; nΔÞ − Btheory

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ n2Þ

q
Δ
�
:

(23)

After predistortion, the phase autocorrelation can be
expressed as

BhighcomðmΔ; nΔÞ ¼ Btheory

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ n2Þ

q
Δ
�

− CðmΔ; nΔÞerrBðmΔ; nΔÞ; (24)

where CðmΔ; nΔÞ is the predistortion coefficient. The dis-
crete power spectrum ΦFFT after high frequency error com-
pensation can be obtained by using Bhighcom to replace Btheory

in Eq. (7).
Two points should be noted here. The first is that a con-

stant coefficient is not a good choice. The second is that the
phase autocorrelation function should be as smooth as pos-
sible after predistortion. Figure 5 shows the errors distribu-
tion of errB, the error is dependent on azimuth and the points
with large error are located near the center of matrix errB, so
only the elements in the central region of errB require
predistortion.

A Gaussian shaped predistortion coefficients matrix is
suggested as

CðmΔ; nΔÞ ¼ A expf−½ðmΔÞ2 þ ðnΔÞ2�∕W2g: (25)

For different A and W, the performance of the high fre-
quency error compensation has some differences, as shown

Fig. 4 The expected errors as a function of the separation distance
mΔ, D ¼ 2 m.

Fig. 5 The expected errors distribution diagram of the phase autocor-
relation. Simulation parameters areM ¼ 2048, D ¼ 2 m, L0 ¼ 100 m,
and r 0 ¼ 0.2 m.
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in Fig. 6. The residual high frequency errors can be reduced by
orders of magnitude after high frequency error compensation.

Figure 7 shows the maximum relative errors after high
frequency error compensation with parameters of A ¼ 1.5
and W ¼ D∕4. The ordinate maxðjre errDjÞ represents the
maximum absolute value in the relative error matrix re errD.
For M ≤ 2048, the maximum residual error is <0.13%.

6 Simulation Results
Figure 8 shows a sample of the simulated phase screen with
the parameters of D ¼ 2 m, M ¼ 256, L0 ¼ 20 m, r0 ¼
0.2 m, A ¼ 1.5, and W ¼ D∕4.

Figure 9 shows the simulated phase structure function
(a) and the error (b) averaged over 2 × 106 simulated
phase screens. When r ≤ D∕2 the error is very small,
only about 0.1%, but when r > D∕2, the error increases
rapidly.

The speed of this method is very fast. On a Lenovo com-
puter running MATLAB R2010a with 2.0 GHz Pentium dual
core processor and 2 GB memory, the preparation time and
the generating time for one phase screen with M ¼ 512 are
about 0.74 and 0.077 s, respectively, whereas those of the
standard FFT-based screen are about 0.09 and 0.073 s,
respectively. The preparation time of this method is about
eight times that of the standard FFT-based method, which
is mainly due to the low computational efficiency of the
phase autocorrelation matrix using Eq. (4), but this prepara-
tion work only needs to be done once. Without accounting

for the preparation time, the execution time of generating
one screen increases about 6% compared to the standard
FFT-based screen.

7 Conclusion
Compared to other turbulent phase screen simulation meth-
ods, this new simulation method has obvious advantages in
accuracy and speed. For M < 2048, the overall simulation
error from the low spatial frequency to the high spatial fre-
quency can be easily reduced to <0.13%, which is much less
than that of any other FFT-based phase screens. The addi-
tional execution time only increases about several percents

Fig. 6 The expected residual errors as a function of the separation
distance mΔ after high frequency compensation, D ¼ 2 m.

Fig. 7 The maximum residual errors after high frequency error
compensation.

Fig. 8 Sample of the simulated phase screen.

Fig. 9 The phase structure function (a) and the error (b) in diagonal
direction. Other parameters are M ¼ 512, A ¼ 1.5, and W ¼ D∕4.
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compared to that of the standard FFT-based phase screen,
which is much less than that of any other compensation
methods based on the FFT.

The main drawback is that this method is only suitable for
square screens, more specifically, the circular screens, and is
not suitable for rectangular screens. Another drawback is that
the effects of the turbulence inner scale l0 cannot be easily
simulated. The MATLAB code is be available via e-mail.
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