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1 Introduction
Surface scatter phenomena is an important issue in diverse
areas of science and engineering. Predicting the scattered
light distribution from a randomly rough surface has been
investigated by numerous researchers over the past century.
Elfouhaily and Guerin conducted an exhaustive survey in
2004, including 260 references.1 Many approximate scatter-
ing methods were reviewed and it is claimed that each
method has advantages for specific applications under cer-
tain situations. However, the most widely used methods to
predict surface scatter phenomena are the small perturbation
method (SPM) and the Kirchhoff approximation (KA)
method that were established over 40 years ago as the
classical Rayleigh–Rice surface scatter theory2 and the
Beckmann–Kirchhoff surface scatter theory,3 respectively.
The SPM has an explicit smooth surface approximation,
but it is accurate for large incident and scattered angles.
The KA method is valid for rougher surfaces but exhibits
a paraxial limitation imposed by a tangential plane approxi-
mation. These two approximate theories are thus comple-
mentary, but not all-inclusive, i.e., neither of them, nor
the combination of them, adequately describes scattered
light behavior for moderately rough surfaces at large incident
and/or scattered angles.

Recently, Krywonos et al. described a linear systems for-
mulation of surface scatter theory,4 based upon a nonparaxial
scalar diffraction analysis.5,6 This generalized Harvey–Shack
(GHS) surface scatter theory provides insight and under-
standing not readily gleaned from the two previous theories,
and Ref. 4 claims that it provides accurate results for mod-
erately rough surfaces at arbitrary incident and scattered
angles. The purpose of the current paper is to provide a rig-
orous validation of the GHS surface scatter theory and to
quantitatively compare its performance to that of the classical
Rayleigh–Rice and Beckmann–Kirchhoff theories over the
entire domain of relevant surface parameters.

The growing memory capacity and increasing speed of
computers has resulted in recent advances in numerical

simulation methods for rough surface scattering that are
fast, efficient, and numerically stable.7 The method of
moments (MoM) using a numerical Monte Carlo calculation
for discretizing the integral equation has been implemented
and applied to surface scatter analysis in this paper.7,8 The
integral equation upon which the numerical method is
based is exact; however, applying it to real-world scattering
problems with the desired accuracy is somewhat restricted
because it requires extensive computer resources and long
calculation times.

It is reasonable to use the MoM to verify or obtain the
region of validity of approximate scattering theories for
ideal cases, then apply simple and easy-to-handle approxi-
mate methods to real-world scattering problems for situa-
tions where the approximate methods are validated to be
accurate.9–22 Several previous researchers have reported
the valid domain of the SPM, KA, and other scattering the-
ories using the MoM. Almost all of this work has been done
for one-dimensional (1-D) randomly rough surfaces.
Although calculation results using the MoM of the scattering
distribution by two-dimensional (2-D) randomly rough sur-
faces have been reported, it is still a very computationally
intense and challenging task.23–25 Thus, a well developed
and stabilized 1-D analysis is used to determine the domain
of validity for approximate scattering methods in this paper.

We will restrict our attention to perfectly conducting sur-
faces whose surface power spectral density (PSD) function is
a Gaussian or exhibits an inverse power law (fractal) behav-
ior. For a surface with a Gaussian PSD function, the random
surfaces can be completely characterized by the root-mean-
square (rms) surface roughness and the surface auto-covari-
ance (ACV) length. Meanwhile, a fractal surface, having an
inverse power law PSD function, can be characterized by
three surface parameters.

In Sec. 2, merit functions are introduced for qualitative
comparison. In Sec. 3, the numerical comparisons of those
approximate methods and the rigorous MoM for Gaussian
statistics are shown. In Sec. 4, similar comparisons are
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performed for fractal-like surfaces. In Sec. 5, the parameters
used for the simulations are presented.

2 Merit Functions
In this paper, we obtain the valid domains of approximate
methods by comparing their scattering predictions to the pre-
diction by the rigorous MoM. Thus, it is beneficial to intro-
duce a merit function which enables us to compare
quantitatively how close the two predictions are to each
other. As an indicator, let us define a linear error given by

ε ≡
1

π

P
N
m¼1 jIðθmÞΔθm − IMoMðθmÞΔθmjP

N
m¼1 IMoMðθmÞΔθm

; (1)

where θm is a discretized scattering angle, N is the total num-
ber of discretized scattering angles, and I stands for the pre-
dicted scattering intensity. Equation (1) is used to calculate
the mean error in the predicted scattered radiant power from
−90 to 90 deg, normalized by the total scattered radiant
power. If the two scattering intensity predictions are exactly
the same, the value of the error is zero. On the other hand, it
can be some relatively large number if the shapes of the two
curves are quite different.

In some applications, the scattering intensity plotted in a
logarithmic scale is of interest. With the definition of the
error value given in Eq. (1), it is hard to compare quantita-
tively how the two curves are behaving in the logarithmic
scale. Thus, we introduce another merit function which is
referred to as the log error given by

ε� ¼ 1

N

XN
m¼1

j log IðθmÞ − log IMoMðθmÞj; (2)

which gives the mean error of the predicted scattering inten-
sity in the logarithmic scale. In the following sections, the
regions of validity of the SPM, KA, and GHS are visualized
with the 2-D error maps using these merit functions.

3 Surfaces with a Gaussian Statistics
In this section, the predictions (for TE polarization) of the
three approximate methods are compared to the rigorous
MoM prediction for 1-D ideally conducting random rough
surfaces having Gaussian PSD functions. The wavelength-
scaled 1-D Gaussian ACV function is given by

ACVðx̂Þ ¼ σ̂2tot exp½−ðx̂∕l̂cÞ2�; (3)

where x̂ is the wavelength-scaled space position, l̂c is the
wavelength-scaled correlation length, and σ̂tot is the wave-
length-scaled rms roughness of a random surface. The cor-
responding 1-D surface PSD function is given by

PSDðαÞ ¼ ffiffiffi
π

p
l̂cσ̂2tot exp½−ðπl̂cαÞ2�; (4)

where α ¼ sin θ is the x-component of the direction cosine.
Since the space position is scaled by the wavelength, its
reciprocal variable, the direction cosine, is used for describ-
ing surface PSD function instead of the spatial frequency and
their relation is given by fx ¼ α∕λ, where fx is the x-com-
ponent of the spatial frequency and λ is the wavelength of the
incident light.

For a surface with a Gaussian surface PSD, the rms rough-
ness, the surface ACV length, and the incident angle are the
three parameters affecting scattered light behavior. Our
numerical analysis is limited to the practical range of surface
parameters defined by 0 < σ̂tot < 1 and 0 < l̂c < 3. The accu-
racy of the MoM results in this region is discussed in Sec. 5.

3.1 Scattering Intensity Distribution

Figure 1 shows the incoherent scattered intensity distribution
predicted by the SPM (blue-dashed line), KA (green-dotted
line), GHS (red solid line), and MoM (black asterisk) for two
different sets of surface parameters. In Fig. 1(a), the case of
σ̂tot ¼ 0.01, l̂c ¼ 0.2, and θi ¼ 30 deg, which is a smooth
surface with a short-correlation length, is considered. The
predictions of both the SPM and GHS agree well with the
MoM prediction, and the KA result agrees near the specular
direction but fails in the wide-angle regime. In particular, it

Fig. 1 Scattered intensity of the SPM (dashed line), KA (dotted line), GHS (solid line), and MoM (asterisk) for (a) σ̂tot ¼ 0.001, l̂ c ¼ 0.2, and
θi ¼ 30 deg, (b) σ̂tot ¼ 0.2, l̂ c ¼ 2, and θi ¼ 0 deg.
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does not converge to zero at �90 deg scattering angles,
which is a nonphysical situation. The case of σ̂tot ¼ 0.2,
l̂c ¼ 2, and θi ¼ 0 deg, which is moderately rough with a
long-correlation length, is illustrated in Fig. 1(b), and both
the intensity profiles from KA and GHS methods show a
good agreement to the MoM prediction; however, as
expected, the SPM fails for this moderately rough surface.

Figures 2(a) and 2(b) illustrate two different situations
where the GHS model has reasonable accuracy for moder-
ately rough surfaces, but the other two fail to predict an accu-
rate intensity distribution. However, they fail for different
reasons; the SPM fails because the smooth-surface approxi-
mation is violated and the KA fails because the small corre-
lation lengths produce large angle scattering that violates the
paraxial limitation. Figures 2(c) and 2(d) show for even
rougher surfaces and thus, the SPM predictions have been
omitted. Figure 2(c) shows the predicted intensity distribu-
tion by the KA and GHS for the case of σ̂tot ¼ 0.4, l̂c ¼ 2.5,
and θi ¼ 50 deg. The GHS predictions agree well with the
rigorous MoM predictions over the entire range of scattered
angles; however, the KA prediction exhibits a significant
error near the peak and in the forwarding scattering direction
due to the large (nonparaxial) incident angle. In Fig. 2(d), a
very rough surface (σ̂tot ¼ 1) is considered, and the overall
angular behavior predicted by the GHS theory is quite close

to that predicted by the rigorous MoM except near the specu-
lar direction where the MoM predictions exhibit irregular-
ities due to the considerable multiple scattering.26 There is
no specular beam for such a rough surface, i.e., the total inte-
grated scatter is approximately unity. The KA method fails
badly due to the large surface roughness. Extensive empirical
scatter predictions with the KA method have indicated that it
remains quite accurate, at this correlation width, for
σ̂tot ≤ 0.5. This statement will be validated later in Fig. 3(b).

3.2 Comparative Visualization of the Domain of
Validity

To quantitatively illustrate the relative accuracy of the three
approximate surface scatter models, we calculate the linear-
error values and illustrate the value as a corresponding gray
level in a 2-D surface parameter space. Figure 3 illustrates
contour maps of this linear error over the surface parameter
space for each of the approximate theories with the normal
incidence. Note that, for our simulation of scattered intensity
with the MoM, one thousand realizations were used and the
averaged intensity of the MoM predictions still exhibits
minor fluctuations.

The SPM has a high accuracy over the entire range of
correlation widths; however, the domain is severely restricted

Fig. 2 Scattered intensity for (a) σ̂tot ¼ 0.1, l̂ c ¼ 0.25, and θi ¼ 0 deg, (b) σ̂tot ¼ 0.3, l̂ c ¼ 0.8, and θi ¼ 0 deg, (c) σ̂tot ¼ 0.4, l̂ c ¼ 2.5, and
θi ¼ 50 deg (d) σ̂tot ¼ 1, l̂ c ¼ 2, and θi ¼ 0 deg. The SPM prediction is not plotted in (c) and (d).
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to very smooth surfaces as shown in Fig. 3(a). The KA can be
considered to have a high degree of accuracy over a much
larger fraction of the 2-D surface parameter space, increasing
almost linearly to moderately rough surfaces for an increas-
ing correlation length as shown in Fig. 3(b). However, the
KA prediction is quite inaccurate (ε > 0.2) over a significant
fraction of the domain represented by the upper left corner of
Fig. 3(b). Meanwhile, the GHS theory exhibits slightly less
accuracy than the SPM and KA in some regions of their
domain of validity, but it has a much broader valid domain
in general. For example, the entire illustrated domain is valid
if ε < 0.2 is considered as the criterion as illustrated in
Fig. 3(c).

It is widely believed that the validity of the KA method
depends on the curvature of the surface irregularities making
up the surface profile.6,10,26 Due to the tangential plane
approximation, the KA is considered to be accurate when
the curvature is less than the wavelength of interest. In
Fig. 4(a), the numerically calculated contour lines of the
rms slope of the surface are plotted on the top of the
error map previously shown in Fig. 3(b). In Fig. 4(b), contour
lines of the rms curvature are plotted on the top of the same
error map. From the two figures, it is clear that the validity of
the KA method is more strongly correlated to the rms slope
than to the rms curvature of the surface.

Likewise, in Fig. 5(a), the numerically calculated contour
lines of the rms slope of the random surface are plotted on the
top of the error profile map shown in Fig. 3(c). For normally
incident light, the GHS method is relatively accurate when
the rms slope of the randomly rough surfaces is less than
unity. Figure 5(b) indicates that for a 40-deg incident
angle, the value of the error increases for a given value of
the rms slope. This degradation in accuracy with an increas-
ing incident angle may be caused by the fact that the GHS
theory does not consider shadowing effects and multiple
scattering.

In order to more clearly show the incident angle depend-
ency of the region of validity for the three approximate the-
ories, error maps similar to those shown in Fig. 3 at normal
incidence are provided in Fig. 6 for the incident angles of 20,
40, and 60 deg. The shifting of the error contour lines with an
increasing incident angle can be studied; however, if an error
value of ε < 0.2 is maintained as a criterion for validity, the
entire domain of 2-D surface parameter space illustrated
remains valid for the GHS theory at θi ¼ 20 deg and at
θi ¼ 40 deg. Not until θi ¼ 60 deg does a portion of this
domain (upper central) exhibit an error value greater than
ε ¼ 0.2. However, within the small slope regime (lower
right), it still shows a small error value, ε < 0.05, for very
large incident angles. It can be seen in Fig. 6 that, if a

Fig. 3 Error contour maps at normal incidence: (a) the SPM, (b) KA, and (c) GHS.

Fig. 4 Contour lines of (a) the rms slope and (b) rms curvature of random surfaces superposed on the top of the error map for the KA method with
the normally incident light.
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Fig. 5 Contour lines of the rms slope superposed on the top of the error map of the GHS theory for (a) θi ¼ 0 deg and (b) θi ¼ 40 deg.

Fig. 6 Error contour maps for the SPMwith (a) θi ¼ 20 deg, (d) θi ¼ 40 deg, and (g) θi ¼ 60 deg, for the KA with (b) θi ¼ 20 deg, (e) θi ¼ 40 deg,
and (h) θi ¼ 60 deg, and for the GHS with (c) θi ¼ 20 deg, (f) θi ¼ 40 deg, and (i) θi ¼ 60 deg.
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different criterion for validity is chosen, or if a particular
region in the domain is of interest, the KA theory may
actually be more accurate than the GHS theory.

In this section, scattering intensity predictions by the
SPM, KA, and GHS are compared to the rigorous MoM pre-
dictions for surfaces having Gaussian surface PSD for the
1-D TE polarization case. Using the linear-error value, the
region of validity of those three approximate theories is
obtained in surface parameter space. The domain of validity
of the SPM is largely restricted to the smooth surface cri-
terion, but the domain is broadened as the angle of incidence
is increased. The domain of the KA depends on the rms slope
of the random surfaces and it shrinks as the angle of inci-
dence is increased. Regarding the GHS method, its domain
of validity is broader than the other two approximate meth-
ods and it becomes smaller when the incident angle is larger.

4 Surfaces with an Inverse Power Law PSD
The valid domain of the SPM and KA has been studied by
many previous researchers. However, most of their studies
have focused on surfaces whose PSD function is a 1-D
Gaussian function.9–14,16–19 But it is known that well-
polished optical surfaces have a fractal structure for which
the surface PSD function follows an inverse power
law27–30 behavior.

There are a few researchers who have studied scattering
by fractal surfaces20,27,31–35 but, unlike previous researchers,
we obtain the valid domain by directly comparing the scat-
tering predictions of approximate methods with the rigorous
MoM. The valid domain is represented in terms of the
parameters which characterize the fractal surfaces.

The surface PSD of a fractal surface may follow the
inverse power law given by

PSDðαÞ ¼ C0jαj−c; (5)

where C0 is some constant and c is the slope of the surface
PSD function in log–log scale. Again, the surface PSD func-
tion is represented in terms of the direction cosine instead of
the spatial frequency. Typically, surfaces have a finite size,
thus its surface PSD function has a low frequency limit.
Moreover, when generating a surface profile numerically,
there must be a high frequency limit. With those reasons,
the Weierstrass–Mandelbrot (WM) function34,35 is usually
used to generate a fractal surface profile. However, in
approximate models, predicting the scattered intensity for
finite size surfaces requires one to calculate edge effects.
These edge effects complicate the simple formula which
is the strongest aspect of the SPM, KA, and GHS. In this
paper, instead of using the WM function, the abc-function
PSD is employed as an approximate surface PSD of fractal
surfaces. The 1-D abc-function is given by

PSDðαÞ ¼ a

ð1þ b2α2Þc∕2 ; (6)

where a and b are constants given by the surface statistical
properties. Due to the shape of the function in log–log scale,
1∕bλ is called the shoulder frequency. Since the function
converges to a certain value when the frequency approaches
zero, the total rms roughness σ̂tot is given by

σ̂tot ¼
ffiffiffi
2

p
×
�

a
ffiffiffi
π

p
bðc − 1Þ

Γððcþ 1Þ∕2Þ
Γðc∕2Þ

�
1∕2

; (7)

when the slope parameter c is larger than unity. Here, Γ is the
gamma function. Its 1-D Fourier transform gives an analytic
expression for the ACV function

ACVðx̂Þ ¼ 2 ×
ffiffiffiffiffi
2π

p a
b

2−c∕2

Γðc∕2Þ
�
2πjx̂j
b

�ðc−1Þ∕2

× Kðc−1Þ∕2

�
2πjx̂j
b

�
; (8)

where K is the modified Bessel function of the second kind.
Since the function behavior follows the inverse power law
where the frequency is larger than the shoulder frequency,
the abc-function has been used to model the PSD of fractal
surfaces.36 Note that, since we are using the wavelength-
scaled space coordinate, the surface parameters a, b, and
c are all dimensionless quantities in this paper.

Basically, random surfaces for which the surface PSD is
an abc-function can be characterized by the a, b, and c
parameters. However, in this paper, the three parameters
that are the rms roughness σ̂tot, the slope parameter c, and
the shoulder “frequency” b are used for characterizing sur-
faces for comparison purposes and those two parameter sets
have a one to one correspondence. In addition, we fixed the b
value as 20 because the number of sampling points for
numerical calculation is limited. However, the comparison
with different shoulder frequencies is shown at the end of
this section.

4.1 Scattering Intensity Distribution

Figure 7 shows the incoherent scattered intensity distribu-
tions predicted by the SPM (blue dashed), KA (green dot-
ted), GHS (red solid), and MoM (black asterisk) for the
case of (a) σ̂tot ¼ 0.025, c ¼ 1.4, and θi ¼ 40 deg and (b)
σ̂tot ¼ 0.6, c ¼ 2.8, and θi ¼ 0 deg in the logarithmic
scale. In Fig. 7(a), since the rms roughness is small, both
the SPM and MoM results agree with each other as expected.
The log-error value of the SPM is ε� ¼ 0.03 which is quite a
smaller value than those of the KA (ε� ¼ 0.47) and GHS
(ε� ¼ 0.07). In Fig. 7(b), the surface is quite rough and
the SPM is out of its valid domain, but the KA shows a
good agreement near the specular direction. However, the
KA prediction fails at the large scattering angles leading
to a log-error value ε� ¼ 0.20. In both cases, the GHS pre-
diction shows a quite good agreement not only near the
specular direction and but also over the whole range of scat-
tering angles.

Figure 8 shows the predicted scattered intensity for three
different cases of surface parameter sets. In Fig. 8(a), the
scattering intensity distributions for the case of σ̂tot ¼ 0.1,
c ¼ 1.4, and θi ¼ 40 deg are plotted in the logarithmic
scale and the SPM shows a good agreement to the MoM
except near specular direction leading to ε� ¼ 0.07. It is
quite interesting that the SPM prediction agrees well at
the large scattering angles even when the rms roughness
is not quite small. Regarding the GHS, its prediction is supe-
rior near the specular direction than the prediction by the
SPM, but it predicts little stronger scattering at large scatter-
ing angles leading to ε� ¼ 0.09. If the distribution is plotted
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Fig. 7 Scattering intensity distributions by the SPM, KA, GHS, andMoM for the case of (a) σ̂tot ¼ 0.025, c ¼ 1.4, and θi ¼ 40 deg and (b) σ̂tot ¼ 0.6,
c ¼ 2.8, and θi ¼ 0 deg in the logarithmic scale.

Fig. 8 Scattering intensity distributions by the SPM, KA, GHS, and MoM for the case of (a) σ̂tot ¼ 0.1, c ¼ 1.4, and θi ¼ 40 deg in the logarithmic
scale, (b) the surface parameters are the same to those of (a) but scattering intensity is plotted in linear scale, (c) σ̂tot ¼ 0.3, c ¼ 2, and θi ¼ 0 deg in
the logarithmic scale (d) σ̂tot ¼ 0.3, c ¼ 2.8, and θi ¼ 60 deg in the logarithmic scale.
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in linear scale as in Fig. 8(b), it is obvious that the SPM over-
estimates the scattering near the specular direction, but the
GHS and KA predict quite accurate values at that direction.
This results in a linear-error value of the SPM, KA, and GHS
of εSPM ¼ 0.12, εKA ¼ 0.09, and εGHS ¼ 0.02, respectively.
Figure 8(c) shows the scattering predictions for the case of
σ̂tot ¼ 0.3, c ¼ 2, and θi ¼ 0 deg, whose rms roughness is
moderately large. The SPM fails to predict the scattered
intensity properly near specular direction and the KA fails
to accurately predict the scattered intensity both near specu-
lar direction and at large scattering angles. In Fig. 8(d), the
rms roughness is the same as Fig. 8(c) but the slope is larger
(c ¼ 2.8). Again, the SPM overestimates scattering near the
specular direction, and the KA prediction deviates at the
large scattering angles. However, in both the cases of
Figs. 8(c) and 8(d), the GHS has good accuracy over all scat-
tering angles for both small and relatively large incident
angle cases.

Figure 9 shows the dependency of the validity of the
SPM, KA, and GHS with the variations in incident angle
for the two surface parameter sets. In Fig. 9(a), the scattered
intensity distributions for the 0, 30, and 60 deg of incident
angle for the case of σ̂tot ¼ 0.15 and c ¼ 2 are provided. The
SPM predicts overly stronger scattering at the specular direc-
tion and the amount of incorrectness is reduced when the
angle of incidence becomes larger. The KA prediction
shows a good agreement to the rigorous MoM result near
the specular direction but its large scattering angle behavior
is very inaccurate regardless of incident angle. The GHS pre-
dictions agree quite well with the rigorous MoM result over
all scattering angles and for all the three incident angles;
however, the predictions are slightly high at large scattering
angles. Figure 9(b) illustrates the scattering predictions for
the surface whose roughness and the slope parameter c val-
ues are larger than the previous one (σ̂tot ¼ 0.3 and c ¼ 2.4)
and the overall shape of the scattering distribution is less
sharply peaked in the specular direction than the case of
Fig. 9(a). Similarly to Fig. 9(a), the KA prediction is
valid only near the scattering angle, but the GHS predicts
quite accurately not only at the specular ray direction but
also at large scattering angles. Note that in Fig. 9(b), the
SPM results are not plotted.

4.2 Comparative Visualization of the Domain of
Validity

To reveal the dependency of the validity of the SPM according
to the surface parameters, both the log- and linear-error values
for the SPM with the normal incidence are calculated and
shown in Figs. 10(a) and 10(b), respectively. Figure 10(b)
shows that the validity of the SPM is largely restricted to
smooth surface criteria regardless of the slope parameter.
However, if the log-error values are calculated as shown in
Fig. 10(a), the valid region of the SPM is dramatically broad-
ened. This can be explained by the fact that, as shown in the
previous section, the scattering intensity distribution at large
angles predicted by the SPM agrees very well to the rigorous
MoMprediction not only for the surfacewhose rms roughness
is very small but also moderately large.

Figure 11 shows error maps for the KA using (a) the log-
error values and (b) the linear-error values at normal inci-
dence. In Fig. 11(b), the KA prediction can be considered
to be valid where the ratio of the rms roughness to the
slope parameter is small. However, when the log-error
value is calculated, Fig. 11(a) indicates that the KA fails
to make accurate predictions over almost the entire surface
parameter domain. This characteristic results from the fact
that the KA prediction shows relatively good agreement
to the prediction of the MoM near the specular direction
when the ratio of the rms roughness to the slope parameter
is small, but it overestimates the large angle scattering over
almost the entire surface parameter domain.

The log- and linear-error values for the GHS theory are
calculated and illustrated in Fig. 12. In Fig. 12(b), similar to
Fig. 11(b), the calculated error values are smaller when the
ratio of the rms roughness to the slope parameter is smaller.
However, the valid domain of the GHS is much broader than
that of the KA. In Fig. 12(a), comparing to Fig. 10(a), the
log-error values for the GHS are larger than those for
the SPM in some regions and it comes from the fact that
the GHS overestimates the large angle scattering.
However, the error map in Fig. 12(a) shows that the predic-
tion of the GHS show a good agreement to the rigorous MoM
prediction in linear scale over the larger surface parameter
domain than the other two approximate methods with rea-
sonable accuracy.

Fig. 9 Scattering intensity distributions by the SPM, KA, GHS, and MoM for the case of (a) σ̂tot ¼ 0.15, c ¼ 2, and θi ¼ 0 deg and (b) σ̂tot ¼ 0.3,
c ¼ 2.4, and θi ¼ 0 deg.
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Fig. 10 (a) SPM log-error map and (b) SPM linear-error map for the normal incidence.

Fig. 11 (a) KA log-error map and (b) KA linear-error map for the normal incidence.

Fig. 12 (a) GHS log-error map and (b) GHS linear-error map for the normal incidence.
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In order to compare the incident angle dependency of the
region of validity for the SPM, KA, and GHS, the error maps
using log-error values for the three methods in the case of
θi ¼ 20, 40, and 60 deg are shown in Fig. 13. The valid
domain of the SPM appears that it is not significantly
affected by the change of the incident angle. Meanwhile,
for both the GHS and KA, the valid area in the domain
reduces with an increasing incident angle. But, in these
three incident angle cases, the error maps show that the
GHS theory again has a wider range of validity for large inci-
dent angles than those of the KA method.

4.3 Scattering Intensity Distribution for Different
Shoulder Frequencies

In the previous sections, the value of the parameter b is fixed
to 20. In this section, the scattered intensity comparison is
performed for different b parameter values. Figure 14(a)
shows the surface PSD function of the three surfaces. The

surface A has 0.02λ of rms roughness with b ¼ 20, the sur-
face B has 0.045λ of rms roughness with b ¼ 100, and the
surface C has 0.14λ of rms roughness with b ¼ 500. All the
three surfaces have the same slope parameter c value of 2.
Figure 14(b) shows the rigorous MoM predictions in log–log
scale at normal incidence and it shows that different shoulder
frequencies with the same slope parameter change only the
small angle scattering behavior.

Figure 15(a) shows the predicted scattering distribu-
tion for the surface A in the case of θi ¼ 0 deg and
θi ¼ 60 deg for the four different methods. Since the rms
roughness is small, the SPM predicts quite accurate results,
the GHS has reasonable accuracy for entire scattering and
incident angles, and the KA has a good agreement near
specular direction, but fails to predict at large angle scatter-
ing behavior. This trend holds for the surface B as shown in
Fig. 15(b) where the rms roughness is moderately larger and
the b parameter value is also moderately smaller than the
case of Fig. 15(a).

Fig. 13 SPM log error map (a) θi ¼ 20 deg, (d) θi ¼ 40 deg, and (g) θi ¼ 60 deg; KA log error map (b) θi ¼ 20 deg, (e) θi ¼ 40 deg, and
(h) θi ¼ 60 deg; and GHS log error map (c) θi ¼ 20 deg, (f) θi ¼ 40 deg, and (i) θi ¼ 60 deg.
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Figure 16(a) shows the predicted scattered intensity for
the surface C whose shoulder frequency is much smaller
and rms roughness is much larger than surfaces A and B.
The behavior of the scattered intensity is very strongly
peaked in the specular direction when plotted in a linear-
log scale. That the SPM fails to accurately predict the
scattered intensity near the specular direction is shown in
the log–log plot of Fig. 16(b). The GHS and KA theories
show a good agreement with the rigorous MoM prediction
as shown in Fig. 16(b). But unlike the KA, the GHS predicts
reasonably accurate predictions at large scattering angles as
well as near specular direction as shown in Fig. 16(a).

Due to the limitation of the computer memory and com-
putation time, the simulation for the surface with much
smaller shoulder frequency is not calculated. However, as
shown in this section, it is strongly possible that the trend
of the region of validity obtained with b ¼ 20 still holds
for the cases with much smaller shoulder frequency. The
full analysis of the region of validity for different shoulder
frequencies remains a topic for later research.

5 Simulation Parameters
Throughout the previous two sections, the predictions by the
three approximate theories were compared to the predictions
by the rigorous MoM. The formalism of the MoM is well
known, but the parameters used for the calculations must
be presented. Regarding the simulation for surfaces with a
Gaussian surface PSD, to show the behavior of the error val-
ues in the domain of interest, 55 cases were selected for rms
roughnesses from 0.002λ to 1λ. For every roughness case, 60
cases of the correlation length from 0.05λ to 3λ were calcu-
lated. The total length of the surface was chosen to be 20λ
and 1000 realizations were carried out. A tapered incident
wave was used and the tapering parameters were chosen
to be one-fourth of the surface length.34 The total number
of sampling points was carefully chosen depending on the
correlation length and roughness. In our experience, the
total number of sampling points which is required to achieve
energy conservation depends more on the rms slope of the
random surface than its correlation length. Sixteen sampling
points per wavelength were used for surfaces having rms

Fig. 14 (a) Surface PSD functions for the surface A, B, and C with the same slope parameter c ¼ 2 and different b parameter values. (b) The
scattering intensity distributions predicted by the MoM for the three surfaces in log–log scale at normal incidence.

Fig. 15 Predicted scattering intensity distributions by the SPM, KA, GHS, and MoM in the case of θi ¼ 0 deg and θi ¼ 60 deg for (a) the surface A
and (b) the surface B.
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slopes smaller than unity, and a denser sampling ratio is used
for the case of steeper rms slopes. However, due to the
restriction of the memory and running time, no >2000
total sampling points were used. Thus, in the regime of
short-correlation length and very steep mean slope, the reli-
ability of the MoM results is possibly reduced. Figure 17(a)
shows the total fractional reflected energy predicted by the
MoM for the normal incidence case and Fig. 17(b) is for a
40-deg incident angle case. In both figures, the energy con-
servation condition is achieved with <0.5% error over almost
the entire surface parameter domain of interest. However, it
must be mentioned that, although energy conservation is one
of the necessary conditions, the fulfillment of the require-
ment does not always guarantee the accuracy of the method.

Regarding the simulation parameters for surfaces with an
abc-function surface PSD, both the number of the sampling
points per wavelength (λ∕Δx) and the surface length is care-
fully selected. The former is related to the highest frequency
limit and the latter is related to the lowest frequency limit of
the surface PSD. When it comes to surface length, the sur-
face length is chosen to be 40λ to 60λ in order that the lowest

Fig. 16 Predicted scattering intensity distributions by the SPM, KA, GHS, and MoM for surface C in the case of (a) θi ¼ 0 deg and θi ¼ 60 deg in
linear-log scale and (b) θi ¼ 0 deg in log–log scale.

Fig. 17 Contour map of total fractional reflected energy as a function of rms roughness and surface correlation length for the MoM: (a) θi ¼ 0 deg
and (b) θi ¼ 40 deg.

Fig. 18 Selected minimum number of the sampling points per wave-
length for the 9 × 9 cases of the surface parameter sets ðc; σ̂totÞ.
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frequency of the surface is smaller than the shoulder fre-
quency. Regarding the number of the sampling points per
wavelength, eight points to 50 points per wavelength are
used for different surface parameter sets. Each number is
obtained by comparing the MoM prediction to another
MoM prediction with a different λ∕Δx value. The idea is
that, if the λ∕Δx value is large enough for the MoM simu-
lation, the simulation results are not changed significantly
when comparing it to another MoM simulation with much
larger λ∕Δx values.20,35 In our simulation, the “large enough”
λ∕Δx values depend on the rms roughness and the slope
parameter and, specifically, the case of a smaller c value
and larger rms roughness requires a larger value of “large
enough” λ∕Δx value. Fixing b ¼ 20, we divided the surface
parameter space into 91 subspaces and obtained the “large
enough” λ∕Δx values for each subspace and they are
shown in Fig. 18.

Using the selected λ∕Δx values in Fig. 18, the total frac-
tional reflected energy for 36 × 36 cases of the surface
parameter sets are calculated and shown in Fig. 19.
Figure 19(a) is for the case of normal incidence and
Fig. 19(b) is for the case of 60 deg of the incident angle.
In our simulation, the total fractional reflected energy pre-
dicted by the MoM drops by 1% in the region of large
rms roughness and small slope parameter value. However,
in most of the domain of interest, the energy conservation
condition is almost satisfied for our MoM simulations.

6 Conclusion
In this paper, the valid domains of the three approximate
methods are evaluated by numerical comparison to the rig-
orous MoM for 1-D perfectly conducting random rough sur-
faces having Gaussian and abc-function surface PSDs. The
relative accuracy of the three approximate methods has been
calculated and graphically illustrated over the domain of
interest in terms of the rms roughness and surface correlation
length for surfaces with a Gaussian surface PSD and in terms
of the rms roughness and the slope parameter for surfaces
with an abc-function surface PSD. Regarding the region
of validity for surfaces with a Gaussian statistics, the
SPM shows a good agreement in the smooth surface regime,
and its accuracy depends upon both smoothness and

correlation length. Our analysis shows that the valid domain
of the KA method depends largely on the rms slope rather
than rms curvature of the random surface and the accuracy of
its prediction increases almost linearly with an increasing
surface correlation length. In general, numerical comparison
also reveals that the GHS method has a much broader
domain of validity than the other two approximate methods,
and it is shown that the valid domain depends on the rms
slope of the surface. When it comes to valid domains of
those approximate methods for surfaces with abc-function
surface PSD, the SPM shows a good agreement for the sur-
face with the small rms roughness. Surprisingly, the SPM
accurately predicts scattering behavior at the large scattering
angles not only for smooth surfaces, but also for moderately
rough surfaces which do not satisfy the smooth surface cri-
terion. The KA fails to predict scattering behavior at the large
scattering angles but it shows accurate predictions near the
specular direction for surfaces whose ratio of the rms rough-
ness to the slope parameter c is small. The GHS theory
shows quite accurate scattering predictions from smooth
to quite rough surfaces over almost all scattering angles.
Similar to the case of the KA, its region of validity depends
on the ratio of the rms roughness to the slope parameter c, but
the valid region is much wider than for the KA and SPM
theories. Moreover, it has high accuracy not only for
small incident angles but also for relatively large angles
of incidence. The energy conservation condition is investi-
gated for the MoM results in order to show its reliability
as a rigorous reference to the other methods. Our result is
obtained from 1-D TE cases, thus it would be quite interest-
ing to investigate that this trend of the validity holds for 2-D
surfaces.
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