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ABSTRACT. The brain diseases account for 30% of all known diseases. Pharmacological treat-
ment is hampered by the blood–brain barrier, limiting drug delivery to the central
nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising
technology for treating brain diseases, due to its effectiveness, non-invasiveness,
and affordability. tPBM has been widely used in pre-clinical experiments and clinical
trials for treating brain diseases, such as stroke and Alzheimer’s disease. This
review provides a comprehensive overview of tPBM. We summarize emerging
trends and new discoveries in tPBM based on over one hundred references pub-
lished in the past 20 years. We discuss the advantages and disadvantages of tPBM
and highlight successful experimental and clinical protocols for treating various brain
diseases. A better understanding of tPBM mechanisms, the development of guide-
lines for clinical practice, and the study of dose-dependent and personal effects hold
great promise for progress in treating brain diseases.
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1 Introduction
The brain is a vital component of the central nervous system (CNS) and is in charge of an indi-
vidual’s life activities, such as thinking, emotion, and memory. Brain regions are anatomically
interconnected, exhibiting both specialization and collaboration in their functions, making it one
of the most intricate and advanced systems found in nature. However, the brain is extremely
vulnerable to various disorders, including cerebrovascular diseases, neurodegenerative diseases,
brain inflammation, etc.,1–4 which have posed a significant burden on individuals, families, and
society as a whole.
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Drug therapy is the most common therapeutic approach for brain diseases in clinical
practice. However, drug therapy may produce adverse side effects, and the highly selective per-
meability of the blood–brain barrier (BBB) significantly limits brain drug delivery, resulting in a
disappointing therapeutic effect.5 Some novel drug delivery strategies, such as viral vectors and
non-viral nanoparticles, have demonstrated prodigious potential for delivering therapeutic to the
brain. However, the safety of injecting a virus and the penetrability of the nanoparticles and their
encapsulated payloads require further study.6 Recently, erythropoietin (EPO), stem cell therapy,
transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS) have
been proposed as potential therapeutics for brain diseases.7–10 However, EPO naturally increases
the hematocrit, which could heighten the risk of cardiovascular reperfusion.11 For stem-based thera-
pies, the ethical issues and safety concerns need further discussion.12 TMS and tDCS lack clear
mechanisms underlying their therapeutic effects, and the absence of widely accepted guidelines and
standards for treating brain diseases impedes their clinical applications.13,14 Therefore, development
of a safe, effective, and widely used therapeutic approach for brain diseases is urgent.

Transcranial photobiomodulation (tPBM), a non-invasive and non-thermal brain stimulation
therapy, was proposed over 50 years ago. Numerous related devices are also available in the mar-
ket. tPBM was known as low-level laser (light) therapy at the early stage, but more and more
researchers prefer tPBM in recent years because it is more indicative of its scientific
principle.15 tPBM refers to applying low irradiance (0.01 to 10 W∕cm2) red to near-infrared
(NIR) (600 to 1300 nm) light16,17 through the skull directly to brain tissue to achieve neuropro-
tection, behavioral improvement, and so on. One of the most recognized molecular mechanisms of
tPBM is that cytochrome c oxidase (CCO) may dissociate inhibitory nitric oxide (NO) after
absorbing photons, thereby enhancing mitochondrial activity and promoting ATP
biosynthesis.18 Because brain disorders are closely related to mitochondrial activity, tPBM may
have beneficial effects on various brain diseases.19 During the past two decades, a tremendous
number of pre-clinical experiments with animals and clinical trials with humans have demon-
strated beneficial effects. Clinical trials with humans include, in particular, the treatment of ische-
mic stroke,20–24 Alzheimer’s disease (AD),25–28 Parkinson’s disease (PD),29–34 traumatic brain
injury (TBI),35–40 depression,41–44 aging,45–50 etc. In these studies, the parameters of the light used
are extremely sophisticated and deserve to be deliberated. For wavelength, researchers prefer
using 808 nm-light [Figs. 1(a) and 1(b)], which has a strong absorption peak of CCO with
an excellent penetration depth.142 Furthermore, there also exist extensive studies that have applied
other wavelengths (e.g., 610, 1070, 1267 nm) of light for brain disease treatment for specific
biological targets including but not limited to mitochondrial stimulation.51,74,75,143 In particular,
compared with traditional laser therapy (630 to 900 nm), the light in the NIR-II region (1000 to
1700 nm) has much less scattering and thus can penetrate deeper into the brain despite its slighter
stronger absorption.144–146 Researchers have demonstrated that the light in the NIR-II region
presents the absence of carcinogenic or mutagenic properties.143 The utilization of 1267 nm
tPBM represents a burgeoning strategy in the therapeutic landscape of brain diseases, attributable
to its recently unveiled unique capacity to stimulate the brain waste removal system (BWRS), thus
contributing to neuroprotection of the CNS.147 It has been reported that such a wavelength can
activate the generation of singlet oxygen in biological tissues,148,149 which can lead to vascular
responses and intense elimination of toxins and unnecessary molecules from the brain.150–152 In
addition, pulsed wave (PW) light has been found to penetrate deeper into tissues than continuous
wave (CW) light with the same average power, as supported by theories and ex vivo
experiments.153–156 Moreover, PW light with a specific frequency may activate specific ion
channels (e.g. transient receptor potential channel) to trigger a series of beneficial biological
responses.75 For the light source, whether a coherent monochromatic laser is superior to incoher-
ent light emitting diodes (LEDs) is an ongoing debate, with some researchers affirming157,158 but
some denying.159 Although lasers were preferred at the early stage, especially for preclinical trials,
LEDs are widely designed as helmet-type devices for clinical trials due to their low price and easy
assembly [Figs. 1(c) and 1(d)]. Figure 2 shows representative tPBM devices for treating various
brain diseases, including PD,31 TBI,36 depression,43 and androgenetic alopecia.160

In this review, we shed light on the tPBM-mediated mechanisms of therapy for brain
diseases according to the emerging trends in tPBM and new discoveries. We also review the
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Fig. 1 Number of published articles using different tPBM wavelengths and light sources for brain
disease treatment in pre-clinical studies and clinical trials from 2002 to 2023. (a) The number of
published articles using different tPBM wavelengths in pre-clinical studies. (b) The number of pub-
lished articles using different tPBM wavelengths in clinical trials. (c) The number of published
articles using different tPBM sources in pre-clinical studies. (d) The number of published articles
using different tPBM sources in clinical trials. Notes: the data are summarized from Refs. 20–23
and 51–70, (ischemic stroke), 71–73 (HI), 74 (intracerebral hemorrhage), 25–28, 75–83 (AD),
29–34, 84–96 (PD), 97–99 (multiple sclerosis), 35–40, 100–116 (TBI), 117 (possible chronic trau-
matic encephalopathy), 41–44, 118–126 (depression), 45–50, 127–136 (aging), and 137–141
(epilepsy).

Fig. 2 Examples of tPBM helmet devices for clinical treatment of brain diseases: (a) PD,31

(b) TBI,36 (c) depression,43 and (d) androgenetic alopecia.160
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animal experiments and clinical trials in different brain diseases, with the aim of providing guid-
ance for future experimental design and clinical applications.

2 Main Mechanisms of tPBM

2.1 Molecular and Cellular Mechanisms of tPBM
The molecular and cellular mechanisms of tPBM are very complex (Fig. 3), with the enhance-
ment of mitochondrial activity recognized as one of the most widely studied and crucial
mechanisms.161,162 Mitochondrial CCO is the terminal enzyme in the mitochondrial respiratory
chain that contributes an increase in metabolic and energetic activity of cells via more oxygen
consumption. Both in vitro163 and in vivo47,164–166 studies have revealed that red and NIR light
(e.g., 660, 808, 850, and 1064 nm) can significantly increase the CCO activity and expression
level. After boosting CCO, the mitochondrial membrane potential (MMP) is increased, more
oxygen is consumed, more glucose is metabolized, and more ATP is produced.167

Furthermore, a recent study proposed that 1267 nm laser-generated singlet oxygen can work
as an activator of mitochondrial respiration and ATP production in brain cells.168 The above
evidence demonstrates that tPBM can increase cell respiration, boost brain energy metabolic
capacity, enhance brain electrophysiological oscillation (alpha and beta bands) strength, and
improve cerebral oxygenation,169–172 which would constitute an adaptation with major neuro-
protective implications after brain disease.

Reactive oxygen species (ROS) is an umbrella term for an array of derivatives of molecular
oxygen. It was reported that the release of low-level mitochondrial ROS is involved in regulating
transcription factors and signaling mediators, potentially leading to beneficial effects.173

Meanwhile, downregulation of excessive ROS may also help inhibit oxidative stress and neuro-
inflammation, thereby protecting the neuronal mitochondria. Currently, the regulatory effects of
parenchymal border macrophages (PBM) on ROS are still controversial. Some studies have
shown that PBM enhanced the ROS production by activating the superoxide converting
system,174,175 whereas other studies have suggested the opposite.176 A recent study found that
PBM increased ROS levels in normal neurons but reduced it in oxidatively stressed neurons.177

The brain diseases are typically accompanied by oxidative stress damage. Therefore, reduc-
ing ROS levels may provide a potential possibility for brain disorder treatment. Salehpour et al.

Fig. 3 Molecular mechanisms and neurobiology effects of tPBM.
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found that tPBM (810 nm) reduced the mitochondrial ROS levels and mitigated learning and
memory impairments in aging127 and in ischemic stroke128 mouse models. Zhang’s team found
that tPBM (808 nm) significantly inhibited the oxidative damage induced by the increase of
superoxide anion after beta-amyloid (Aβ) intraventricular injection and significantly enhanced
the total antioxidant capacity.76 In addition, they observed that tPBM (808 nm) increased the total
antioxidant capacity in a TGF344 AD transgenic rat model and reduced the level of oxidative
stress products (e.g., lipid peroxide malondialdehyde).77 Similar beneficial effects mediated by
tPBM have also been shown in mice with sleep deprivation and depression.118,119

Neuroinflammation is one of the crucial pathophysiological conditions associated with
various brain disorders. tPBM can decrease the expression of pro-inflammatory cytokines via
inhibition of NF-κB signaling pathways.178 It can also directly alter the phenotype of glial cell
and then regulate the release of inflammatory cytokines. Specifically, tPBM reduces the number
of cortical pro-inflammatory phenotype (M1) microglia in ischemic stroke and brain trauma
mouse models.52,100 In addition, some studies have demonstrated that tPBM promotes the polari-
zation of cortical and hippocampal microglia from M1 to an anti-inflammatory phenotype (M2)
in AD77 and neonatal hypoxic-ischemic (HI) rat models.71 Furthermore, tPBM can improve
the lymph flow in the meningeal lymphatic vessels (MLVs), thereby promoting removal of
pro-inflammatory cytokines from the brain.179

In addition to the mechanisms mentioned above, other molecular mechanisms such as gating
of the channelrhodopsins and the regulation of the transcription factor hypoxia-inducible factor
(HIF-1α) may also contribute to the beneficial effects of tPBM.180 In summary, the interaction
between photons and tissues is highly complex, and the mechanism of tPBM is not yet well
understood. Further exploration of the mechanism of tPBM will have important implications
for clinical treatment of brain diseases.

2.2 Systemic Mechanisms of tPBM
Recently, new effects of tPBM on the BWRS have been discovered via tPBM-induced stimu-
lation of MLVs.78,79,147,181–185 In vivo and in vitro experiments have shown that PBM induces
relaxation of lymphatic endothelium of both the MLVs and the mesenteric lymphatic vessels
(LVs).184 PBM also increases the permeability of lymphatic endothelium due to a decrease
in the expression of the tight junction (TJ) proteins.184 These effects of PBM might be related
to a PBM-related stimulation of the NO synthesis in the lymphatic endothelium.17,74,186 The NO
causes the relaxation of the blood and LVs through soluble guanylate cyclase and protein kinase
G, leading to reducing of the Ca2þ intracellular levels and blocking phosphorylation of the myo-
sin light-chain kinase.187 PBM causes vascular relaxation also via an increase of the activity of
endothelial NO synthase (eNOS).17,53 The eNOS induces the NO production in the lymphatic
endothelium that promotes an increase in lymphatic flow and removal of wastes and toxins
(e.g., Aβ) from the brain and other tissues.74,78,188 Meanwhile, the increase in relaxation of
MLVs mediated by tPBM also opens promising perspectives for lymphatic delivery of nanocar-
riers and drugs to the brain pathology bypassing the BBB. It was reported that a 1267 nm laser
enhances the lymphatic transport of liposomes from the deep cervical lymph node (dcLN) to
brain parenchyma and promotes the clearance of these nanocarriers from the subarachnoid space,
offering a novel potential strategy for treating brain disease (Fig. 4).182 NO also controls lym-
phatic contractility, which is important for the movement of cells and molecules in the LVs.189 A
hypothesis posits that a PBM-mediated release of NO could improve the lymphatic contractility,
which might be another possible mechanism underlying PBM-activation of clearance of wastes
and toxins from the brain (Fig. 4).74,180,182,183,190 Li et al. proposed that tPBM (1267 nm) reduced
the mortality of an intraventricular hemorrhage (IVH) mouse model by promoting red blood cells
(RBCs) transport from the ventricle to dcLNs. Significantly, they revealed that this beneficial
effect disappeared when NO was blocked.74 In addition, it has been reported that sodium nitro-
prusside can increase the sensitivity of LVs to PBM,191 providing a potential strategy to further
enhance the effects of tPBM treatment.

In additional to facilitating lymphatic drainage, the release of NO during tPBM could also
increase cerebral blood flow192 and might contribute to the enhancement of cerebral endogenic
and myogenic functional connectivity (FC).171,193–195
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Except for tPBM-mediated NO regulation, it has been demonstrated that tPBM can attenuate
cerebral Aβ burden through the activation of the cAMP-dependent protein kinase signaling path-
way, mediated by CCO, as well as via the stimulation of microglia and angiogenesis.75,80,196 In
addition, Tao et al. reported that PBM (1070 nm) reduces the Aβ levels in the brain via stimu-
lating and recruiting microglia to the Aβ burden75 (Fig. 5) and increasing cerebral vessel
density.75,196 Yue et al. found that tPBM (630 nm) improves brain drainage leading to the Aβ
removal in the APP/PS1 mouse model of AD.81

The release of the brain-derived neurotrophic factor (BDNF) may also contribute to PBM-
mediated stimulation of Aβ elimination from the brain. Experiments in vitro indicated that PBM
(632 nm) increases BDNF levels by activating the extracellular signal-regulated kinase/cyclic
AMP-responsive-element-binding protein (CREB) pathway, which ameliorates Aβ-induced
neuronal damage and dendritic atrophy.197 In addition, it has been demonstrated that tPBM
(810 nm) significantly increases the BDNF level in the hippocampus of mice with brain
trauma,100 depression,120 and ischemic stroke,198 which may be beneficial to neurogenesis and
synaptogenesis.199

PBM with a light wavelength of 1267 nm can stimulate the generation of singlet oxygen
directly in cultured cells and biological tissues without photosensitizers.148,149,200,201 Stanley et al.
reported a new mechanism of singlet oxygen to regulate the endothelial relaxation via the control
of the vascular tone.150,152 The singlet oxygen induces oxidation of the amino acid tryptophan in
the mammalian tissues that leads cell production of metabolite, such as N-formylkynurenine with

Fig. 4 Illustration of new tPBM strategy for brain disease treatment: red and blue arrows represent
MLVs-mediated toxins evacuation pathway and liposome-loaded drug delivery pathway, respec-
tively. Some items were created with BioRender.

Fig. 5 Illustration of a mechanism for tPBM treatment of AD: stimulating and recruiting microglia to
the Aβ deposition.
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activation of the haem-containing enzyme called indoleamine 2,3-dioxygenase 1. This enzyme is
widely expressed in the blood and lymphatic endothelium, contributing to the relaxation of vas-
cular tone.150–152 Stanley et al. discovered that the endothelial indoleamine 2,3-dioxygenase 1
induced singlet oxygen-mediated relaxation of blood vessels.150 These pilot results provide new
knowledge about singlet oxygen-related regulation of vascular tone and modulation of vascular
responses to inflammation.

2.3 New Strategy in the Study of tPBM-Mechanisms
Glioblastoma (GBM) is the most common and aggressive form of brain cancer and is one of the
deadliest brain tumors.202 Recently, it was discovered that GBM is characterized by reducing
functions of the MLVs, which play an important role in the regulation of brain tumor drainage
and immunity.203–206 These findings provide new strategies in the stimulation of an efficient
immune response against glioma.203,207 Hu et al. revealed significant changes in the gene con-
trolling the MLVs remodeling, fluid drainage, and inflammatory and immunological responses in
mice with GBT.203 They discovered that mice with GBTand overexpression of the vascular endo-
thelial growth factor C (VEGF-C) demonstrate a better response to anti-tumor therapy, such as
the combination of anti-programmed death-1 protein (PD1) and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) blockade. It is interesting that the blockade of the MLVs abol-
ished this effect.203 Indeed, mice with GBT treated with blockers of lymphatic proteins, such as
chemokine (C-C motif) ligand 21 (CCL21) and C chemokine receptor type 7 (CCR7), did not
show the improvement of anti-tumor therapy.203 Authors concluded that VEGF-C potentiates
checkpoint therapy via the CCL21/CCR7 pathway. Song et al. also reported that VEGF recep-
tor-3 (VEGFR3) enhances immune surveillance from GBM and improves the effectiveness of
anti-tumor therapy with checkpoint inhibitors.208 Both Hu et al.203 and Song et al.208 documented
an important role of the MLVs in the regulation of brain tumor immunity in mice. Because the
tPBM-effects on the MLVs have already been documented,17,74 these pioneering results open
new perspectives for the study of the role of tPBM in the stimulation of the CCL21/CCR7
pathway. This mechanism underlies the tPBM-induced effects on the MLVs and presents an
alternative strategy for GBM treatment.

PBMs are a newly defined cell population. They reside in the leptomeninges and perivas-
cular spaces along the vasculature and are responsible for regulating the cerebrospinal fluid
flow dynamic. Researchers found that activating PBMs via intracisternal injection of the macro-
phage colony-stimulating factor could restore CSF dynamics in aging mice,209 which indicates
that PBM activation via tPBM may help alleviate brain clearance deficits associated with aging
and AD.

3 tPBM for Brain Diseases

3.1 tPBM for Ischemic Stroke
Ischemic stroke is a sudden cerebrovascular disease with high mortality. Some studies have
proved that the BBB damage caused by ischemic stroke could increase the permeability of blood
vessels, resulting in blood cells and neurotoxins entering the brain parenchyma and causing brain
damage. It may activate inflammatory signals, trigger biochemical and molecular events, and
further aggravate brain damage.210 In addition, ischemic stroke may alter the mitochondrial
morphology and permeability, leading to the decrease of MMP and ATP levels, thereby inducing
cell damage and apoptosis.211 Tissue plasminogen activator (TPA) is the only therapeutic
approved by the U.S. Food and Drug Administration (FDA), but it must be received within
4.5 h after stroke for the effectiveness,212 and TPA may cause a more serious cerebral
hemorrhage.

tPBM has the effects of mitochondrial function improvement and anti-inflammation, which is
a potential therapeutic approach for ischemic stroke (see Table S1 in the Supplementary Material).
In pre-clinical studies, Lee et al. found that transcranial LED light (610 nm) significantly reduced
the ischemic infarct size, improved the neurological function score, inhibited neuroinflammation,
and attenuated neuronal apoptosis in the photothrombotic mouse model.54 In addition, they also
observed that applying the same tPBM protocol within 4 h after stroke improved long-term func-
tional recovery and promoted neurogenesis and angiogenesis in a cerebral ischemic mouse model.
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This suggests that the therapeutic time window of certain tPBM was at least 4 h.55 Importantly,
they also found that pretreatment with tPBM prevented the BBB damage and the blood flow
decrease caused by ischemic brain injury.51,53 These beneficial effects were associated with the
increase of expression of the TJ protein and the NO release in the blood endothelium. Recently,
Kim et al. developed an implantable multi-LED (630 nm) array, which could prevent tissue and
functional impairment, and attenuated the cognitive decline in an acute ischemic stroke mouse
model.52 In addition, tPBM with wavelengths of 660,56 780,57 808,58–60 and 90461 nm also has
beneficial effects of neuroprotection, anti-inflammation, and cognitive improvement in ischemic
stroke rat models (including the middle cerebral artery occlusion model and the photothrombotic
model). Oron et al. found that tPBM in the CW mode could better improve the neurological score
and promote the neurogenesis in ischemic stroke mice than tPBM in the pulsed irradiation.58,62

Moreover, Lapchak et al. applied tPBM (808 nm) to the rabbit small clot electromagnetic stroke
model to further verify the effectiveness. Specifically, they observed that applying tPBM with a
power density of 7.5 mW∕cm2 within 3 h post-embolization significantly improved clinical rating
scores. In addition, the therapeutic time window could be extended to 6 h by increasing the laser
power density to 25 mW∕cm2.63 Similar dose-dependent beneficial effects were also observed by
Huisa’s team.64 However, excessive power density may also lead to the plateau effect65 or even the
biphasic effect.66 In addition, Lapchak et al. found that pulsed light (100 Hz) instead of continuous
light could completely inhibit the decrease of ATP levels in the embolic cortex.65,67 Furthermore, it
was reported that tPBM combined with TPA could better improve the behavior performance and
mitigate the ATP decrease in the ischemic cortex.68,69

The clinical results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1) showed
that tPBM (808 nm) within 24 h after stroke is safe and effective on clinical ischemic stroke
treatment.20 However, the NEST-2 trial results showed that tPBM did not have a significant ben-
eficial effect when the patient count and age distribution were increased.21 In addition, NEST-3
revealed that tPBM has no measurable neuroprotective effects in stroke patients.70 The above
earlier studies may have had better results if more than one tPBM treatment had been applied
and if tPBM had been applied to only the same side of the head, such as where the stroke had
occurred. Naeser et al. reported that the naming ability in left-hemisphere (LH) stroke patients
with lasting language problems (aphasia) was significant improved following 18 tPBM treat-
ments applied to only one side of the head/scalp where the stroke had occurred. However,
no improvement occurred when tPBM was applied to both sides of the head.22 In addition,
a recent study demonstrated that the combination of tPBM and speech-language therapy resulted
in greater improvements in speech-language skills post-stroke compared with speech-language
therapy alone.23

3.2 tPBM for Hypoxic-Ischemic
An HI brain injury is a common clinical birth complication that has high mortality and disability
rates.213 Currently, the only licensed therapeutic approach in clinic is hypothermia. However, it not
only has a very narrow therapeutic time window but also has limited efficacy and usually comes
with potential adverse cardiovascular effects.214 Therefore, there is an urgent need for a more
practical and effective therapy for HI. It was reported that HI mainly damages mitochondria,71

causing mitochondrial structure (e.g., mitochondrial fragmentation) and function (e.g., reducing
ATP production) impairment, thereby inducing oxidative stress and neuroinflammation.
Therefore, protecting mitochondria from damage or enhancing mitochondrial function is a poten-
tial strategy for HI treatment.

Given that NIR light treatment has the potential to improve the mitochondrial function,
Zhang’s laboratory explored whether tPBM (808 nm) has beneficial effects on neonatal HI (see
Table S2 in the Supplementary Material). First, they found that applying tPBM immediately after
HI for seven consecutive days contributed to robust neuroprotection effects by mitigating
mitochondrial dysfunction, oxidative stress, and final neuronal apoptosis in rats.72 Second, they
found that tPBM administered once 6 h before HI induction in postnatal 10 rats also mitigated
brain damage.73 They also reported that applying tPBM three times per week to the abdomen of
pregnant rats from gestation day (GD) 1 to GD 21 also exerted the neuroprotective effects against
hypoxic ischemia in rat pups.71 In addition, Gerace et al. developed a dual-wavelength (808 and
904 nm) NIR laser source device that could attenuate the neurotoxicity of oxygen and glucose
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deprivation in hippocampal slices by attenuating inflammation.215 The above findings clearly
show that tPBM might be a promising technology for therapy of HI in neonates. Further
confirmation of animal data in clinical investigations will open a new niche of tPBM application
in neonatology.

3.3 tPBM for Intracerebral Hemorrhage
IVH is defined as bleeding within the brain’s ventricular system, a condition associated with high
rates of morbidity and mortality.216 Surgery and fibrinolysis in combination with extraventricular
drainage is the conventional therapy of IVH. However, it has not made a significant impact on the
natural history of IVH. Thus, new therapeutic approaches need to be urgently found to mitigate
hematoma expansion and improve the drainage system of the brain.217 Li et al. demonstrated that
an NIR tPBM (1267 nm) accelerates the RBCs evacuation from the ventricles to the dcLNs via
the MLVs, leading to improvement of the neurological status in mice and newborn rat pups and
their recovery after IVH (see Table S3 in the Supplementary Material).74

Li et al. optimized the tPBM illumination parameters for hemorrhagic stroke using the
Monte Carlo method to stimulate photon propagation within the visible Chinese human head
at a different level of intracerebral hemorrhage with varied parameters of light beams. They found
that the Gaussian beam with a similar or larger size as the hemorrhagic region had the best thera-
peutic outcomes, whereas the top-hat beam performed better when the hemorrhagic region was
much bigger than the beam size.142,218

3.4 tPBM for Alzheimer’s Disease
AD is a neurodegenerative disease that dramatically reduces the quality of life and ultimately
leads to death.219 However, there is a lack of effective therapeutic strategies for AD in clinical
practice. The amyloid cascade hypothesis proposes that the deposition of the Aβ peptide in the
brain is a central event in disease pathology, which has long been the primary focus to develop
therapeutic approaches that may slow or delay the progression of AD.220

Currently, there is compelling evidence suggesting that tPBM is capable of decreasing the
Aβ burden and ameliorating cognitive and memory impairments in the AD animal models in
various pathways (see Table S4 in the Supplementary Material). The latest trends suggest that
tPBM (1267 nm),79 especially during deep sleep,78 stimulates lymphatic removal of Aβ from the
mouse brain. A significant reduction of Aβ plaques in the hippocampus CA1 region was asso-
ciated with improved recognition memory and cognitive status in mice (injection model of AD).
This can be explained because night tPBM has a synergistic effect on the natural activation of
mechanisms underlying night lymphatic drainage of brain parenchyma. Moreover, Xing’s lab
proposed that tPBM (633 nm) shifted the amyloid precursor protein (APP) processing toward the
nonamyloidogenic pathway by activating Sirtuin 1 via the cyclic adenosine monophosphate/
protein kinase pathway, thereby improving memory and cognitive ability in an AD mouse
model.80 They also showed that tPBM (633nm) could inhibit the activity of c-Jun N-terminal
kinase 3 (a signal molecule related to neurodegeneration); this may be of therapeutic utility in the
treatment of AD.82 Recently, Yue et al. provided new insight for AD treatment that showed that
the use of a 630 nm laser in treatment could reverse Aβ-obstructed interstitial fluid flow and
ameliorate memory decline in APP/PS1 mice.81 Grillo et al. observed 1072 nm laser treatment
upregulated some stress response proteins in the AD mouse brain, known to reduce both
Aβ aggregation and neuronal apoptosis.83 Tao et al. demonstrated that LED treatment at
1070 nm attenuated the Aβ burden by modulating the microglia phagocytosis capacity and pro-
moting angiogenesis in AD mice.75 Zhang’s lab demonstrated that tPBM (808 nm) could not
only mitigate Aβ-induced pathology (e.g., mitochondrial dysfunction, neuronal apoptosis, and
tau pathology)76 but also prevent or slow the progression of AD in a rat model.77

In clinical trials, Berman et al. found that the application of tPBM (1060 to 1080 nm) for 28
consecutive days improved cognitive and memory ability in AD patients.28 In addition, three
more recent tPBM clinical studies on mild to moderately severe dementia cases have been
published; these included subjects who likely had a progressive neurodegenerative disease,
e.g., AD, and tPBM was observed to improve cognition, mood, and sleep.25–27 Cases with
MMSE entry scores of 10 to 24/30 and treated for 12 weeks showed significant cognitive
improvements soon after the final tPBM treatment. However, 1 month later, there was a decline
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in their scores.25 Collectively, the above research with animal studies and early results from
human clinical studies have put forward some tPBM mechanisms for mitigating AD, thus
shedding light on a possible new treatment.

3.5 tPBM for Parkinson’s Disease
PD is a progressive neurodegenerative disorder, with more than 6 million patients worldwide. It
is characterized by the loss of dopaminergic neurons in the substantia nigra and the presence of
lewy bodies in the midbrain.221 Currently, the only available therapeutic approach for PD man-
agement is mainly based on exogenous dopaminergic supplements, such as levodopa. Such a
treatment cannot modify the disease course or slow the underlying neurodegeneration associated
with the multifactorial characteristics of PD.222 Some accepted points of view are that mitochon-
drial dysfunction, oxidative stress, and protein mishandling have a central role in PD
pathogenesis.223 Furthermore, it has been reported that improving mitochondrial structure and
function, thereby mitigating oxidative stress, could have beneficial effects for PD
management.224 Consequently, tPBM has emerged as a potential therapeutic approach for
PD. Based on this hypothesis, researchers have performed pre-clinical studies and clinical trials
to explore whether tPBM could effectively treat PD. Some early results are provided in Table S5
in the Supplementary Material.

In pre-clinical trials, numerous studies demonstrated that tPBM (670 and 810 nm) effec-
tively alleviated PD pathology in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
induced PD mouse model. This included the prevention of the loss of tyrosine hydroxylase-
positive (THþ) cell and cerebrovascular leakage in the substantia nigra pars compacta (SNc)
region.84–90 In addition, the neuroprotective effects of tPBM were also observed in lipopolysac-
charide (LPS)-induced,91 6-hydroxydopamine (6-OHDA)-induced,92 AAV2/6 virus-induced,93

and transgenic PD rat models94 and an MPTP-induced macaque monkey model.95 It should
be noted that various factors may affect light penetration from the skull into the brain, thus affect-
ing the therapeutic effects. Salgado et al. found that transcranial laser treatment, rather than LED,
significantly reduced the level of serum pro-inflammatory cytokines.92 Mitrofanis’ group showed
that the neuroprotective benefits of tPBM (670 nm) were more effective in the BALB/C strain
than in the C57BL/6 strain. This could be attributed to deeper photon penetration, far into the
brain from the skin in the BALB/C mice.89,225 They also discovered that the neuroprotective
effects of tPBM existed in the SNc region but not in the periaqueductal grey matter (PaG) and
zona incerta-hypothalamus (ZI-Hyp) regions. They attributed this to the fact that cell character-
istics and photon penetration differ in different brain regions.84 Interestingly, Johnstone et al.
observed that irradiation targeted to the dorsum and hindlimb also had neuroprotective effects,
although not as effective as transcranial irradiation. This remote effect for PD treatment may be
mediated by the regulation of variable signaling paths, such as stem cell-related C-X-C chemo-
kine receptor type 4 signaling and oxidative stress response pathways.96,226

In clinical trials, McGee et al. found that tPBM (635 nm plus 810 nm LEDs) could safely and
meaningfully improve individual motor signs of PD.33 Hamilton et al. developed a helmet device
with several LEDs with wavelengths of 670, 810, and 850 nm and reported improvement in PD
progression.31 In fact, owing to the exponential attenuation of light traveling through skull and
brain tissues, only a very limited number of neurons can absorb sufficient photons for positive
effects. Therefore, various PBM strategies were developed for clinical PD treatment. Liebert et al.
stressed the importance and demonstrated the effectiveness of treating the abdomen and the brain
with PBM (gut/brain axis) in PD.30 Other light delivery strategies, such as neck and intranasal
PBM, were also used in combination with tPBM for clinical PD treatment and reported
effectivenss.29,34 Hong et al. found that tPBM (940 nm) targeting the brainstem combined with
molecular hydrogen treatment significantly reduced the Unified Parkinson Disease Rating Scale
scores in PD patients. Such an improvement still existed in the follow-up period of 1 week after
treatment.32 In summary, the above encouraging results of pre-clinical studies and clinical trials
show the great potential of tPBM in PD treatment.

3.6 tPBM for Multiple Sclerosis
MS is one of the most common chronic inflammatory, demyelinating, and neurodegenerative
diseases of the CNS in adults; it affects two to three million people worldwide.227 One of the

Lin et al.: Transcranial photobiomodulation for brain diseases: review of animal. . .

Neurophotonics 010601-10 Jan–Mar 2024 • Vol. 11(1)

https://doi.org/10.1117/1.NPh.11.1.010601.s01


prominent characteristics of MS is the infiltration of human type 1 helper lymphocytes from
peripheral blood into the brain and the spinal cord, leading to the activation of microglia, which
induces neuroinflammation, thus causing neuronal death and demyelination.228 Currently, there
is no effective therapeutic approach for MS; this motivates researchers to seek alternative treat-
ment for brain function recovery. tPBM has attracted attention for MS due to its effectiveness on
the regulation of inflammation and the promotion of neurogenesis.97

In pre-clinical studies, Duarte et al. found that tPBM improved motor performance in mice
with demyelination. This improvement may be associated with the attenuation of demyelination,
proliferation of oligodendrocyte precursor cells, and inhibition of neuroinflammation.98 In clini-
cal trials, Silva et al. found that tPBM effectively upregulated the expression level of interleukin-
10 in MS patients.97 They also found that tPBM improved the fatigue status of MS patients,
despite no statistical significance in the modified fatigue impact scale measurement.99 These
studies (see Table S6 in the Supplementary Material) have suggested evidence for support of
tPBM as a possible treatment for MS. Future investigations are likely to provide positive results.

3.7 tPBM for Traumatic Brain Injury
TBI is defined as an alteration in brain function or other evidence of brain pathology caused by an
external trauma.229 The pathophysiology of TBI is highly heterogeneous and complex, including
adverse signaling pathways activation, inflammation, oxidative stress, mitochondrial dysfunc-
tion, and excitotoxic damage. The combination of cellular and physiological disturbances
increases the infarct size, neurological decline, and cognitive impairment. TBI occurs more than
50 million times annually worldwide, posing a significant burden on socio-economic and health-
care systems.230 Currently, due to the heterogeneity of TBI and limited understanding of potential
pathophysiological mechanisms, there are no standardized methods or drug treatments.231 This
has led to interest in new treatment approaches such as tPBM. Since the 21st century, many
research teams have begun to explore the potential of tPBM as a treatment for acute or chronic
TBI. There have been many positive results (see Table S7 in the Supplementary Material).

Hamblin’s team found that one transcranial, red (660 nm), or NIR (810 nm) laser treatment
performed at 4 h after TBI significantly improved the neurological severity score (NSS) and
decreased the brain lesion volume in moderate-to-severe TBI mouse models.101,102 They also
reported that tPBM, when applied during three consecutive days post-TBI, was more effective
than only one irradiation, in improving the motor and memory ability in the TBI mouse model.103

This reduced the degeneration and apoptosis of neurons in the injured region,103,104 promoting the
neurogenesis, synapse formation, and expression level of BDNF in the dentate gyrus (DG) of the
hippocampus and in the subventricular zone.104,105 However, it was also reported that an exces-
sive number of tPBM treatments in mice with TBI could temporarily inhibit the process of brain
repair, suggesting that it is important to choose the optimal protocol of tPBM for TBI.106

Shemesh et al. found that tPBM (810 nm) regulated the hemodynamics, with reduced cell death
and stimulation of neurogenesis.107 Wu’s lab found that tPBM (810 nm), combined with energy
metabolism regulators (e.g., lactic acid or pyruvate), more effectively increased ATP levels in the
impact cortex and reduced neuronal damage and neuroinflammation caused by the TBI.108,109

Micci’s team found that tPBM combined with ultrasound (optoacoustic) treatment effectively
mitigated sympathetic dysfunction, neuroinflammation, and dysregulation of neurogenesis in
the blast brain injury mouse model.100,110 Similarly, neuroprotective effects of tPBM for TBI
in pre-clinical studies were observed in the laboratories of Whalan,111,112 Marques,113

Oron,114,115 and Zhang.116

Some of the above studies compared therapeutic effects from different light parameters. For
various wavelengths, Reinhart et al. found that tPBM at 660 and 810 nm, but not at 730 or
980 nm, had neuroprotective effects.102 This can be due to weak light absorption by CCO of
730 and 980 nm.102 Regarding the delivery mode, Oron et al. found that the 100-Hz pulsed laser
improved the NSS better than CW and the 600-Hz pulsed laser in a TBI mouse model. The
authors speculated that this phenomenon may be related to the resonance effect between
100-Hz PW laser and brain waves (such as alpha and theta waves).115 Also, Ando et al. proposed
that a 10-Hz pulsed laser has more neuroprotective and cognitive improvement effects than a
100-Hz PW laser. This may be induced by a positive resonance between the 10-Hz PW laser
and the electrical activity of neurons in the hippocampus.101 Both Abookasis and Whalen’s team
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found that the therapeutic effects of one tPBM treatment was positively correlated with the
energy density within a specific range.107,112

In clinical trials, Naeser et al. found that tPBM (at 633 and 870 nm) treatment significantly
improved the cognitive performance in mild TBI patients.36 The team also reported that tPBM
could enhance sleep duration by an average of 1 h in chronic TBI cases,37,38 for which poor sleep
is a common complaint. Longo et al. studied acute, hospitalized, moderate TBI cases with
magnetic resonance imaging (MRI) and reported significant differences between MRI-derived
diffusion parameters in white matter tracts between sham versus real LED-treated groups,
demonstrating safety and neuro-reactivity for real tPBM in this population.39 Nawashiro et al.
used single-photon emission computed tomography brain scans, after 73 days of LED (850 nm)
tPBM, applied twice a day to the left and the right forehead areas and reported that the regional
CBF (rCBF) increased by 20% in the left anterior frontal lobe in a severe TBI patient who was in
a persistent vegetative state.40 This was associated with some new arm movement. In addition,
Chao et al. reported that after combining intranasal plus transcranial PBM (810 nm) treatments
for 8 weeks, there was increased brain volume, improved FC, increased cerebral perfusion, and
improved neuropsychological test scores in an athlete, age 23, who had had six concussions in
5.5 years.35

In conclusion, tPBM for TBI mitigates the death of brain neurons, decreases neuroinflam-
mation, and improves the self-repair ability of the brain by stimulating synapses formation and
proliferation of nerve cells, demonstrating high potential of tPBM for the clinical treatment
of TBI.

3.8 tPBM for Possible Chronic Traumatic Encephalopathy
CTE is a progressive neurodegenerative disease present in athletes who have sustained repetitive
head impacts. At post-mortem, hyper-phosphorylated tau deposits (p-tau) are present in the deep
sulcal areas, which is unique to CTE. It differs from AD, in which Aβ and another form of tau
deposits are present in different areas of the brain. Symptoms of CTE include behavioral and
mood changes, memory loss, cognitive impairment, and dementia.232 However, there are no
known current treatments for CTE.233 Recently, Naeser et al. reported the new use of tPBM
to treat possible CTE.117 This study showed significant improvements in cognition and
behavior/mood for four ex-football players after 18 tPBM treatments (see Table S8 in the
Supplementary Material). At 2 months after this first in-office, tPBM treatment series was com-
pleted, two of these ex-football players regressed. Then, home tPBM treatments were self-
applied to only cortical node areas of the default mode network (12 weeks). Again, significant
improvements returned. Increased FC for the salience network, post-tPBM, was present. Also,
increased n-acetyl-aspartate (NAA), reflecting increased oxygen consumption in the mitochon-
dria of neurons, was present in the anterior cingulate cortex, parallel to less pain and PTSD, and
lasted for 12 weeks post-tPBM. Ongoing, tPBM treatments that can be safely applied at home
may be necessary to maintain gains in cases with progressive neurodegenerative disease.

3.9 tPBM for Depression
Depressive disorder is one of the most prevalent and debilitating forms of psychopathology;234 it
manifests by lack of energy, depressed mood, low executive ability, and poor concentration.
Epidemiological surveys indicate that depressive disorder affects more than 16% of the world-
wide population. This increases the prevalence of medical illnesses, such as type 2 diabetes,
cardiovascular diseases, and autoimmune diseases, and it even advances biological aging.235

At present, pharmaceutical intervention is the most mainstream therapeutic approach for depres-
sion, but it has a low effective rate and even some opposite reactions. Electroconvulsive therapy
(ECT), TMS, and vague nerve stimulation are FDA-approved neuromodulation strategies for the
treatment of depression. However, complex procedures, such as anesthesia for ECT, as well as
expensive costs limit their clinical application.236 Therefore, there is urgent need for a safe, effec-
tive, and convenient treatment strategy for depression that may be well tolerated and potentially
used by patients at home. It has been reported that mitochondrial dysfunction, cerebral energy
metabolism impairment, and oxidative stress may play a significant role in the development of
depression.237 tPBM has been reported to modulate a variety of biological processes, including
anti-oxidation, anti-inflammation, neuro-enhancement, ATP synthesis, etc.238 This suggests that
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tPBM may be an attractive, new treatment for depression. Currently, extensive pre-clinical
studies and clinical trials have demonstrated that tPBM indeed has beneficial effects on depres-
sion (see Table S9 in the Supplementary Material).

Salehpour et al. found that tPBM (810 nm) significantly improved the neurological status in
sleep-deprived and, in restraint, stress-induced depression mouse models. The authors proposed
that reversing oxidative stress, neuroinflammation, and neuronal apoptosis in the prefrontal cor-
tex (PFC) and hippocampus might be a target for the beneficial effects of tPBM in these
models.118,119 Xu et al. found that tPBM (808 nm) elevated PFC ATP levels and mitochondrial
complex IV activity in space restriction and abelson helper integration site-1 (Ahi1) knockout
(KO) depression mouse models.121 Farazi found that tPBM (810 nm) attenuated the decrease of
BDNF, tropomyosin receptor kinase B (TrkB), and phospho-CREB/CREB in the hippocampus
and down-regulated the serum corticosterone levels in mice with noise-induced depression.120

tPBM also promoted neuroprotection effects from stress,122,123 reserpine,124 underwater
trauma,125 and early AD-associated126 depression in rat models. Specifically, Tanaka et al. found
that tPBM (bright light) significantly promoted neurogenesis in the hippocampal CA1 region.239

Li et al. found that tPBM (810 nm) elevated ATP levels in the hippocampus in rats with a post-
traumatic stress disorders model and modulated activated neurons expressing immediate-early
genes, such as Arc and c-fos in the hippocampus and amygdala.125 Mohammed et al. found that
low-dose (80 mW) tPBM significantly improved depression-like behavior in reserpine-induced
depression in rats. Using electro-corticography spectral analysis, the beneficial effects of tPBM
(80 mW) also included the inhibition of abnormal elevation of the Delta frequency band and
decline of the Beta-1 and Beta-2 bands.124 Salehpour et al. observed that a 10-Hz pulsed
NIR laser (808 nm) was as effective as the Citalopram treatment and was more effective than
a red laser (660 nm) in improving depressive-like behaviors in rats. This was likely due to a better
penetration depth and higher absorption by CCO of the 808 nm laser.123

In clinical trials, Schiffer et al. found that tPBM (810 nm) significantly improved the
Hamilton depression rating scale and Hamilton anxiety rating scale scores in depression
patients. There was increased mean rCBF in both hemispheres.42 Cassano et al. confirmed the
safety and effectiveness of tPBM (823 nm) in major depressive disorder patients.43 In addition,
Disner et al. found that applying tPBM to the right prefrontal lobe enhanced the therapeutic
effects of attention bias modification.41 Kerppers et al. found that tPBM (945 nm) was also
effective for the treatment of depression.44 In conclusion, the above compelling evidence shows
that tPBM could be a promising alternative method for the therapy of depression in routine
clinical practice.

3.10 tPBM for Aging
Aging is a multifactorial biological process, manifested by a progressive functional decline at
the molecular, cellular, tissue, and organ levels. In addition, aging often increases the suscep-
tibility to neurodegenerative and cardiovascular diseases, diabetes, and even cancer.240

Epidemiological studies show that 11% of the world population was over 60 years old in
2016, and it was estimated that this proportion will increase to 22% by 2050.241 Although
people welcome the prospect of longer life, they hope that old age is healthy rather than accom-
panied by disease. Therefore, it is important to explore the physiological and pathological proc-
esses of aging and find effective anti-aging therapeutics in the increasingly aging society.
Oxidative stress and mitochondrial dysfunction are two important factors associated with
aging.242 Specifically, the oxidative stress theory indicates that the imbalance between the
production of pro-oxidants and the defense of anti-oxidants during aging leads to excessive
production and accumulation of ROS, damages macromolecules (lipids, DNA, and proteins),
and then induces cell aging and death.243 In addition, mitochondria are considered to be the main
target of oxidative damage, the dysfunction of which during aging is associated with cognitive
impairment.244 Furthermore, oxidative stress within mitochondria can lead to a vicious cycle in
which damaged mitochondria produce increased amounts of ROS, leading in turn to progressive
augmentation in damage. Therefore, improving mitochondria function and inhibiting oxidative
stress may have beneficial effects on the pathology associated with aging (see Table S10 in the
Supplementary Material).
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In pre-clinical studies, Sadigh–Eteghad’s team found that transcranial red (660 nm) and NIR
(810 nm) light treatment significantly alleviated memory and cognitive decline, mitochondrial
dysfunction, oxidative stress, and cell apoptosis in the D-galactose-induced aging mouse
model.127–129 Importantly, they found that a medium dose (8 J∕cm2 per day) was more effective
than a low dose (4 J∕cm2 per day) or a high dose (32 J∕cm2 per day). There was no significant
difference between red light (660 nm) and NIR light (810 nm). They also observed that red light
(660 nm) alleviated cognitive impairment and mitochondrial dysfunction in naturally aging mice
(18 months old).130 Moreover, the cognitive improvement effect was also observed by 1072 nm
laser treatment in Ennaceur’s team.131 Massri et al. found that tPBM (670 nm) had beneficial
effects on the inhibition of age-related glial cell (e.g., astrocyte and microglia) proliferation.132

Cardoso’s team found that aging primarily leads to a decrease of regional brain CCO activity and
impairment of systems-level FC and that tPBM (810 nm) reversed these age-related effects.133

Furthermore, they also observed that tPBM mitigated the inflammatory response and altered the
intracellular signaling pathways linked to vascular function, cell survival, and glucose metabo-
lism in the aged brain.134–136

In clinical trials, Salgado et al. found in elderly women that, using transcranial Doppler
ultrasound measurements, tPBM (627 nm) significantly increased the systolic and diastolic
velocities of the left middle cerebral artery and the basilar artery and decreased the fluctuation
index and resistance index.46 In addition, Chan et al. demonstrated improved depressive state and
cognitive function of the elderly after applying combined red (633 nm) and NIR (870 nm)
LEDs.48,49 Moreover, Saucedo et al. found that the beneficial effects of tPBM (1064 nm) for
the elderly were not limited to improving cognitive function but also included increasing rest-
ing-stateEEG alpha, beta, gamma power, and prefrontal blood-oxygen-level-dependent -fMRI
activity.45 They also found that the CCO level was elevated during the irradiation period,
followed by a significant post-stimulation increase in oxygenated hemoglobin and a decrease
in deoxygenated hemoglobin.47 Qu et al. observed that 7-day repeated tPBM efficiently
improved the working memory of healthy older adults, with the beneficial effects lasting at least
3 weeks.50 The above results indicated that tPBM could be a promising candidate for age-related
cognitive improvement. In the future, there will be an urgent need to explore the functional
changes related to phototherapy on the aging brain, including molecular and electrophysiological
measurements and optical imaging techniques.

3.11 tPBM for Epilepsy
Epilepsy is a lifelong condition characterized by spontaneous and recurrent seizures. Epilepsy
affects 70 million people worldwide and entails a major burden in seizure-related disability, mor-
tality, comorbidities, stigma, and costs.236 Currently, anti-seizure medicines are the prevailing
treatment modality for most people with epilepsy and are usually accompanied by low response
rates (∼70%) and high recurrence rates (>50%).137 Although invasive neuronal stimulation treat-
ments, such as TMS and tDCS, have been established as palliative treatments for patients with
drug-resistant epilepsy, the low effectiveness and the high adverse event rate limit their clinical
application.137 Therefore, an effective and non-invasive therapeutic for epilepsy is urgently
needed. Recently, tPBM with NIR light has been proposed as a new alternative treatment for
epilepsy in animal model experiments (see Table S11 in the Supplementary Material).

Radwan et al. observed that tPBM (830 nm) reverses pilocarpine induced neurochemical
changes of amino acid neurotransmitters (e.g., increase of glutamate), and they found that such
benefits could be due to the regulation of transaminase activity by laser irradiation.138 Vogel et al.
observed that tPBM (780 nm) reduces epileptiform discharges in post-stroke epilepsy rats. The
authors reasoned that the beneficial effects of tPBM might be responsible for the disruption and
mitigation of self-regulatory mechanisms and complex network reorganization.139 Tsai et al.
found that applying tPBM before inducing epilepsy attenuated pentylenetetrazole (PTZ)-induced
severe seizures, status epileptics, and mortality in peripubertal rats. This could be explained by
protecting hippocampal parvalbumin-positive interneurons from apoptosis and preserving the
integrity of the parvalbumin-positive perisomatic inhibitory network.137 They also found that
tPBM (808 nm) mitigated neuroinflammation and glial cell activation in the hippocampus in
a CCO-dependent manner in the PTZ-induced epilepsy rat model.140 Hong et al. observed that
tPBM could prevent seizure-induced neuronal degeneration.141 In summary, the above studies
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demonstrated that tPBM with NIR light could be potential non-invasive and effective therapeu-
tics for inhibiting epileptogenesis and alleviating epilepsy damage.

4 Conclusion
In this review, we discussed new discoveries of therapeutic effects of tPBM to shed light on
tPBM-mediated mechanisms of treatment for brain diseases. We also highlighted emerging
trends in tPBM application for modulation of the immune system of the brain and stimulation
of the MLVs, thus opening a new niche in tPBM-immunotherapy of brain diseases and in the
removal of waste and toxins from the CNS. We summarized the animal experiments and clinical
trials in different brain diseases. This is expected to provide guidance for future experimental
designs and clinical applications.

Among the main disadvantages of tPBM is the limited information about the optimal tPBM
protocols for the effective therapy of specific brain diseases. Despite the large number of exper-
imental and clinical studies, it remains unclear whether the tPBM effects on the energy, meta-
bolic, hemodynamic, drainage, and immune processes of the brain are nonspecific or whether
they depend on specific characteristics of brain diseases. A better understanding of the dose-
dependent effects of tPBM on the brain physiology and mechanisms of tPBM therapy will help
to develop the optimal and personalized tPBM standards and guidelines of this therapy for brain
diseases.

The light delivery strategy of tPBM is also important for the treatment of brain diseases. The
majority of the light delivery approaches are transcranial or intranasal. However, photons are
scattered by the scalp, skull, meninges, and cerebrospinal fluid. Thus, only a small number
of photons can effectively the reach brain tissues. In fact, in most brain diseases, deeper areas
of the CNS are also involved. For example, in patients with PD, the midbrain is characterized by
the progressive, selective loss of dopaminergic neurons in the SNc region. Therefore, the devel-
opment of innovative strategies to deliver light deeper, including, for example, modern lasers
(e.g., 1267 nm) with deep penetration into brain tissues, will open a new era in tPBM for treat-
ment of brain diseases.

Given that the BBB prevents drug delivery to the brain and significantly limits the advance-
ment in the development of new pharmacological therapies for brain diseases, tPBM can be an
important therapeutic approach for preventing or delaying neurological pathologies. It is impor-
tant to note that some companies have ceased initiatives to finance the development of pharma-
cological treatments for AD. Therefore, tPBM-mediated stimulation of the MLVs and removal of
toxins, including Aβ from the brain, might be an important method for the treatment of this
disease. tPBM-stimulating effects on the mechanisms of lymphatic drainage and the brain
immune system open pioneering strategy for neuroprotection of the CNS in various brain
diseases.

The special advantages of tPBM include its safety, ease of use in clinical settings and at
home, and cost effectiveness. This makes tPBM attractive in the market of medical devices.
Therefore, a better understanding of the mechanisms of tPBM, the development of generally
accepted guidelines for tPBM use in clinical practice, and the study of dose-dependent and
personal tPBM needs/effects hold great promise for progress in the treatment of brain diseases.
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