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Abstract

Significance: Cerebrovascular reactivity (CVR), i.e., the ability of cerebral vasculature to dilate
or constrict in response to vasoactive stimuli, is a biomarker of vascular health. Exogenous
administration of inhaled carbon dioxide, i.e., hypercapnia (HC), remains the “gold-standard”
intervention to assess CVR. More tolerable paradigms that enable CVR quantification when
HC is difficult/contraindicated have been proposed. However, because these paradigms feature
mechanistic differences in action, an assessment of agreement of these more tolerable paradigms
to HC is needed.

Aim: We aim to determine the agreement of CVR assessed during HC, breath-hold (BH), and
resting state (RS) paradigms.

Approach: Healthy adults were subject to HC, BH, and RS paradigms. End tidal carbon dioxide
(EtCO2) and cerebral blood flow (CBF, assessed with diffuse correlation spectroscopy) were
monitored continuously. CVR (%/mmHg) was quantified via linear regression of CBF versus
EtCO2 or via a general linear model (GLM) that was used to minimize the influence of systemic
and extracerebral signal contributions.

Results: Strong agreement (CCC ≥ 0.69; R ≥ 0.76) among CVR paradigms was demonstrated
when utilizing a GLM to regress out systemic/extracerebral signal contributions. Linear regres-
sion alone showed poor agreement across paradigms (CCC ≤ 0.35; R ≤ 0.45).

Conclusions: More tolerable experimental paradigms coupled with regression of systemic/
extracerebral signal contributions may offer a viable alternative to HC for assessing CVR.
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1 Introduction

Cerebrovascular reactivity (CVR), defined as the ability of cerebral vasculature to dilate or
constrict in response to a vasoactive stimulus, is an integral mechanism in brain homeostasis.
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Interest in CVR as a diagnostic and prognostic biomarker has accelerated in recent years because
impaired CVR has been observed in numerous disease states, including cerebrovascular
disease,1–7 stroke,8–13 cardiac arrest,14 and traumatic brain injury.15–23 Quantification of CVR
coupled with interventions aimed at restoring abnormal CVR has the potential to reduce morbid-
ity and mortality.

Several well-established experimental paradigms exist to study CVR non-invasively in
humans. These methods typically involve quantification of the cerebral blood flow (CBF)
response to changes in arterial carbon dioxide content via acetazolamide infusion, inhalation
of carbon dioxide (CO2), or breath-holding. Intravenous acetazolamide administration has
historically served as the preferred method to quantify CVR in clinical settings.24 Although
the single dose injection is relatively simple, differences in pharmacokinetic/dynamic profiles
among subjects lead to poor repeatability, and it is associated with a high incidence of side effects
that preclude its modern use in many patient cohorts (e.g., children).6,7,10,13,24,25 In research set-
tings, the most common method to quantify CVR is inhalation of CO2 to induce hypercapnia
(HC), which is considered by many to be the “gold-standard” experimental paradigm. A standard
HC challenge involves a limited duration inhalation of medical-grade CO2 (e.g., 5% CO2, 21%
oxygen, and balance nitrogen) coupled with monitoring of CBF and end tidal CO2 (EtCO2). This
approach is increasingly used due to the potency of CO2 as a vasodilator, rapid onset and ces-
sation of the CBF response, and repeatability.24,26–35 However, HC requires complex gas delivery
equipment, time, and expertise to perform the procedure, and it can induce anxiety in some
subjects. Moreover, HC may be clinically contraindicated in patients with acute illness and/
or compromised hemodynamics for whom the benefits of CVR assessment do not outweigh
the risks of rapid or prolonged hyperemia (e.g., sickle cell disease).36 A breath-hold (BH) chal-
lenge, wherein a subject briefly holds their breath, offers a simpler alternative for manipulating
arterial CO2. This approach offers many advantages over CO2 inhalation, including a lack of
complex gas delivery equipment and improved patient tolerability given the self-directed nature
of the BH.37–40 However, the BH approach requires an individual’s cooperation, which limits
applicability in children < ∼ 6y and in patients with severe conditions and entirely excludes its
use in other cohorts (e.g., patients on a mechanical ventilator).

To bypass the limitations of existing experimental paradigms, recent investigations have
explored the potential for measuring CVR using the intrinsic vasoactive stimulus of natural
arterial CO2 fluctuations that occur when a subject is freely breathing.29,40–44 This resting state
(RS) approach is attractive because it does not require patient compliance or intentional manipu-
lation of arterial CO2. Thus, it has potential in those who have lost consciousness or who are
sedated. However, the approach is thought to be susceptible to poor signal-to-noise due to the
relatively small fluctuations in EtCO2 that occur during spontaneous breathing. Thus, CVR esti-
mations at rest may be unreliable.45

Although the use of more tolerable experimental paradigms to assess CVR is clinically
appealing, there has been limited investigation into the agreement of CVR measured by these
approaches. Liu et al. recently demonstrated poor agreement of HC versus BH and of HC versus
RS.45 The other handful of studies that have compared CVR across HC/BH/RS paradigms are
limited in interpretation. These studies either compare relative changes in blood flow without
accounting for differences in elicited EtCO2 response,35,45,46 which can vary appreciably across
subjects and/or paradigms, or they focus on the spatial correlation of cohort-averaged, qualita-
tive, regional CVR maps attained from two experimental paradigms.40,47,48 Given that these para-
digms act on the vasculature in different ways and that each has relative merit in terms of
robustness of response and ease of implementation, a systematic and rigorous comparison of
CVR across paradigms is warranted.

Herein we quantify the agreement of CVR across HC, BH, and RS paradigms in healthy
adults. To quantify CBF, we employ a non-invasive optical technique known as diffuse corre-
lation spectroscopy (DCS). DCS offers many strategic advantages over more traditional modal-
ities used to assess CBF (e.g., computed tomography, perfusion magnetic resonance imaging,
and transcranial Doppler ultrasound), including portability, low cost, high temporal resolution,
direct measure of microvascular blood flow, and ease of use in both adults and children in a wide
array of clinical indications and environments. Indeed, several studies42,49–57 have explored
the use of DCS to quantify the CBF response to a vasoactive stimulus (ACZ, HC). In this study,
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we use DCS to quantify CVR, and we hypothesize that CVR measured during HC will agree
strongly with CVR assessed with more tolerable and more practical BH and RS paradigms.

2 Methods

Healthy adult subjects without a prior history of cardiovascular, neurological, respiratory,
or hematological disorders were recruited at Emory University. Additional exclusion criteria
included a history of major head injury within the past 2 years or a history of significant acute
illness within one month of the study. Subjects were instructed to abstain from stimulants (e.g.,
caffeine) or depressants (e.g., alcohol) for at least 12 h prior to the study. Written informed
consent was obtained for all participants. All protocols were approved by the Emory University
Institutional Review Board.

Twenty-seven healthy adults (13 male) ranging in age from 22 to 37 years were enrolled in
this study. A subset of four subjects was measured on multiple occasions, yielding 34 total meas-
urement sessions. Of these sessions, one dataset was discarded due to substantial drift in optical
signal attributed to poor sensor contact, and two datasets were discarded due to an improper
execution of the HC exam, yielding a total of 31 available datasets.

2.1 Experimental Protocol

The CVR was quantified via three consecutive experimental paradigms: RS, BH, and HC
(Fig. 1). First, for RS, the subject was directed to breath naturally (i.e., unpaced) for 10 min
while minimizing bodily movements. Next, for BH, the subject was asked to complete 5
BH challenges, each of which consisted of 40 to 60 s paced breathing followed by a 20 to 30 s
end-inspiration BH. Paced breathing at the subject’s natural respiration rate (determined during
RS) was facilitated by a custom graphical user interface written in MATLAB (Mathworks Inc.,
Natick, Massachusetts, United States). End-inspiration BHs, which have been demonstrated to
yield similar CVR magnitudes when compared to end-expiration BHs,38 were selected to
facilitate subject comfort during the exam. Subjects were instructed to breathe in approximately
half capacity before initiation of the BH and to exhale entirely at the conclusion of the BH.
Finally, for HC, the subject was instructed to breathe naturally for 3 min, followed by 6 min
of 5% CO2/balance room air inhalation (Nexair, Memphis, Tennessee, United States) and 6 min
of room air inhalation recovery. Unpaced breathing was used throughout the HC challenge.

Subjects sat upright for the duration of the study protocol. Continuous (20 Hz) DCS mea-
surements of CBF were made by securing an optical sensor over the right or left forehead. Given
that CVR is a global phenomenon,58 laterality of the sensor placement was determined based on
the hemisphere that yielded the highest detected light intensities to maximize the DCS signal-to-
noise ratio. Trends in peripheral oxygen saturation (SpO2, LifeSense II, Nonin Medical, Inc.) and
arterial blood pressure (ABP, CNAP Monitor 500, NIPD1000D-1, Biopac Systems) were also
continuously monitored (1 Hz for SpO2 and 125 Hz for ABP, Fig. S1A in the Supplementary
Material). In postprocessing, beat-to-beat mean ABP (MAP) was determined from the ABP
waveform using BP_annotate in MATLAB.59 Further, a gas mask was placed over the mouth

Fig. 1 Experimental protocol: CVR was quantified using three consecutive experimental para-
digms: (a) RS wherein the subject breathed naturally for 10 min, (b) BH, wherein the subject
completed five end-inspiration BHs, and (c) HC, wherein the subject inhaled 5% CO2 for 6 min.
Cerebral blood flow, EtCO2, peripheral oxygen saturation, and ABP were continuously monitored
throughout the duration of the protocol.
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and nose to facilitate continuous monitoring of expelled CO2 (4 Hz, LifeSense II, Nonin Medical
Inc., Plymouth, Minnesota, United States) as well as to enable delivery of carbon dioxide during
HC. For RS and BH paradigms, the mask was configured such that the subject breathed room air.
For the HC challenge, the mask was attached to a reservoir of 5% CO2. One-way, non-rebreathing
valves were used to maintain a constant inhaled CO2 concentration (Figure S1B and Table ST1
in the Supplementary Material). In postprocessing, a peak detection algorithm in MATLAB
(findpeaks) was used to estimate end tidal CO2 (EtCO2) from the expelled CO2 waveform.
The EtCO2 time series was then visually inspected to remove obvious outliers attributed to
irregular breathing or incomplete exhalation.

2.2 Diffuse Optical Instrumentation

DCS measures of blood flow were acquired using a custom-built device consisting of a 852-nm-
long-coherence near-infrared laser (iBeam Smart, TOPTICA Photonics, Farmington, New York,
United States), two four-channel single photon counting modules (SPCM AQ4C-IO, Perkin-
Elmer, Quebec, Canada), and an 8 channel counter/timer data acquisition board (PCIe6612,
National Instruments, Austin, Texas, United States) that allowed for fast (20 Hz) quantification
of the intensity autocorrection function, g2ðt; τÞ, at time, t, and delay time, τ.60

Frequency-domain near-infrared spectroscopy (fdNIRS) was also employed to assess base-
line tissue optical properties (namely, the wavelength-dependent absorption and scattering coef-
ficients, μaðλÞ and μ 0

sðλÞ, respectively), as well as changes in μaðλÞ over time.53 The fdNIRS
system is a customized, commercially available device with 8 rapidly (20 Hz) multiplexed
sources (690, 730, 750, 775, 785, 800, 825, and 830 nm) that are modulated at 110 MHz and
four photomultiplier tube detectors with a gain modulation of 110 MHz + 5 kHz for heterodyne
detection at 5 kHz (Imagent, ISS, Urbana Champaign, Illinois, United States). To assess baseline
optical properties, measurements were made over the right and left frontal hemispheres with
a rigid fdNIRS sensor containing one source and four detectors spaced at 2.0, 2.5, 3.0, and
3.5 cm.53 Resulting values were averaged to yield a global estimate of μaðλÞ and μs

0ðλÞ.
Continuous DCS + fdNIRS data were acquired with a flexible sensor containing one source

fiber bundle and two detector bundles spaced 1.0 and 2.5 cm from the source (ρshort and ρlong,
respectively). The source bundle contained a 1000-μm multimode fiber for DCS (FT1000EMT,
Thorlabs, Newton, New Jersey, United States) and three 400-μm multimode fibers for fdNIRS
acquisition at 690, 800, and 830 nm (FT400EMT, Thorlabs). The ρshort detector bundle contained
one single mode fiber for DCS (780HP, Thorlabs) and one multimode fiber for fdNIRS
(FT600EMT, Thorlabs). The ρlong detector bundle contained seven single mode fibers for DCS
(780HP, Thorlabs) and three multimode fibers for fdNIRS (FT600EMT, Thorlabs). Each source
and detection fiber bundle was mechanically coupled to a 5-mm right-angle prism mirror
(MRA05-E03, Thorlabs) using a custom 3D-printed prism/fiber holder. Prism/fiber holders were
cast within a polyurethane mold (Vytaflex30, Smooth-On Inc., Macungie, Pennsylvania, United
States colored black with PearlEx Carbon Black #640, Jacquard, Healdsburg, California, United
States). The sensor was designed to be compliant with ANSI maximum permissible exposure
standards of skin to laser radiation of <4 mW∕mm2 at 852 nm.

2.3 DCS Data Analysis

Measured g2ðρlong; t; τÞ were first averaged across all seven detectors. Next, g2ðt; τÞ at ρshort and
the averaged g2ðt; τÞ at ρlong were downsampled from 20 to 1 Hz to enhance the signal-to-noise
ratio. These averaged and downsampled g2ðt; τÞ curves were then fit for an index of blood flow
using two separate models. First, g2ðt; τÞ curves were fit to the semi-infinite homogenous
solution to the correlation diffusion equation to extract an index of blood flow (BFi(t), cm2∕s)
at each source detector separation. For ρlong, fits were restricted to g2 > 1.2 to enhance the
sensitivity to cortical blood flow.49 Note that, for our experimental configuration, g2 ranged
from 1 to ∼1.5. We opted to use 1.2 to improve the cortical sensitivity while still ensuring
sufficient data points for fitting. For all g2 fits, we assumed a fixed index of refraction of
1.4, and we incorporated fdNIRS-estimated, subject-specific μað852 nmÞ, μs 0ð852 nmÞ, and
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Δμað852 nm; tÞ, as described elsewhere,53 to avoid the confounding influence of optical proper-
ties on BFi estimation.61 When RS fdNIRS measurements were not available (N ¼ 3), group
averaged optical properties were used. For each source detector separation, data were fit simul-
taneously for the coherence factor (β) and BFi using fminsearchbnd in MATLAB with bounds
for both β and BFi set to [0.2, 0.55] and [1e-12, 1e-3] cm2∕s, respectively.51

Next, to minimize extracerebral signal contributions, we also fit measured data from ρlong and
ρshort simultaneously to a three-layer model62 (assuming scalp, skull, and brain) for scalp and
brain blood flow (SBFi and CBFi, respectively) using a single cost function.63

EQ-TARGET;temp:intralink-;e001;116;494χ2 ¼
XNr

j¼1

XNτ

k¼1

½g2;measðρj; τkÞ − g2;fitðρj; τk; SBFi;CBFiÞ�2; (1)

where Nr is the number of detectors (2) and Nτ is the number of τ delay times. We minimize
χ2 using fminsearchbnd in MATLAB with bounds for both CBFi and SBFi set to [1e-15,
1e-3] cm2∕s. For these fits, we assumed negligible (0) flow in the skull and fixed values for
layer optical properties and thicknesses according to the literature (Table 1).64 To improve
the stability of fits, β for each separation was estimated by averaging the first five points of
the autocorrelation curves.

For each experimental paradigm, the relative change in blood flow as a function of time
(rCBF(t)) was calculated as ðBFiðρlong; tÞ − BFi;0ðρlongÞÞ∕BFi;0ðρlongÞ × 100% for the semi-
infinite model and as ðCBFi;three−layerðtÞ − CBFi;three−layer;0Þ∕CBFi;three−layer;0 × 100% for the 3-
layer model. Here, the subscript 0 denotes the mean flow index during the baseline of the given
paradigm. For RS, the baseline was chosen as the 2 min at the start of the RS period. For BH, the
baseline was chosen as the 30 s prior to the first BH epoch. For HC, the baseline was chosen as
the 3-min period of room air inhalation immediately prior to CO2 initiation. The change in EtCO2

as a function of time was estimated as ΔEtCO2ðtÞ ¼ EtCO2ðtÞ − EtCO2;0 using the same base-
line periods as rCBF. To account for the gas transit time from the mask to the capnogram and the
physiological delay between alveolar diffusion of CO2 in the lungs and arterial CO2 reaching the
cerebrovasculature, we time-aligned rCBFðtÞ and ΔEtCO2ðtÞ via cross correlation. For this
analysis, the EtCO2 timeseries was incrementally shifted at 0.01s intervals up to 10s. For each
shift, ΔEtCO2ðtÞ was interpolated to the rCBFðtÞ time axis, and Pearson’s correlation coefficient
between rCBFðtÞ and ΔEtCO2ðtÞ was estimated. Finally, ΔEtCO2ðtÞ was shifted by the time lag
that yielded the highest correlation coefficient between rCBFðtÞ and ΔEtCO2ðtÞ.

2.4 Estimation of CVR

We employed 2 numerical methods to estimate CVR (%/mmHg) for each experimental para-
digm: (1) linear regression and (2) a general linear model (GLM) that regresses out systemic
contributions to the DCS measured blood flow. The latter approach was included to minimize the
known confounding extracerebral contributions to the DCS signal50,65 as well as the influence of
heart rate and blood pressure variability.

Table 1 Assumed layer optical properties.

Layer μa (cm−1) μs
0 (cm−1) L (cm)

Scalp 0.10 15 0.4

Skull 0.10 9 0.8

Brain 0.16 3 Inf

Assumed optical properties for absorption and scattering coefficients (μa and μs
0) at

852 nm, as well as layer thicknesses (L) for scalp, skull, and brain.
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2.4.1 Linear regression

Linear regression is commonly used to assess CVR by modeling a simple linear relationship
between rCBFðtÞ and ΔEtCO2ðtÞ:

EQ-TARGET;temp:intralink-;e002;116;692rCBFðtÞ ¼ β0 þ β1 � ΔEtCO2ðtÞ þ Ɛ; (2)

where β1 reflects CVR (%/mmHg), β0 is the intercept, and Ɛ is the fit residual. For each exper-
imental paradigm, linear regression (regress, MATLAB) was applied between the cross-corre-
lated, time-aligned rCBFðtÞ and ΔEtCO2ðtÞ signals to obtain an estimate of CVR. To ensure that
the model explains a significant amount of variability in the data, we discarded CVR estimates
for which the model p-value for β1 was >0.05. We further discarded any CVR value <0.1.

2.4.2 General linear model

By the nature of the DCS measurement, detected light carries information about both cerebral
and extracerebral (i.e., scalp and skull) hemodynamics. To minimize extracerebral contributions,
we took a cue from best practices in functional near-infrared spectroscopy.66–68 We employed a
GLM to regress out the relative changes in BFi at ρshort (assumed to reflect scalp hemodynamics)
from the relative changes in BFi at ρlong (assumed to be sensitive to both superficial and brain
layers), which is given as

EQ-TARGET;temp:intralink-;e003;116;497rBFiðρlong; tÞ ¼ β0 þ β1 � ΔEtCO2ðtÞ þ β2 � rBFiðρshort; tÞ þ Ɛ; (3)

where β1 reflects CVR (which we call CVRGLM-SS, %/mmHg) and β2 represents the relative
influence that the rBFi at ρshort has on rBFi measured at ρlong.

We also explored the use of a GLM to regress out systemic contributions to the CBFi;3-layer
signal that are reflected in SBFi;3-layer. Here the GLM took the form of

EQ-TARGET;temp:intralink-;e004;116;414rCBFiðtÞ ¼ β0 þ β1 � ΔEtCO2ðtÞ þ β2 � rSBFiðtÞ þ Ɛ; (4)

where β1 reflects CVR (which we call CVRGLM;3-layer) and β2 represents the relative influence
that the scalp perfusion (rSBFi) has on measured CBF index (rCBFi).

CVR was estimated for each experimental paradigm using the cross-correlated, time-aligned
signals by solving the system of linear equations utilizing the Moore-Penrose pseudoinverse
(pinv MATLAB function). To ensure that the model explains a significant amount of variability
in the data, we discarded CVR estimates when the model p-value for β1 was > 0.05. We further
discarded any CVR value <0.1.

2.5 Statistical Analysis

Data are reported as median (interquartile range) unless stated otherwise. Paired Wilcoxon sign-
rank tests were used to assess whether MAP, HR, and EtCO2 were statistically different from
baseline for BH and HC paradigms. Wilcoxon rank-sum tests were used to assess differences in
the change of these systemic parameters between HC and BH paradigms. To compare CVR
across experimental paradigms, we performed Wilcoxon rank-sum tests between all combina-
tions of paradigms for a given numerical method (e.g., linear-regression CVR compared between
HC and BH), between all combinations of numerical methods for a given paradigm (e.g., HC
CVR compared between linear regression and GLM methods), and between DCS analytical
models for a given paradigm (e.g., linear regression HC CVR compared between semi-infinite
and three-layer models). To quantify agreement of CVR across experimental paradigms, we
calculate Pearson’s correlation coefficient (R) as well as Lin’s concordance correlation coeffi-
cient (CCC), which is a measure of how well a set of bivariate data compares to a “gold-stan-
dard” measurement (HC CVR, in our case).69 We define the following agreement thresholds for
CCC: poor (0 to 0.5), moderate (0.5 to 0.7), strong (0.7 to 0.9), and excellent (>0.9) agreements.
We further visualized agreement through Bland-Altman plots, and we quantified the mean bias
(95% confidence interval).70 All statistical analyses were performed in MATLAB. Statistical
significance was assessed at the 0.05 confidence level.
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3 Results

As expected, EtCO2 significantly increased during both BH and HC paradigms (both p < 0.05,
Table 2). EtCO2 changes were more pronounced during HC (13.0 versus 7.5 mmHg in HC versus
BH; p < 0.001). During the RS paradigm, EtCO2 varied appreciably with a median
range (i.e., max – min over the 10 min period) of 6.5 mmHg. MAP significantly increased
by 8.0 (5.6, 11.6) mmHg during BH and 4.9 (1.9, 10.3) mmHg during HC (both p < 0.001)
(Table 2). Heart rate significantly increased by 11.5 (9.1, 19.2) bpm during BH (p < 0.001);
no changes were observed during HC.

Of the 31 available datasets, a subset of CVR estimates for each experimental paradigm was
discarded due to a failure to meet quality control criteria. The exact number of datasets included
for each paradigm, along with median (IQR) CVR for each experimental paradigm and numeri-
cal method, is included in Table 3. The CVR was statistically indistinguishable when compared
across experimental paradigms for a given numerical method (e.g., linear regression) or for a
given DCS analytical model (e.g., semi-infinite, Table 3, Fig. 2). Within a given paradigm, the
use of the three-layer model increased CVR compared with the semi-infinite model. Further,
the use of a GLM with short separation regression depressed the median CVR and constrained
the range compared with the linear regression approach.

The relationship between CVR during HC versus BH is shown in Fig. 3 and summarized in
Table 4. When using linear regression to estimate CVR, the correlation between HC and BH was
only statistically significant for the three-layer model [R ¼ 0.58, p < 0.01, Fig. 3(c)]; however,
agreement was poor (CCC ¼ 0.45). No association between HC and BH was observed with
linear regression for the semi-infinite model [Fig. 3(a)]. The strength of the HC versus BH CVR
relationship greatly improved when using a GLM-SS to estimate CVR [Figs. 3(e) and 3(g)].

Table 2 Systemic changes during each CVR paradigm.

EtCO2 (mmHg) MAP (mmHg) HR (beats/minute)

Delta from baseline

HC 13.0 (7.80, 19.0)+* 4.9 (1.9, 10.3)+ 2.1 (-3.1, 4.7)*

BH 7.5 (5.9, 9.2)+ 8.0 (5.6, 11.6)+ 11.5 (9.1, 19.2)+

Range: median (IQR)

Resting state 6.5 (5.3, 8.8) 1.9 (1.4, 2.3) 3.3 (2.9, 5.3)

Median (interquartile range) change in EtCO2, mean ABP (MAP) and heart rate (HR) for each experimental
paradigm. For HC, this change reflects the steady state change from room-air inhalation, and for BH, this
change reflects the peak increase during BH. For RS, the median (IQRs) of the range (max – min over
the 10-min period) is reported. + denotes significant difference from baseline (p < 0.05); * denotes significant
difference between HC and BH (p < 0.05).

Table 3 CVR across experimental paradigms.

Linear regression GLM

Semi-infinite Three-layer Semi-infinite Three-layer

HC 1.95 (0.92, 3.38)+, 29 3.14 (1.48, 5.11), 24 1.30 (0.49, 2.06)+, 26 3.27 (1.55, 5.48)*, 21

BH 2.15 (1.24, 5.68)+, 28 4.86 (2.70, 8.34)*, 21 1.17 (0.73, 2.48)+, 19 2.73 (1.87, 5.03)*, 20

RS 1.89 (1.36, 2.44), 20 3.51 (2.37, 4.33)*, 18 1.67 (0.98, 2.02), 18 3.33 (1.95, 4.40)*, 19

CVR (%/mmHg) for HC, BH, and RS experimental paradigms estimated with linear regression and GLMs using
the semi-infinite and three-layer models for DCS analysis. Data are reported as median (IQR), N datasets (out
of 31) that passed quality control metrics. * denotes significant difference between semi-infinite and three-layer
for a given CVR paradigm and numerical method (p < 0.05). + denotes significant difference between linear
regression and the GLM estimate of CVR for a given experimental paradigm (p < 0.05).
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Fig. 2 CVR across experimental paradigms: boxplots of CVR (%/mmHg) estimated with (a) linear
regression and (b) a GLM using both semi-infinite and three-layer DCS analytical models during
HC (blue), BH (black), and RS (red) experimental paradigms. For each boxplot, the central line
denotes the median, and the bottom and top edges of the box indicate the 25’th and 75’th
percentiles, respectively. The whiskers extend to the most extreme data points not considered
outliers. Individual data are also included. * denotes significant difference between semi-infinite
and three-layer for a given CVR paradigm and numerical method (p < 0.05). + denotes significant
difference between linear regression and the GLM estimate of CVR for a given experimental
paradigm (p < 0.05).

Fig. 3 Relationship between HC and BH CVR. (a), (c), (e), and (g) Relationship between CVR
estimated during HC versus BH and (b), (d), (f), and (h) corresponding Bland-Altman plots of
the difference versus mean CVR estimated with linear regression (left columns) and GLMs (right
columns) using the semi-infinite or three-layer model for DCS analysis. In panels (a), (c), (e), and
(g), the dotted line represents the line of unity, and the solid line represents the best linear fit
and 95% confidence interval (gray shaded region). In panels (b), (d), (f), and (h), the mean bias
(solid line) and its 95% confidence interval (shaded region) are compared to the line of equality
(dotted black line).
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A strong correlation and agreement were observed using the GLM on the semi-infinite data
[R ¼ 0.80, CCC ¼ 0.75, Fig. 3(e)], where the mean bias from the line of equivalence of
−0.12%∕mmHgwas not significant [Fig. 3(f)]. Further, a modest correlation and moderate agree-
ment were observed using the GLM on 3-layer data with scalp flow regression [R ¼ 0.69,
CCC ¼ 0.52, Fig. 3(g)], with a non-significant mean bias of þ0.76%∕mmHg [Fig. 3(h)].

We next compared CVR agreement between HC and RS paradigms (Fig. 4, Table 5). When
using linear regression to estimate CVR, the correlation between HC and RS was statistically
significant, but the agreement was poor for the semi-infinite model [R ¼ 0.45, p ¼ 0.045, and
CCC ¼ 0.35, Fig. 4(a)]; no association between RS and HC was observed for the three-layer

Table 4 Relationship between HC and BH CVR.

HC versus BH

Linear regression General linear model

Semi-infinite Three-layer Semi-infinite Three-layer

N 25 18 17 16

R 0.15 0.58 0.80 0.69

p-value 0.48 0.0087 0.00011 0.0021

CCC 0.11 (−0.19, 0.39) 0.45 (0.14, 0.68) 0.75 (0.49, 0.88) 0.52 (0.24, 0.72)

Mean bias 1.28 (0.08, 2.49) 1.36 (−0.53, 3.25) −0.12 (−0.57, 0.33) 0.76 (−1.28, 2.80)

Relationship between CVR estimated during hypercapnia versus BH using each numerical method and DCS
analytical model corresponding to Fig. 3. N denotes the number of datasets that met quality inclusion criteria for
both hypercapnia and BH, R denotes Pearson’s correlation coefficient and its corresponding p-value (p), CCC
denotes Lin’s CCC with 95% confidence intervals, and mean bias (95% confidence interval).

Fig. 4 Relationship between HC and RS CVR. (a), (c), (e), and (g) Relationship between CVR
estimated during HC versus RS and (b), (d), (f), and (h) corresponding Bland-Altman plots of the
difference versus mean CVR estimated with linear regression (left columns) and GLMs (right col-
umns) using the semi-infinite or three-layer models for DCS analysis. In panels (a), (c), (e), and (g),
the dotted line represents the line of unity, and the solid line represents the best linear fit and 95%
confidence interval (gray shaded region). In panels (b), (d), (f), and (h), the mean bias (solid line)
and its 95% confidence interval (shaded region) are compared to the line of equality (dotted black
line).
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model [Fig. 4(c)]. In a similar manner as the HC versus BH comparison, the strength of the HC
versus RS CVR relationship greatly improved when using a GLM to estimate CVR [Figs. 4(e)
and 4(g)]. A strong, statistically significant correlation and borderline strong agreement were
observed using the GLM with short separation regression on the semi-infinite data [R ¼ 0.76,
p < 0.001, CCC ¼ 0.69, Fig. 4(e)] with a non-significant mean bias of −0.12%∕mmHg

[Fig. 4(f)]. A significant correlation and moderate agreement were observed using the GLM on
three-layer data with scalp signal regression [R ¼ 0.65, CCC ¼ 0.55, Fig. 4(g)], with a non-
significant mean bias of −0.68%∕mmHg [Fig. 4(h)].

4 Discussion

Herein we used DCS to quantify the agreement between CVR measured during HC compared
with more tolerable and more practical BH and RS paradigms. Although these experimental
paradigms are often used interchangeably in the literature as vehicles to assess CVR, we found
surprisingly poor agreement between CVR assessed with each of these paradigms when using a
simple linear regression to estimate CVR. This poor agreement was observed when using both
the semi-infinite and three-layer models for DCS blood flow estimation. However, by employing
a GLM to regress out extracerebral contributions, we found strong agreement between the “gold-
standard” HC challenge and both BH and RS. This result suggests that the more CVR tolerable
paradigms may serve as a substantially equivalent substitution for the HC challenge, thereby
enabling bedside assessment of microvascular CVR with DCS in patient cohorts for whom
HC is contraindicated or not feasible.

The use of a GLM with short separation regression (GLM-SS) is designed to remove extrac-
erebral and systemic contributions to the long separation blood flow signal and, by extension, to
enhance sensitivity to changes in brain-layer blood flow caused by dissolved CO2 in the blood-
stream. Although commonly employed by the functional near-infrared spectroscopy (fNIRS)
community to improve detection of evoked brain activity,66,68,71 this approach is novel in the
assessment of CVR with DCS. Furthermore, this approach offers a unique advantage over other
CVR-quantifying modalities, such as TCD, that lack easy access to information regarding sys-
temic changes without the use of supplemental monitoring of ABP, heart rate, etc. Functional
magnetic resonance imaging (MRI) commonly employs a global signal regression to account for
systemic influences, among other contributors;72 however, when applied to the assessment of
CVR, this approach yields only qualitative estimates that complicate inter-subject comparisons
and is non-ideal for use in BH or HC.73 By employing short separation regression with DCS,
we regress out extracerebral and systemic contributions to the signal in a manner that is

Table 5 Relationship between hypercapnia and RS CVR.

Hypercapnia versus resting state

Linear regression General linear model

Semi-infinite Three-layer Semi-infinite Three-layer

N 20 17 16 17

R 0.45 0.31 0.76 0.65

p-value 0.045 0.23 0.00058 0.0048

CCC 0.35 (0.02, 0.61) 0.21 (−0.13, 0.51) 0.69 (0.40, 0.86) 0.55 (0.20, 0.77)

Mean bias −0.46 (−1.17, 0.26) −0.89 (−2.26, 0.47) −0.12 (−0.50, 0.25) −0.68 (−1.55, 0.19)

Relationship between CVR estimated during hypercapnia versus RS using each numerical method and DCS
analytical model corresponding to Fig. 4. N denotes the number of datasets that met quality inclusion criteria,
R denotes Pearson’s correlation coefficient and its corresponding p-value (p), CCC denotes Lin’s CCC with
95% confidence intervals, and mean bias (95% confidence interval).
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comparatively more feasible than TCD and that can provide quantitative assessment of CVR
across a wider range of experimental paradigms. We note that our implementation of the
GLM-SS did not employ the use of a pre-whitening filter to minimize the influence of
serially correlated (i.e., colored or heteroscedastic) noise.74 This filter was not used because
(1) <25% of subjects exhibited oscillatory behavior in the temporal autocorrelation of error
term, (2) prewhitening did not significantly change the estimation of CVR (e.g., for HC
CVR with versus without pre-whitening, R ¼ 0.98, CCC ¼ 0.96 with an average difference
of <0.12%∕mmHg), and (3) prewhitening reduced the number of usable datasets (e.g., for
HC, 23 datasets passed with pre-whitening vs. 26 without pre-whitening).

We have demonstrated a strong agreement among experimental paradigms using the GLM-
SS approach; however, more work is needed to validate that CVR estimated with this approach
reflects the true CVR. For reference, the literature commonly reports hypercapnic CVR in
healthy adults to be ∼4 to 8%/mmHg.35,55,58 Our median (range) of 1.3 (0.5 to 4%/mmHg)
is comparatively lower, possibly because the systemic influences that we regress out are known
to be caused by factors that change CBF in tandem with the effects of dissolved CO2 (e.g., blood
pressure and cardiac output). Alternatively, the blunted values may be due to the choice of source
detector separations, which may regress out too much of the desired brain-layer BFi signal due to
a lack of optimal short separation or which may not have sufficient brain sensitivity due to the
2.5-cm-long separation. Finally, the blunted values could reflect that our assessments were made
while the subjects were seated. Many studies, particularly with MRI, are performed with the
subject in a supine posture, which is a known factor that increases the magnitude of CVR.75

Regardless, validation studies against other modalities (e.g., MRI) and clinical studies demon-
strating the ability to detect abnormalities in CVR with this approach are warranted.

Although the strong agreement between HC and BH/RS with the GLM-SS approach is prom-
ising, we note that the overall rejection rate is high (23, 28, and 42% for HC, BH, and RS,
respectively). We explored several explanations for this high rejection rate. For a subset of sub-
jects (N ¼ 13∕31), we observed that baseline BFi (ρlong) < BFi (ρshort), which may suggest a lack
of brain sensitivity. For the RS paradigm, the ratio of BFi (ρlong)/BFi (ρshort) was significantly
lower in rejected vs. passing datasets (0.81 versus 1.40; p < 0.01); however, this trend was not
observed for HC or BH paradigms. Further, in a subset of 6 subjects, we briefly applied pressure
to the sensor to reduce scalp flow. Although the sample size was small, we observed that the
relative change in BFi at ρlong compared with ρshort during this pressure manipulation was higher
but not significantly different in rejected data (2/6) across all paradigms (e.g., for RS, 0.88 versus
0.67). Taken together, these observations may suggest that the high rejection rate may be par-
tially due to either regressing out too much brain signal with the 1 cm separation or not enough
brain sensitivity with the 2.5-cm separation. The literature suggests that the latter is more likely
as limited brain sensitivity is a well-known challenge in DCS measurements. Multiple ongoing,
long-term efforts aim to address this brain sensitivity limitation;76 they include novel hardware
developments (e.g., time-domain77,78 and interferometric DCS,79,80 along with moving to the
second optical window81) and improved analytical approaches.50,62,82 As a mitigating near-term
strategy, computational simulations are warranted to optimize source-detector separations, akin
to what has been done with functional NIRS.66,83 For the RS paradigm, another explanation that
we investigated for the high rejection rate was that the natural fluctuations in EtCO2 observed
during unpaced breathing (typically a difference 1 to 3 mmHg on a breath-by-breath basis) may
be too small to elicit reliable fluctuations in CBF, as has been previously suggested.26,40,45

However, median RS EtCO2 IQRs and beat-to-beat EtCO2 changes between accepted and
rejected data were not statistically different (p > 0.1), contradicting this previously offered
explanation. Future work should be directed to better understand the factors that contribute to
this high rejection rate to increase clinical viability of the CVR assessment with the GLM-SS
approach.

Quantifying CVR with DCS is a particularly attractive opportunity for technology transfer as
a diagnostic medical device for use in clinical settings given the unique economic, ergonomic,
and clinical workflow integration benefits conferred by this optical neuromonitoring modality.
Notable advantages include microvascular sensitivity in contrast to TCD, bedside portability in
contrast to MRI, and ease of use in all patient cohorts in contrast to both TCD and MRI. Indeed,
given these positive attributes, several studies42,49–57 have utilized DCS to quantify the CBF
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response to a vasoactive stimulus (e.g., ACZ, HC). Nevertheless, despite the advantages of DCS
as a CVR-quantifying platform, drawbacks remain. The penetration depth of DCS is limited to
the superficial cortex, and the spatial sensitivity is poor, unlike MRI, and as previously discussed,
the measurement can be significantly confounded by the influence of extracerebral layers
(i.e., skull, scalp, and cerebrospinal fluid). With regards to the latter limitation, we explored
both the GLM-SS and the use of the three-layer model. With the three-layer model, we found
that the magnitude of CVR significantly increased for most experimental paradigms and numeri-
cal approaches compared with the semi-infinite model, suggesting that the model did increase
brain sensitivity. However, agreement among experimental paradigms was strongest with the
semi-infinite model using the GLM-SS. The weaker agreement with the 3-layer model could
be due to the sensitivity of this model to errors in the model’s assumed input parameters
(Supplementary Material). For example, it has been shown to be sensitive to errors in both skull
and scalp thickness, such that an underestimation of scalp thickness by ∼20% could induce
∼15% errors in the estimation of rCBF.63 To minimize these sources of error, future studies
could benefit from concurrent anatomical scans (e.g., MRI or CT) to assess layer thickness
and/or from the implementation of a realistic, multilayered Monte Carlo-based fitting process
coupled with a pressure modulation paradigm to optimize model parameters.50

This study is not without limitations. First, the order of the experimental paradigms was not
randomized by subject. Although we have no indication that order should influence agreement,
the best practice to avoid unintended systematic error in experimental design would have been to
randomize the order. Second, our estimation of CVR assumes a linear relationship between
blood flow and end tidal CO2. This first-order approximation may break down outside the autor-
egulatory range of EtCO2 (∼35 to 45 mmHg), wherein the relationship between macrovascular
blood flow velocity and EtCO2 has been shown to be logistic.84,85 Future work could benefit from
quantifying the hemodynamic response function to step changes in EtCO2 to better account
for possible non-linearity between CBF and EtCO2.39,55,71,83,86 Third, we did not rigorously
control for environmental stimuli. Although the exact influence of the environment on our
estimations of CVR is not well delineated, there is evidence to suggest that environmental stimuli
can influence the brain’s response to changes in EtCO2. For example, Peng et al. showed that
the time delay between the gray matter BOLD signal change and EtCO2 is larger with
eyes-open versus eyes-closed states.87 The effect of environmental influences should be the sub-
ject of rigorous further investigation. Finally, there are numerous assumptions/approximations
made when fitting for BFi with the semi-infinite model and for CBFi with the three-layer model
(Supplementary Material). For example, with the semi-infinite model, we incorporate FDNIRS-
estimated optical properties into the fitting procedure. The estimation of optical properties is
predicated on several assumptions, e.g., μs 0 does not change with time.51 For the three-layer
model, we assumed that optical properties do not change with time, and we also used fixed,
literature defined scalp and skull thicknesses for all subjects. Although the magnitude of the
errors induced by each of these approximations in isolation may be small, the cumulative effect
could be significant. Future work that targets this issue by minimizing the number of assump-
tions needed is merited.

5 Conclusions

This work provided the first systematic comparison of CVR across experimental paradigms
using DCS. We demonstrated that using a GLM to regress out extracerebral and systemic
contributions to the DCS-measured blood flow yielded a strong agreement between the “gold-
standard” HC and the more tolerable and feasible paradigms of BH and RS. These findings
suggest that BH and RS paradigms may offer feasible experimental alternatives to HC for
practical clinical evaluation of CVR with DCS.
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