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Abstract

Significance: Statistical inference in functional neuroimaging is complicated by the multiple
testing problem and spatial autocorrelation. Common methods in functional magnetic resonance
imaging to control the familywise error rate (FWER) include random field theory (RFT) and
permutation testing. The ability of these methods to control the FWER in optical neuroimaging
has not been evaluated.

Aim: We attempt to control the FWER in optical intrinsic signal imaging resting-state functional
connectivity using both RFT and permutation inference at a nominal value of 0.05. The FWER
was derived using a mass empirical analysis of real data in which the null is known to be true.

Approach: Data from normal mice were repeatedly divided into two groups, and differences
between functional connectivity maps were calculated with pixel-wise t-tests. As the null
hypothesis was always true, all positives were false positives.

Results: Gaussian RFT resulted in a higher than expected FWERwith either cluster-based (0.15)
or pixel-based (0.62) methods. t-distribution RFT could achieve FWERs of 0.05 (cluster-based
or pixel-based). Permutation inference always controlled the FWER.

Conclusions: RFT can lead to highly inflated FWERs. Although t-distribution RFT can be accu-
rate, it is sensitive to statistical assumptions. Permutation inference is robust to statistical errors
and accurately controls the FWER.
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1 Introduction

Statistical inference from neuroimaging data is complicated by the “multiple testing problem” in
the setting of spatial autocorrelation. Comparing groups of images between experimental cohorts
can involve tens of thousands of parallel pixel-wise statistical tests. Thus, even if the individual
type I error rate for each individual pixel’s statistical test was effectively controlled at (for
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example) 0.05, we would expect hundreds of false positives pixels over the entire image.
Controlling the familywise error rate (FWER: the likelihood of any false positive result occurring
anywhere in the image) must account for the multiple statistical tests. However, neuroimaging
data often have complicated spatial autocorrelation structures (arising from the point-spread
function of the imaging system, processing choices such as spatial smoothing, and the under-
lying neuroanatomy), which makes it difficult to determine an appropriate statistical threshold
for significance. Multiple methods have been developed to control the FWER1,2 for positron
emission tomography (PET) and functional magnetic resonance imaging (fMRI). As statistical
rigor has become a greater focus in the optical neuroimaging community,3 multiple groups have
adapted such methods to functional near-infrared spectroscopy4–6 and widefield optical neuro-
imaging (WOI).7

Such methods are often demonstrated using a task in which a known response is expected or
with two groups between which a difference is expected. The authors, then, demonstrate that
their method can highlight the brain regions that are activated or that differ between groups.
However, although this demonstration may illustrate adequate statistical power (i.e., limitation
of type II error), it does not prove whether or not such methods control the FWER. Assessment of
whether FWER control is adequate requires data in which the null hypothesis is known to be
true. Our goal in the present manuscript is to determine whether algorithms designed to control
the FWER perform as expected, i.e., does the actual FWER match the nominal value? In par-
ticular, we are interested in group analysis of resting-state functional connectivity (FC) data
collected in mice using optical intrinsic signal (OIS) imaging, although the techniques described
and the overall conclusions are generally applicable to other modalities or analysis methods.

Broadly, there are two ways of thinking about FWER control in neuroimaging. With pixel-
wise inference, we are interested in finding a new threshold for significance that can be applied to
individual pixels in the statistical image such that, if the null hypothesis were true, the probability
that we would find pixels with values as extreme as (or more extreme than) this threshold would
be equal to the target FWER (usually α ¼ 0.05). Alternatively, cluster-wise methods use a pixel-
wise threshold to form clusters of potentially significant pixels and then attempt to find a thresh-
old on the extent of spatially contiguous clusters to determine significance. In both cases, the
significance threshold (and thus the p-value of an image feature) is based on the distribution of
the maximum statistic: for pixel-wise inference, the probability that the highest peak in the
statistical image will be at or above a value, and for cluster-wise inference, the probability that
the largest cluster in the image will be larger than a certain extent. This distribution can be deter-
mined either non-parametrically, using permutation or boot-strapping methods, or parametrically
by reference to an assumed null distribution. The most common parametric method used for
neuroimaging is random field theory (RFT), which can be used with either pixel-wise or clus-
ter-wise inference. RFT has recently been adapted to mouse optical neuroimaging as an open-
source statistical processing toolbox for MATLAB.7 Once the probability distribution of the
feature of interest is derived, individual features in the image (pixel heights or cluster sizes)
can be assigned a p-value, which is the probability with which such a feature (or one more
extreme) would appear if the null hypothesis were true. Although some publications7,8 include
images of thresholded pixel-wise p-values after cluster analysis, properly, after assignment to
clusters, the pixel-wise p-values have no statistical meaning, and each cluster (in its entirety) is
assigned a single p-value.9 For any method, if the FWER is equal to the nominal value, then the
test is exact. If the FWER is lower than expected, the test is conservative. If the FWER is higher
than expected, then the p-values are falsely small and invalid.

The overall logic of the present study is inspired by Eklund et al.10 who analyzed fMRI
statistical processing algorithms using a mass empirical analysis by resampling real data under
the null. We use FC data taken from normal mice without any experimental intervention, mice
are randomly and repeatedly divided into groups, and statistical tests of significance are applied.
The null hypothesis of no differences between groups should always be true, and all pixels found
to show statistically significant differences between groups will thus be false positives. Thus, the
FWER of the testing procedures can be estimated. Using such methods, Eklund et al.10 found
that the FWER for cluster-wise inference using RFT often substantially exceeded the nominal
rate when implemented with many popular fMRI statistical toolboxes. We also demonstrate that
the FWER with both pixel-wise and cluster-wise RFT in optical imaging is very sensitive to
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statistical assumptions and seemingly minor errors can lead to a substantially inflated FWERs
(i.e., falsely low p-values). Finally, we also demonstrate how inference through permutation
methods is able to control the FWER in a robust manner and is likely a better choice for statistical
interpretation of optical neuroimaging data.

2 Methods

2.1 Optical Neuroimaging

All procedures were approved by the Institutional Animal Care and Use Committee of the
Children’s Hospital of Philadelphia. Intact-skull cranial windows were placed on wild-type
C57bl/6 mice (Jackson Laboratory, Bar Harbor, Maine). OIS imaging was performed using
ketamine and xylazine anesthesia at ∼8.5 weeks of age (range: 6.9 to 12.1 weeks). OIS data
were processed as previously described, including pixel-wise censoring, guided brain segmen-
tation and atlas transformation, spectroscopy, and filtering to 0.01 to 0.1 Hz.11–14 All analyses
were performed on normalized changes in total hemoglobin concentration after global signal
regression. Images were acquired in 5-min scans with 5 to 6 scans per mouse (25 to 30 min
of data). Data were concatenated across runs prior to functional connectivity analysis. Data
consist of two-dimensional (2D) images of the superior mouse brain as viewed from above
[Figs. 1(a)–1(c)].

Seed-based resting-state functional connectivity analysis was performed by selecting 14
seeds (7 per hemisphere) from major brain regions [i.e., motor, lateral somatosensory, medial
somatosensory, visual, auditory, retrosplenial, and olfactory, Fig. 1(d)]. Relative to bregma, the
seven seed locations in the left and left hemispheres were chosen symmetrically about midline
(Table 1).

RSFC null hypothesis data:
16 normal C56Bl/6 mice

Randomly divide into two 
groups of eight mice
(12,780 permutations)

Calculate FWER with 
cluster thresholding

Example
FC map
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Fig. 1 Schematic of the imaging system and methods. (a) OIS imaging system with four tempo-
rally multiplexed light-emitting diodes (LEDs) and an imaging camera positioned over the mouse.
(b) False-color image demonstrating the field-of-view of the imaging system. The two hemispheres
of the mouse brain are seen from above (left hemisphere on the left, anterior at the top of the page).
(c) Schematic of the field-of-view demonstrating the segmented brain (light gray) and major land-
marks (red). (d) Example resting-state functional connectivity map from an example mouse and
seed (left motor cortex). (e) Example t map from a single permutation (left motor seed) demon-
strating variance in the t statistic spatially under the null. (f) A false positive cluster is identified
using Gaussian RFT (red pixels). As the null hypothesis is always true, the FWER is the percent-
age of times that any false positives occur.
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Each seed trace was constructed by averaging the signal across a 5-pixel-radius (∼0.4-mm-
radius) circle centered on the seed location. Correlation coefficients with each seed were
converted to z-scores using Fisher’s transformation and a variance that accounted for temporal
autocorrelation using “Bartlett’s method.”15

2.2 Empiric Determination of the FWER

Our goal is to determine the empiric rate by which false positives arise in between-group analysis
of resting-state functional connectivity data in mice. We utilize a dataset of resting-state scans
from 26 mice, considered as a whole and as a subset of the first 16 mice scanned. In both cases,
mice were repeatedly divided into two equally sized groups. For the subset of 16 mice, there are�
16

8

�
¼ 12;780 total possible ways of randomly splitting the mice into two groups; all of these

random permutations were performed and analyzed. For the entire dataset, there are
�
26

13

�
¼

10;400;600 possible permutations, so 10,000 were performed and analyzed.
As the segmented brain (and pixels masked for quality reasons) varied between mice, analy-

ses were performed on all pixels where sufficient mice had evaluable data: for theN ¼ 16 cohort,
analysis was performed at all pixels where at least 6 mice in each group had data, and for the
N ¼ 26 cohort, the equivalent number was 11 mice in each group. For each permutation and for
each seed, we assessed differences between the groups using pixel-wise two-sample Student’s
t-tests to generate raw (uncorrected) p-values and t-statistics [Fig. 1(e)]. As the t-test assumes
that the variables are normally distributed, it should be performed between the z-maps of each
group. However, occasionally (as in Brier and Culver7), researchers perform the statistical test on
the raw correlation coefficients, r. As the t-test is relatively robust to deviances from normality,
we expected that this would be a minor concern, and we performed both analyses to test whether
this difference affected the FWER.

From these t-maps, significant differences between groups were determined using the meth-
ods outlined below in detail, including (1) pixel-wise RFT, (2) cluster-wise RFT, (3) pixel-wise
permutation analysis, and (4) cluster-wise permutation analysis [Fig. 1(f)]. For RFT, we varied
the assumptions and algorithms to account for various possible methodologies as well as soft-
ware bugs discovered in the open-source code used as a starting point. For all analyses, param-
eters were chosen with the goal of controlling the FWER at 0.05, as is typical in the scientific
literature.

As all mice were normal mice, there should be no significant differences between groups.
Any positive results were false positives. For any permutation, we are only interested in whether
a false positive result is found and not whether multiple false positive pixels or clusters are found.
Thus, for each analysis method and each seed location, the FWER is simply the number of
permutations resulting in at least one false positive divided by the total number of permutations.
The primary outcome of our analyses was whether the FWER approximated the nominal value

Table 1 Seed locations relative to bregma, as viewed from above.

Seed name Medial/lateral Anterior/posterior

Motor 1.68-mm lateral 2.27-mm anterior

Somatosensory (lateral) 2.85-mm lateral 0.24-mm anterior

Somatosensory (medial) 2.07-mm lateral 0.62-mm posterior

Retrosplenial 0.98-mm lateral 1.71-mm posterior

Visual 2.38-mm lateral 3.35-mm posterior

Olfactory 0.82-mm lateral 4.15-mm anterior

Auditory 3.40-mm lateral 1.63-mm posterior
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of 0.05. All calculations were performed using MATLAB 2020a. The functional connectivity
datasets used and the code necessary to calculate the FWER are provided online.

2.3 Random Field Theory

The use of RFT for task-based functional neuroimaging analysis has been covered in depth in
many publications.1,2 Our goal here is to provide a brief summary of its key features, extend them
to functional connectivity data, and focus on the various assumptions that affect this analysis for
their application to (2D) widefield optical imaging. The current gold standard for using RFT in
widefield optical imaging is the open-source software package published by Brier and Culver,7

which has been used in multiple publications.8,16,17 We adapted this software package to our data
format. Modifications to its algorithms are described below, and at the request of reviewers, a list
of all differences between our final algorithm and that of Brier and Culver7 with line references to
their code is available in the Supplementary Material.

RFT assumes that, under null hypothesis conditions, test statistic images approximate a ran-
dom field. We are interested in the excursion set, the expected number of clusters of pixels in a
search region, V, with a test statistic that exceeds a threshold, T. For high enough T (such that we
expect at most one cluster of pixels—without holes—exceeding this threshold), the expected
number of clusters is given by [c.f., Eq. (7.11) in Ashby2 and Eq. (3.1) in Worsley et al.18]:

EQ-TARGET;temp:intralink-;e001;116;507μ ¼ s
X2
d¼0

RdðVÞfdðTÞ; (1)

where RdðVÞ is the number of d-dimensional “resels” (a neologism coined by Worsley et al.19 to
mean resolution elements) in the search region and fdðTÞ is the expected value of the Euler
characteristic in one resel of dimension d with the threshold T (methods for determining the
search volume and resel count are discussed below). s is a correction factor to account for the
sidedness of the statistical test. Usually, Eq. (1) is presented with s ¼ 1, which assumes that we
are only concerned with the probability of finding a cluster of pixels where the value exceeds T.
Although such a one-sided statistical test may be appropriate when attempting to determine
which pixels are associated with a canonical hemodynamic response function in a task-based
paradigm, here, we are interested in the differences between two group functional connectivity
maps. As functional connectivity could increase or decrease in strength, we should allow our
statistical test to be two-sided.20,21 As we are assuming that the null hypothesis is true every-
where, the distribution is symmetric about zero, and the likelihood of a cluster of pixels having
values above T is the same as having values below −T. Thus, properly, for our analysis, s should
be 2.

Often, in neuroimaging, the random field is assumed to be Gaussian, regardless of the origin
of the test statistic (properly, using a probability integral transformation at each pixel). For
Gaussian z-maps, the expected Euler characteristics are given as18

EQ-TARGET;temp:intralink-;e002;116;252f0ðTÞ ¼
Z

∞

T

1ffiffiffiffiffi
2π

p e−x
2∕2dx ¼ 1 −ΦðTÞ; (2)

EQ-TARGET;temp:intralink-;e003;116;197f1ðTÞ ¼
ffiffiffiffiffiffiffiffiffiffi
lnð2Þp
π

e−T
2∕2; and (3)

EQ-TARGET;temp:intralink-;e004;116;161f2ðTÞ ¼
4 lnð2Þ
ð2πÞ3∕2 Te

−T2∕2; (4)

where Φ is the cumulative density function of the standard normal distribution. For t-fields
(which are what result from the student’s t-test), the expected Euler characteristics are
given as18,22
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EQ-TARGET;temp:intralink-;e005;116;735f0ðTÞ ¼
Γ
�
νþ1
2

�
ffiffiffiffiffi
νπ

p
Γ
�
ν
2

� Z
∞

T

�
1þ x2

ν

�ðνþ1Þ∕2
dx; (5)

EQ-TARGET;temp:intralink-;e006;116;673f1ðTÞ ¼
ffiffiffiffiffiffiffiffiffiffi
lnð2Þp
π

�
1þ T2

ν

�
−ðν−1Þ∕2

; and (6)

EQ-TARGET;temp:intralink-;e007;116;635f2ðTÞ ¼
4 lnð2Þ
ð2πÞ3∕2 T

�
1þ T2

ν

�
−ðν−1Þ∕2

: (7)

Here, ν is the degrees of freedom in the t-test, which is the total number of subjects minus two,
although as the brain segmentation is not equivalent across mice, the degrees of freedom is not
invariant across the image. The gamma function, Γ, is an extension of the factorial function.
It is worth noting that the equations for fdðTÞ of t-maps in Ashby2 are incorrect as the expo-
nents are given as − 1

2ðν−1Þ.
2,23

2.4 Pixel-Wise Analysis

When performing pixel-wise analysis, we are interested in a T threshold such that false positive
pixels only appear with an FWER of α (e.g., 0.05). Thus, we solve Eq. (1) to find a T that results
in μ ¼ 0.05. This answer is derived numerically. The pixel-wise p-value is the likelihood that a
pixel of value T (or more extreme) would occur under null hypothesis conditions, which is the
definition of μ in Eq. (1). It is worth noting that the equivalence between μ and p only holds for
sufficiently high T.

2.5 Cluster-Wise Analysis

For cluster-wise analysis, we choose an initial T-threshold and then examine clusters of pixels
above this threshold, with the goal of finding a value for cluster extent with which to control the
FWER. For Gaussian RFT in the limit of high thresholds, the size of clusters follows a Poisson
distribution,2,24 so the probability that a cluster has a size of least k pixels is given as

EQ-TARGET;temp:intralink-;e008;116;353β ¼ e−λk; (8)

where (in two dimensions) λ is given by [c.f., Eq. (12) in Friston et al.24 and Eq. (7.19) in
Ashby2]:

EQ-TARGET;temp:intralink-;e009;116;297λ ¼ Γð2Þμ
sVf0ðTÞ

: (9)

Here, μ is the expected number of clusters at threshold T, V is the number of pixels in the search
volume, f0ðTÞ is the single pixel likelihood of exceeding the threshold, and s is either 1 or 2
depending on test sidedness. It is worth noting that Eq. (8) only holds for Gaussian fields;
although a version for t-fields has been derived,25 it is significantly more complex. In practice,
Eq. (8) is often used for t-fields.26

We know that the expected number of clusters at a pixel threshold T is μ, given by Eq. (1).
Then, the overall nominal FWER is one minus the probability that at least one of these clusters
has a size over k pixels:

EQ-TARGET;temp:intralink-;e010;116;157α ¼ 1 − e−μβ: (10)

Recall that β is a function of k [Eq. (8)]. We then solve for k to determine the cluster size neces-
sary to yield a nominal FWER of α [c.f., Eq. (15) in Friston et al.24 and Eq. (7.20) in Ashby2]:

EQ-TARGET;temp:intralink-;e011;116;101k ¼ 1

λ
ln

�
−

μ

lnð1 − αÞ
�
: (11)
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It is worth noting that the choice of T (which determines μ and k) is arbitrary within the con-
straint that T should satisfy the original assumptions that justify the use of the Euler character-
istic. In the limit of high T, any T can be chosen: lower pixel-wise thresholds result in a larger
necessary cluster-size for significance. A typical choice (as in Brier and Culver7 and many fMRI
studies) for the pixel-wise threshold is T ¼ 3.09, which corresponds to p ¼ 0.001, assuming the
p-values are normally distributed. As the p-values are not necessarily distributed in a Gaussian
manner, more properly, T needs to be determined based on the cumulative distribution function
of the underlying statistical distribution. We also note that the correspondence between T ¼ 3.09

and p ¼ 0.001 assumes a one-tailed distribution.
Additionally, we found a crucial bug in the code provided by Brier and Culver7 wherein

although a value of T ¼ 3.09was chosen to calculate μ and k, in the definitive analysis, statistical
images were thresholded at the Matlab default of p ¼ 0.05, equivalent to T ¼ 1.65 for a one-
tailed normal distribution. We assess below the effect of this bug on the occurrence of false
positives and thus the FWER.

Two common approximations for Eq. (9) (when assuming a normal distribution) are to
neglect the lower-dimensional corrections to μ [i.e., μ ¼ R2ðVÞf2ðTÞ with f2ðTÞ being defined
by Eq. (4)] and to use a large T approximation to the normal cumulative density function [i.e., to
f0ðTÞ; see Eq. (13) in Friston et al.24]:

EQ-TARGET;temp:intralink-;e012;116;5201 −ΦðTÞ ≈ e−T
2∕2

T
ffiffiffiffiffi
2π

p : (12)

Then,

EQ-TARGET;temp:intralink-;e013;116;461λ ¼ 2 lnð2Þ
π

Γð2Þ
ðFWHMÞ2 T

2: (13)

This result is nearly identical to Eq. (8) in Brier and Culver,7 where they define

EQ-TARGET;temp:intralink-;e014;116;404λ ¼ 4 lnð2Þ
2π

Γð2Þ2
ðFWHMÞ2 T

2: (14)

The difference between Eqs. (13) and (14) is an extra factor of Γð2Þ, which we believe was
spuriously inserted.27

In summary, RFTyields Eq. (11), which gives a threshold of k pixels; clusters above this size
are considered significant. To calculate the p-value to assign a given cluster, Eq. (10) is used.

We address in the Results (Sec. 3) whether these p-values are valid; here, it should immedi-
ately be noted that using a cluster-defining threshold of T ¼ 1.65 results in larger clusters than
T ¼ 3.09. Thus, if μ and λ are defined using a threshold of T ¼ 3.09 but the cluster size is
actually assessed for clusters defined using T ¼ 1.65 (as in Brier and Culver7), then the p-values
will be invalid (i.e., the p-values will be falsely small and thus underestimate the actual rate at
which such a cluster size is found under the null).

2.6 Search Volume and Resel Count

In some publications, the statistical search area is taken to be the entire field-of-view, including
pixels outside of the brain segmentation.7,24,28 More properly, the search region should be
restricted to the actual brain segmentation, which is the only region where differences between
groups are of relevance. Furthermore, to account for the possibility that clusters touch the boun-
dary, it is necessary to account for the number of resels in multiple dimensions [i.e., we should
use the full sum in Eq. (1)]. Methods for numerically approximating the resel counts, R, were
given by Worsley et al.18 and involve counting the number of resel faces and edges in the search
region. It is important to note that these resel counts are approximations that are most accurate
when the search region is convex. This assumption may not always be accurate in optical im-
aging in which individual pixels may be masked for quality control or the entire midline may be
masked to divide the brain into two separate hemispheres. However, we are unaware of any
published method to account for such search region topologies. So, we rely on the resel formulas
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from Worsley et al.18 as the best available method. In practice, we use the formulas of Worsley
et al.18 to count the number of effective pixels in each dimension, d, and then divide by FWHMd

to convert to resels.

2.7 Empirical determination of FWHM

Following the methods of Xiong et al.29 and Keibel et al.,30 the full width at half maximum
(FWHM) is estimated from the spatial roughness, Λ, as follows. If uðx; yÞ is an image, then
(assuming unit pixel dimensions and N total pixels) the partial spatial derivatives are estimated as

EQ-TARGET;temp:intralink-;e015;116;626

�
u 0
xðx; yÞ

u 0
yðx; yÞ

�
¼

�
uðxþ 1; yÞ − uðx; yÞ
uðx; yþ 1Þ − uðx; yÞ

�
: (15)

The variance and covariance are then estimated as

EQ-TARGET;temp:intralink-;e016;116;568Vxx ¼
1

N
η − 2

η − 1

X
x;y

½u 0
xðx; yÞ − hu 0

xi�2; (16)

EQ-TARGET;temp:intralink-;e017;116;509Vyy ¼
1

N
η − 2

η − 1

X
x;y

½u 0
yðx; yÞ − hu 0

yi�2; and (17)

EQ-TARGET;temp:intralink-;e018;116;470Vxy ¼
1

N
η − 2

η − 1

X
x;y

½u 0
xðx; yÞ − hu 0

xi�½u 0
yðx; yÞ − hu 0

yi�; (18)

where η is the number of degrees of temporal freedom in the data, which we estimate using
Bartlett’s method.15

The estimated variance-covariance matrix is

EQ-TARGET;temp:intralink-;e019;116;408Λ ¼
�
Vxx Vxy

Vxy Vyy

�
: (19)

The FWHM is then estimated as

EQ-TARGET;temp:intralink-;e020;116;351FWHM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 lnð2ÞffiffiffiffiffiffijΛjp

s
: (20)

Although not described in the text of Brier and Culver,7 their method of calculating the FWHM
can be found in the open-source code. The FWHM is estimated from the spatial autocorrelation
of the image. The autocorrelation is calculated along the x- and y-dimensions, and the FWHM
is calculated as the width of the autocorrelation curve at a value of 1∕

ffiffiffi
2

p
. We are not aware of a

justification for this method being published in the prior literature.27 It is worth noting that there
is a small bug in the code such that the origin is calculated twice and the FWHM is spuriously
one pixel too large.

More properly, the roughness should be calculated on the statistical image (i.e., the t-map)
rather than the hemodynamic data, or if it is assumed that the statistical map might have signal,
the roughness should be calculated from the map of residuals, which are assumed to have the
same structure as the statistical map without the signal. With our data, there is no signal, as the
null hypothesis should always be true. So, we expect either method to yield similar results.

We compare the FWHM derived from both the spatial roughness and spatial autocorrelation
methods. To provide similarity with Brier and Culver,7 we calculated both on the hemodynamic
data prior to functional connectivity correlation analysis; this analysis was performed on all mice
and averaged across frames and then across mice. We also calculated FWHM using both meth-
ods on the t-maps and residuals; for this analysis, we selected 100 random possible permutations
and calculated the mean and standard deviation across permutations and seeds. For analyzing the
statistical residuals, this was performed with the same 100 permutations as above with averaging
across seeds and mice.
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2.8 Random Field Theory Summary

We detailed multiple methods to use RFT to attempt to control the FWER and multiple param-
eters in the model that can be adjusted. To summarize, the following is a list of the options:

1. Expected Euler characteristic formulas: Gaussian z-distribution versus student’s t-
distribution,

2. One-sided versus two-sided statistical tests,
3. Euler characteristic dimensionality: Use only 2D resels or use the “unified” sum across

dimensions,
4. The full definition of λ [Eq. (9)] or the simplified definition [Eq. (13)],
5. The value of the FWHM, and
6. The statistical search area: the full 2D area versus the segmented brain.

In addition to the above, we also tested the effect of the thresholding bug in the code of Brier and
Culver.7 As all of these choices offer many possible statistical methods, we only show the results
below for some relevant combinations. The code provided online can be used to generate the
FWER for other combinations as desired by the reader.

2.9 Permutation Inference

With permutation inference, rather than assuming a form for the distribution of the maximal
statistic from RFT, the distribution is estimated from the data itself. For each possible permu-
tation of the data, the maximal value of the test statistic Tmax is calculated across the image. Over
all M images, we now have an empirical distribution of Tmax. To perform pixel-wise analysis,
with a nominal FWER of α, all of the M values are sorted from smallest to largest. Then c ¼
bαMc þ 1 is defined. The critical value for the test statistic is then the c’th largest value of Tmax

in our distribution, Tc. We reject the null hypothesis for any pixels with T > Tc.
31,32 For a two-

tailed test, the same analysis is performed with jTjmax. The p-value for any pixel is simply cal-
culated by comparing its t-value to the empirically derived cumulative density function of the
maximum statistic.

A similar analysis can be performed for cluster-wise analysis. Again, we have to choose a
predetermined T threshold with which to define the clusters. For consistency with the RFTanaly-
sis, we use the same values as above, derived from the values of T expected to correspond to
p ¼ 0.001 (from one-sided distributions). Then, for each permutation, we calculate the largest
cluster size found above that threshold. Again, we sort these sizes from smallest to largest and
determine the c’th largest value in this distribution using the same algorithm as above. We then
reject the null hypothesis for any clusters exceeding this threshold.32 As above, the p-value for a
cluster is calculated by comparing its extent to the empirically derived cumulative density func-
tion of the maximum cluster size. It is worth noting that, with permutation inference, p-values
are always quantized in increments of one over the number of permutations evaluated.

Because our gold standard for determining the FWER is to perform a comprehensive per-
mutation analysis, using the above algorithm on the entire dataset would by definition control the
FWER at exactly the nominal level. So, instead, we ask how well performing permutation infer-
ence on a subset of the data generalizes to the entire dataset. We performed the analysis with all
mice in the N = 16 and N = 26 groups, but only examined 1000 randomly selected permutations
to derive pixel-wise and cluster-wise significance thresholds and then applied these to the entire
set of permutations.

3 Results

3.1 Determining the FWHM

Before examining the FWER, we attend preliminarily to calculating the FWHM, a key compo-
nent of RFT. First, we used the partial spatial derivatives to estimate roughness and then
the FWHM. Using this method, all possible input images gave roughly similar FWHM.
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Determining the FWHM using the t-maps gave an FWHM of 8.9 pixels (approximately equal to
0.70 mm). Using the residuals gave an FWHM of 6.8 pixels (0.53 mm). Using the normalized
data (as in Brier and Culver7), the estimated FWHM was 8.1 pixels (0.63 mm). The roughness,ffiffiffiffiffiffijΛjp

, did vary over the field-of-view (Fig. 2), with higher roughness along the venous sinuses
(sagittally and between the cerebrum and olfactory bulb) and near the edges of the field-of-view.
Roughness was lower in the middle of large cerebral regions where spatial autocorrelation was
likely strongly driven by local functional connectivity (particularly motor cortex, but also soma-
tosensory and retrosplenial).

Next, we calculated the FWHM using the spatial autocorrelation (as in the code of Brier and
Culver7). This method was more variable. Using the hemodynamic data, the FWHM was larger
at 12.2 (0.95 mm), which was slightly larger than with the spatial roughness method. However,
when analyzing the t-maps and residuals, the FWHM was much higher, at 30.5 (2.38 mm) and
31.3 pixels (2.44 mm), respectively.

Overall, we believe that using the spatial partial derivatives on the t-maps is probably the
most accurate method to estimate the FWHM of the data [FWHM 9 pixels, (0.70 mm)].
However, to demonstrate how the FWHM affects RFT analysis, we performed the mass permu-
tation analysis with a range of assumed FWHMs from 4 to 15 pixels (0.31 to 1.17 mm).

3.2 Familywise Error Rate

We attempted to control the FWER using a variety of statistical methods, using a range of rea-
sonable parameters. The FWER was determined using a mass empirical analysis. Recall that the
nomimal FWER was always 0.05. The mass permutation analysis was always two-tailed.
References below to “one-sided” and “two-sided” refer to the forms of the equations used to
generate the significance threshold, which was then always applied to both positive and negative
t-values.

3.2.1 Gaussian random field theory

First, we assessed cluster-based Gaussian RFT. We started with the algorithms and methodology
from Brier and Culver,7 which includes (1) using the full 128 pixel by 128 pixel image as the
statistical search space, (2) using the simplified approximation of Eq. (13) for the expected num-
ber of pixels in a cluster, and (3) including the bug that thresholds pixels at p ¼ 0.05 despite
calculating the cluster size threshold with p ¼ 0.001. We started with an estimated FWHM of
12 pixels. These choices result in a cluster size threshold of 63 pixels for N ¼ 16 and 79 pixels
for N ¼ 26. Performing statistical tests on the r-maps, these algorithmic choices lead to an

Hemodynamic data t-Map Residuals

–3 –2 –1 0

Log-roughness (√|Λ|)

Fig. 2 Estimated spatial roughness (on a log-scale),
ffiffiffiffiffiffijΛjp

from the spatial partial derivatives of the
hemodynamic data, t -maps, and residuals. The average was taken across mice, permutations,
and seeds.
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extremely high FWER of 0.92 for N ¼ 16 and 0.83 for N ¼ 26 (ranges: 0.88 to 0.96 and 0.80 to
0.86, respectively, where the range is across the seed locations). To rephrase this result, over 80%
of experiments (with the exact number dependent on sample size) when assessed with this algo-
rithm show a “statistically significant” cluster of pixels as differing between the groups when no
true difference exists, which is much higher than the nominal (and typically accepted) rate of 5%.
The FWER did not substantially change when performing the statistical tests on the z-maps, with
a median FWER of 0.92 (range: 0.89 to 0.96) for N ¼ 16 and 0.84 (range: 0.81 to 0.88) for
N ¼ 26. As there were no major differences between performing statistical tests using the r- or
z-maps, all subsequent results use the z-maps.

This high FWER is primarily due to the bug that incorrectly creates larger clusters. However,
other statistical errors in the open-source algorithm have important and counter-acting effects.
Incorrectly using one-sided equations for a question that involves two-sided inference results in
a larger than expected FWER. Conversely, artificially increasing the field-of-view to include
regions of the image outside of the brain segmentation (and similarly failing to account for the
boundary’s effect on the Euler characteristic) artificially depresses the FWER. Fixing all of these
errors (and continuing to use an FWHM of 12 pixels) results in an FWER of 0.28 (range: 0.25
to 0.32) for N ¼ 16 and 0.081 (range: 0.057 to 0.091) for N ¼ 26.

The performance of Gaussian cluster-based RFT inference using equations corrected for two-
tailed inference and the limited search area are shown in Fig. 3 for a variety of FWHMs and both
sample sizes. It is clear that the results of Gaussian RFT are very sensitive to the FWHM used
(and we have previously seen how FWHM is itself very sensitive to processing choices). Across
all FWHM choices, the FWERs are substantially higher than the nominal value (which means
that any p-values are invalid). Pixel-wise Gaussian RFT also resulted in spuriously high FWERs
(Fig. 3) at all reasonable FWHM choices. It is interesting to note that changing the FWHM has
opposite effects on cluster-wise and pixel-wise RFT. With cluster-wise RFT, a larger FWHM
(assumed smoother data) means that clusters are expected to be broader. Thus, the size threshold
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Fig. 3 Numerical comparison of methods to control the FWER. The FWER is shown as well as the
threshold for determining significance (either a statistical threshold T , or a cluster size threshold
k ). This analysis uses two-sided equations, the full version of Eq. (9), the full dimensionality for
Eq. (1), and the segmented brain.
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for significance is increased and the FWER falls. However, for pixel-wise RFT, a larger FWHM
means that the multiple testing problem is less severe; the T threshold for significance is lower,
and the FWER is higher. It is also interesting to note the effect of sample size. The sample size
has minimal effect on the significance threshold for either cluster- or pixel-based inference (as
the Euler characteristics of Gaussian fields are independent of sample size). However, the larger
sample size universally results in a much lower (more appropriate) FWER. This result indicates
that the distribution of noise in the data (unlike a Gaussian) is dependent on sample size—as the
sample size increases, the data more closely approximates a Gaussian distribution.

To assess the failure of Gaussian RFT, we plotted the observed number of clusters as a func-
tion of jTj as well as the expected number of clusters as predicted from RFT [Eq. (1) using
Eq. (4)]. Recall that, for pixel-wise RFT, we numerically solve the Euler characteristic equations
to predict when the observed line should cross below 0.05. For cluster-wise RFT, we choose an
initial threshold for T, which should be near where this line crosses 1. We see that the observed
behavior has a much longer “tail” at a high T than would be expected for a Gaussian distribution
(Fig. 4). As the T-threshold for cluster analysis should be chosen such that on average less than
one cluster should appear per statistical image, this assumption is clearly violated at T ¼ 3.09

(p ¼ 0.001 assuming a Gaussian distribution), where the observed number of clusters averages
6.2 per statistical image for N ¼ 16. The cluster distribution (at high T) more closely follows
the expected number of clusters for a two-sided t-distribution [Eq. (1) using Eq. (7)], as should
be expected. However, even the two-tailed t-distribution still underestimates the number of
observed clusters for each T. The t-distribution is reasonably close to the observed distribution
when the expected number of clusters drops below 1 (i.e., where an appropriate cluster-threshold
would be) and below 0.05 (i.e., the pixel-wise t-value threshold for significance). With the larger
sample size (and increased degrees of freedom), the observed distribution and the predicted
t-distribution more closely approximate a Gaussian distribution. However, the t-distribution and
especially the Gaussian continue to underestimate the number of clusters in the empirical dis-
tribution at all thresholds.

In addition, the distribution of cluster sizes as predicted from Gaussian and t RFT (i.e., a
Poisson distribution) poorly corresponds to the observed data (Fig. 5). The observed data show
a sharper peak of very small clusters as well as a long tail of very large clusters. Thus, even when
adjusting the assumed statistical distribution, RFT still does a poor job of predicting the structure
of observed data. This result holds for both sample sizes.

3.2.2 t-distribution random field theory

Based on Fig. 4, we expect that using the Euler characteristic equations for t-fields would yield
more appropriate FWERs. For cluster-wise analysis, the use of a threshold of p ¼ 0.001 is asso-
ciated with T ¼ 3.79. For all FWHM choices, the FWER for t-distribution RFT is lower than for
Gaussian distribution. The results at a FWHM of 10 pixels approximated the nominal value of
0.05 (Fig. 3) for both N ¼ 16 and N ¼ 26. As expected, the use of pixel-wise t-distribution RFT
results in substantially higher T thresholds for significance and lower FWERs, with this analysis
being overly conservative at lower assumed FWHMs. Again, the nominal value of 0.05 is
approximately met when using an FWHM of 10 pixels (Fig. 3).

3.3 Permutation Analysis

Permutation inference was performed using thresholds derived from a random subset of 1000
permutations that were then applied to the complete set of all possible permutations. As with
RFT, for cluster-wise inference, we again have to pick an initial clustering threshold. We used
both T ¼ 3.09 and T ¼ 3.79 to match the RFTanalyses. Using the lower cluster-defining thresh-
old results in a very large cluster size for significance of 171.2� 37.6 pixels (the standard
deviation is across seeds). The higher threshold results in a cluster size for significance of
48.4� 7.0 pixels, which is similar to t-distribution with an FWHM of 10 pixels. With either
threshold, cluster-wise permutation inference is able to control the FWER at ∼0.05 (0.042 and
0.045, respectively, for N ¼ 16 and 0.051 and 0.047, respectively, for N ¼ 26). Similarly, pixel-
wise permutation inference results in a threshold for significance of T ¼ 6.18� 0.13 (again
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similar to that from t-distribution RFT) with an FWER of 0.052 for both N ¼ 16 and N ¼ 26.
Recall that this analysis was performed with 1000 permutations; increasing the number of per-
mutations allowed would increase the accuracy of achieving an FWER of 0.05.

3.4 Example p-values

As p-values may be more familiar than the FWER, we can demonstrate how an inflated FWER
results in falsely low p-values. We selected an example permutation (from the N ¼ 16 data
characterized by a number of regions of high and low t-statistics [Fig. 6(a)]. For RFT analysis,
we used an FWHM of 10 pixels and the full equations for μ, λ, and the field-of-view. We can see
that both Gaussian distribution and t-distribution pixel-wise RFT [Figs. 6(b) and 6(c)], respec-
tively) yield lower p-values than the either the permutation analysis [on the subset of 1000 per-
mutations, Fig. 6(d)] or the gold standard [Fig. 6(e)]—in the case of Gaussian RFT, the p-values
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Fig. 4 Observed versus expected number of clusters above a threshold jT j for both N ¼ 16 and
N ¼ 26 datasets. The observed number of clusters was determined empirically (green). The
expected number of clusters in a Gaussian random field is shown in red for both one-sided
(dashed) and two-sided (solid) analysis. The expected number of clusters in a t -field is shown
in blue for both one-sided (dashed) and two-sided (solid) analysis. The insets show the same
data zoomed in where the observed value crosses 1 and 0.05.
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are strikingly small. For example, focusing on the pixel with the largest deviation from zero
(which is a pixel near the center of the field-of-view with a value of t ¼ −7.30, this pixel is
assigned a p-value of p ¼ 3.4 × 10−10 by Gaussian RFT and p ¼ 4.5 × 10−3 by t-distribution
RFT. Yet this pixel’s p-value via permutation inference is 0.018, and the true p-value based on
the observed distribution is 0.0174.

Similar issues arise with cluster-based RFT. First, we note that the effect of the bug in the
cluster-defining threshold in Brier and Culver,7 which defines clusters as those with jtj > 1.64, is
to create extremely large clusters covering much of the brain [Fig. 7(a)] compared with those
properly defined as jtj > 3.09 for Gaussian and jtj > 3.79 for t-distribution RFT [Figs. 7(b) and
7(c), respectively]. When compared with the parametric distribution for Gaussian RFT (which
assumes the correct threshold), the p-values for the large cluster are incredibly small. The p-
value for the largest cluster (encompassing much of the posterior brain) is smaller than the mini-
mum variable size in MATLAB (i.e., below about 2 × 10−308), so we assign it a value of p ¼
10−10 for display purposes [Fig. 7(d)]. With proper thresholding, the largest cluster is located
in the right parietal lobe (being slightly larger with the lower threshold used for Gaussian RFT).
Gaussian RFT still assigns this cluster a very low p-value of p ¼ 4.17 × 10−7 [Fig. 7(e)],
whereas permutation analysis assigns it a p-value of p ¼ 9 × 10−3 [Fig. 7(g)], and the observed
distribution assigns it a p-value of 0.0118 [Fig. 7(i)]. With t-distribution RFT, the p-values are
more reasonable but still falsely low: p ¼ 0.010 for the largest cluster [Fig. 7(f)] compared with
p ¼ 0.0260 with permutation inference [Fig. 7(h)] and p ¼ 0.0254 with the observed distribu-
tion [Fig. 7(j)].

4 Discussion

We performed a mass empirical permutation analysis to assess the FWER for statistical analysis
of inter-group differences in optical resting-state functional connectivity. We found that the
FWER for Gaussian RFT often greatly exceeded the nominal value. This finding means that
the p-values reported by Gaussian RFT are invalid and the actual rate at which such features
arise under the null is much higher than the p-value would naïvely suggest. Although it is pos-
sible to tweak the parameters of t-distribution RFT sufficiently to obtain an FWER near the
nominal value, this result is highly sensitive to the statistical assumptions that may not generalize
to other datasets. The appeal of RFT is that the complexities of the multiple testing problem can
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Fig. 5 Expected and observed probability density functions for cluster size for both N ¼ 16 and
N ¼ 26 datasets. The observed cluster sizes were determined empirically (green). The expected
sizes were Poisson distributions with the expected mean value of μ as calculated for both
Gaussian and t distributions (red and blue, respectively). It is worth noting that the two lines
derived from RFT substantially overlap, so the blue of the t distribution is partially hidden.
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be condensed to a small set of equations; however, these advanced methods are not useful if we
do not rigorously ensure that they behave as expected. The problems with RFT have been doc-
umented with fMRI inference;10 it was found that a combination of software bugs and improper
statistical assumptions resulted in inflated FWERs for task-based analyses (we are not aware of
prior work specifically addressing functional connectivity analysis). Improper usage of one-
sided equations for two-sided questions has also led to FWER inflation in fMRI.20,21 Our analy-
sis found similar problems.

One of the dangers of statistical toolboxes is that they can serve as a black box wherein data is
entered and results of statistical significance are output, often without an assessment of whether
the assumptions of the toolbox match the data at hand. The dissemination of analysis methods
through open-source code is important for rigor, standardization of analysis, and reproducibility.
Although it is possible to process optical data using existing fMRI analysis programs, such meth-
ods should be used with caution. The statistical properties of optical data can differ substantially
from fMRI data,15 and it is unclear if results from fMRI-specific programs would be valid, absent

Example t-map Gaussian p-values t-distribution p-values

Random field theory

Permutation p-values True p-values
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Fig. 6 Calculation of p-values from an example random permutation of null hypothesis data
(N ¼ 16). (a) Example t -map. p-values (displayed as −log10ðpÞ to better highlight small p-values)
for individual pixels calculated with (b) Gaussian RFT, (c) t -distribution RFT, and (d) permutation
inference. (e) p-values derived from the observed cumulative density function of the image maxi-
mum statistic. (It is worth noting the different scales across images.) Gaussian RFT greatly exag-
gerates the significance of pixels. t -distribution RFT also exaggerates significance, but to a lesser
extent.
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Fig. 7 Calculation of p-values using cluster-wise inference; clusters are derived from the t -map
in Fig. 6(a). Cluster sizes for different pixel thresholds: (a) the spuriously low threshold in Brier and
Culver;7 (b) a typical threshold for Gaussian RFT; and (c) an equivalent threshold for t -distribution
RFT. (d) p-values for the cluster sizes in (a) based on Gaussian RFT (which assumes pixels were
actually tresholded at jt j > 3.09. The p-values are extremely low, with a floor enforced at p ¼
10−10. (e) p-values based on Gaussian RFT for the clusters in (b). (f) p-values from t -distribution
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an analysis comparable to the present paper. Thus, we applaud the efforts of Brier and Culver7 for
developing the first freely available analysis software for widefield optical imaging in mice.
Their work is a major step in adapting methods to optical neuroimaging, and it served as the
foundation for our present analysis. Although we found bugs in their code, which dramatically
inflate the FWER, we have alerted those authors to the errors27 and some of these errors were
addressed in updated code, released during revision of the present manuscript. The code for the
present analysis is available through Code Ocean, and although it is not a plug-and-play toolbox,
the algorithms encapsulated in the code could be adapted for other’s use.

However, the poor performance of RFT in controlling the FWER is not entirely attributable to
bugs in code. Fundamentally, it is important to rigorously examine the statistical assumptions in
analysis and ensure that the observed data (and the questions being asked) satisfy those criteria.
Importantly, in our present analysis the data did not follow a Gaussian distribution and the under-
lying scientific question called for a two-tailed analysis. Using one-sided Gaussian RFT equa-
tions originally derived for task-based analysis of PET and fMRI images resulted in severely
inflated FWERs. Although using a two-sided t-distribution as the basis for RFT analysis did
result in acceptable FWERs if the FWHM was carefully tuned, graphs of observed vs. expected
cluster numbers and sizes clearly demonstrate that RFT does not fully capture the nature of the
experimental data. As the experimental data is derived from a t-test, the resulting variance under
the null is highly dependent on the degrees of freedom. As the sample sized increased, the data
more closely approximated a Gaussian distribution and Gaussian RFT resulted in lower FWERs.
However, the p-values for Gaussian RFT remained invalid within a range of reasonable
FWHMs. The exact FWER obtained depended on the method by which resels were calculated
(i.e., the treatment of the statistical search space, dimensionality, and calculation of the FWHM);
proper treatments for all of these factors are themselves complicated or unclear, and they may
vary significantly between datasets. As previously mentioned, the unified correction for the
Euler characteristic proposed by Worsley et al.18 is only an approximation for a convex search
space. Brain segmentations with concavities (e.g., masking of the midline) or holes (e.g., from
pixel-wise censoring of low quality data) could result in unexpected effects on the Euler char-
acteristic. Similarly, we have seen how different methods to calculate the FWHM can result in
large differences in the calculated FWHM and the resulting FWER.

It is important to note that the FWHM metric in RFT is dependent on both the imaging
system and the experimental design. The FWHMs calculated for this dataset are larger than the
theoretical point-spread function of either the hemodynamic33 or fluorescence34 imaging system.
This is partly due to widefield illumination and an intact skull. But also, spatial autocorrelation in
the data is driven by underlying neurologic activity. Nearby cortical regions can be expected to
have similar functional connectivity profiles and thus have correlated image noise. Furthermore,
although the FWHM of the image noise is affected by the FWHM of any spatial smoothing
applied to the data, the two cannot be assumed to be identical. Thus, the optimal FWHM of
10 pixels for t-distribution RFT found for the current dataset should not naïvely be applied
to any future data from the same system let alone another hemodynamic imaging system or
fluorescence data.

In contrast to RFT, we found that permutation inference, either pixel-wise or cluster-wise,
was able to control the FWER as predicted. Permutation inference is not immune to algorithmic
errors. For example, it is important to ensure that the empiric maximal distribution is determined
in a two-tailed manner when appropriate. Although cluster-wise analysis is sensitive to the initial
pixel threshold chosen, the cluster size threshold for significance varies such that the FWER
can still be controlled even for low pixel thresholds. To a certain extent, our permutation results
are biased as the gold standard was itself a permutation test. However, our results demonstrate
the power and simplicity possible with permutation inference, and the 1000 permutations used
to derive the thresholds are on the low end of recommended ranges for neuroimaging experi-
ments.32 Overall, permutation methods are more robust to errors and do not rely on assumptions

Fig. 7 (Continued) RFT for the clusters in (c). (g) and (h) p-values based on permutation inference
for the clusters in (b) and (c), respectively. (i) and (j) Cluster p-values based on the observed
distribution for the data in (b) and (c), respectively. Again, we see that Gaussian RFT greatly exag-
gerates significance.
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about the distribution of the data. Furthermore, permutation methods can be easily extended to
other optical imaging methods (e.g., widefield fluorescence imaging, near-infrared spectroscopy,
or diffuse optical tomography). As long as the permutation scheme reflects the underlying null
hypothesis and the maximal statistic is defined properly, permutation methods are less dependent
on the idiosyncrasies of each imaging system or contrast. Thus, we would recommend permu-
tation inference as the preferred method for optical neuroimaging data.

It is important to note that we tested the ability to control FWER, that is the type I error. In
data without any true differences between groups, we cannot assess power or the type II error rate
(the rate at which the null hypothesis is falsely confirmed). With cluster analysis (either using
RFT or permutation), there is additionally a balance between the FWER, power, and desire to
detect spatially localized changes. Low cluster-defining thresholds will result in larger cluster-
extent thresholds for significance (at a constant FWER). It is important to understand this inter-
action when choosing and then tuning a statistical method. In addition to the pixel-wise and
cluster-extent method considered here, others have proposed more advanced methods for infer-
ence based on peak height.35 However, such methods often assume a Gaussian random field,
which, as we have seen, is often a poor approximation to the data.

Furthermore, it is important to note that cluster-based inference methods are affected by
inhomogeneities in image smoothness (i.e., nonstationarity). Areas of higher smoothness are
more likely to have larger clusters of pixels exceeding a threshold. This problem is common
to RFT and permutation methods. It is unclear to what extent inference in WOI is affected
by nonstationarity. More advanced methods can attempt to account for differences in spatial
roughness, but examining them is outside the scope of the present work.

Overall, our results demonstrate that statistical methods for between-group comparison can
often result in FWERs that vastly exceed the desired nominal value. In particular, RFT methods
are prone to algorithmic errors and are sensitive to statistical assumptions. RFT can result in
highly inflated FWERs, which means that the resulting p-values and statistical significance
should be interpreted with extreme caution when using these methods. Permutation inference,
on the other hand, is not dependent on as many statistical assumptions and can more robustly
control the FWER, resulting in p-values that accurately reflect the rate at which features arise
under the null. When choosing a statistical method for a group experiment, it is essential to
ensure that the FWER is controlled as expected (ideally with an analysis of null hypothesis
data); otherwise, the results could be unexpectedly corrupted by false positive results.
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