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imagery from unoccupied aerial vehicles
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ABSTRACT. The increasing prevalence of nuisance benthic algal blooms in freshwater systems
has led to water quality monitoring programs based on the presence and abundance
of algae. Large blooms of the nuisance filamentous algae, Cladophora glomerata,
have become common in the waters of the Upper Clark Fork River in western
Montana. To aid in the understanding of algal growth dynamics, unoccupied aerial
vehicle (UAV)-based hyperspectral images were gathered at three field sites along
the length of the river throughout the growing season of 2021. Select regions within
images covering the spectral range of 400 to 850 nm were labeled based on a
combination of professional judgment and spectral profiles and used to train a ran-
dom forest classifier to identify benthic algal growth across several classes, includ-
ing benthic growth dominated by Cladophora (Clado), benthic growth dominated by
growth forms other than Cladophora (non-Clado), and areas below a visually detect-
able threshold of benthic growth (bare substrate). After classification, images were
stitched together to produce spatial distribution maps of each river reach while also
calculating the average percent cover for each reach, achieving an accuracy of
approximately 99% relative to manually labeled images. Results of this analysis
showed strong variability across each reach, both temporally (up to 40%) and spa-
tially (up to 46%), indicating that UAV-based imaging with high-spatial resolution
could augment and therefore improve traditional measurement techniques that are
spatially limited, such as spot sampling.
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1 Introduction
The presence of nuisance benthic algal blooms is becoming an increasing concern in freshwater
systems, such as lakes and rivers, where widespread growth of algae has been shown to indicate
deteriorated water quality and ecosystem health.1,2 Though submerged aquatic vegetation (SAV)
and macroalgae, such as the nuisance filamentous algae Cladophora glomerata, are commonly
found in healthy aquatic ecosystems, excessive growth is indicative of eutrophication.3–5

Cladophora glomerata is one of over 400 species of Cladophora, a genus that is considered
one of the most abundant alga in alkaline rivers worldwide and one of the most important
nuisance filamentous alga in inland waters.6 The Upper Clark Fork River (UCFR) in western
Montana has a long history of abundant Cladophora glomerata (Cladophora) growth, where
naturally high levels of phosphorus and an influx of wastewater due to anthropogenic activity
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along its banks have led to nutrient enrichment, creating advantageous conditions for large
blooms.7–10

Water quality monitoring can be based on chemical or biological analyses, both of which
provide valuable insight into nutrient enrichment and stress in fluvial systems.11 Historically,
water quality standards in Montana have been based on either visual standards or numeric levels
of chemical properties, such as benthic algal standing crops, measured as the mass of the pigment
chlorophyll a (chl a) per square meter;12,13 however, these assessment methods have limitations.
Visual standards lack quantitative biological analysis, whereas numeric standards are based on
in-situ sampling that is limited in the spatial distribution and coverage required to accurately
assess large-scale algal growth.14,15

Water quality monitoring along the UCFR has a long history, with major impairment
recorded as early as 1908.16 Beginning in the 1970s, large blooms of Cladophora became a
regular occurrence between the UCFR headwaters near Butte, Montana, and approximately
193 river kilometers downstream, near Missoula, Montana.7,16 Cladophora growth in the
UCFR is spatially patchy and dependent on stream morphology and flow,17 indicating that water
quality measurements that include assessment of algal standing crops must take this spatial vari-
ability into account; however, laboratory-based analysis of algal samples does not capture infor-
mation on the spatial extent of algal growth.5 Current methods for determining algal coverage
rely on direct visual assessment based on qualitative estimates of percent algal cover, predomi-
nant algal color, and growth condition, measured at several points along a transect.18 Transect
methodologies require little training and time to perform but only capture small regions, are not
often quantitatively rigorous, and are commonly site-specific. Some sampling-based methods are
designed to be quantitative, such as the USGS richest targeted habitat method,19,20 but are
resource intensive and have limited spatial representation.

Optical remote sensing systems have been used to assess the spatial coverage and biological
metrics of algal blooms in large bodies of water for decades and is ongoing;21–23 however, most rely
on satellite imagery with coarse spatial resolution (10 m - km), inhibiting their use on anything
other than the largest rivers or lakes.24–27 More recently, the use of unoccupied aerial vehicle (UAV)
systems has grown in popularity due to their flexibility in revisit times and flight planning, ability to
carry a variety of imaging systems, and higher spatial resolution.28,29 UAV-based systems have
captured imagery using uncalibrated red-green-blue (RGB) imagers17,30 and multispectral systems
with near-infrared sensitivity31–33 with promising results for identifying algal blooms. Methods to
classify imagery and estimate algal coverage typically rely on spectral information that is analyzed
using a variety of methods, such as spectral angle mapping,17 statistical approaches,31 and machine
learning techniques.30,33,34 Though hyperspectral satellite imagery has shown promise in differen-
tiating between cyanobacteria genera in large bodies of inland water using spectral analysis,26 there
is little work exploring the efficacy of UAV-based hyperspectral imagery to map the spatial dis-
tribution of benthic macroalgae and SAV in mid-sized inland waterways.

This paper builds on a recently published method in which a UAV-mounted hyperspectral
imager was used to estimate river algae pigment abundance.35 In this paper, a random forest
classification method was adopted to explore all available wavelengths, but we also report else-
where progress toward a low-cost multispectral imager that will rely on more traditional spectral
classification methods.36 Here, the spatial distribution of river algae is mapped using UAV-based
hyperspectral imagery collected across the 2021 growing season, with the following objectives.

1. Differentiate between benthic regions dominated by Cladophora growth (Clado), other forms
of benthic growth (non-Clado), and areas below a visually detectable threshold of benthic
growth (bare substrate) using a custom-trained random forest classification model.

2. Generate georectified classification maps from UAV-based hyperspectral imagery.
3. Estimate average percent cover at three field sites along the UCFR sampled between June

and September 2021.

2 Materials and Methods

2.1 Study Sites
The UCFR is formed at the junction of Warm Springs and Silver Bow Creeks in southwestern
Montana and flows nearly 193 kilometers northwest to its confluence with the Blackfoot River.
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Three field sites were selected along the UCFR to capture algal growth characteristics near the
headwaters (Deer Lodge, 46.38°N, 112.74°W), midway through its length (Gold Creek, 46.59°N,
112.93°W), and near its confluence with the Blackfoot River (Bear Gulch, 46.71°N, 113.33°W)
to capture possible influence of nutrient transport and effects of input drainages (Fig. 1).
Macrophyte growth along the UCFR follows a complex seasonal pattern, influenced by many
factors, such as net primary productivity, flow rates, temperature, and canopy shading and is
typically initiated after snowmelt-fed runoff hydraulically scours benthic material in May or
June,10,37 informing data collection periods.

2.2 Data Collection
Image data were collected using a Resonon Pika L Airborne Hyperspectral Imaging System
(Resonon Inc., Bozeman, Montana, United States) mounted on a DJI Matrice 600 Pro hexacopter
(DJI, Shenzhen, China) using a DJI Ronin-MX gimbal between 30 June 2021 and 16 September
2021 on an approximate biweekly schedule. The Pika L Hyperspectral Imager has a spectral
range of 387 to 1023 nm and spectral resolution of 2.1 nm, producing 300 spectral channels
per pixel. Images were captured using a 17-mm objective lens with a 17.6 deg across-track
full-angle field of view directed nadir, resulting in an across-track ground swath of approximately
37 m when flown at a typical height of 120 m above ground level. Flight paths were established
to follow the midline of each river segment for approximately 1 km and held constant throughout
the data collection period to ensure the same reach was evaluated throughout the study. All UAV
flights were planned and conducted by, or under the supervision of, a pilot certified through the
Federal Aviation Administration Part 107 licensure program.

Fig. 1 Study sites along the Upper Clark Fork River, numbered from upstream to downstream
at Deer Lodge, Gold Creek, and Bear Gulch. Data collection sites were selected to capture
representative algal growth along the full 120-mile reach (adapted from Ref. 35).
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2.3 Image Preprocessing
Image data were converted from raw digital number to reflectance using a cosine-corrected
Ocean Insight Flame VIS-NIR spectrometer (Ocean Insight, Orlando, Florida, United States)
mounted to the top chassis of the UAVand calibrated to measure downwelling spectral irradiance
from 350 to 1000 nm with a nominal spectral resolution of 1.34 nm. Downwelling irradiance
spectra were measured throughout each UAV flight, with measurements taken each time a new
hyperspectral image was recorded by the imager, then a spline interpolation was used to match
the spectral channels on the Pika L. Images were converted to reflectance using

EQ-TARGET;temp:intralink-;e001;114;640RimageðλÞ ¼
LupwellingðλÞπ
EdownwellingðλÞ

; (1)

where all terms are a function of wavelength (λ) and Rimage is the reflectance of the image, Lupwelling

is the upwelling radiance measured by the Pika L, π accounts for assumed Lambertian reflectors in
the scene, and Edownwelling is the downwelling irradiance measured by the spectrometer. Once
converted to reflectance, images were smoothed using a Savitzky–Golay filter with a window
length of 13 and polynomial order of 338 to suppress noise in the measured spectra, reducing the
risk of spurious classification.

Due to strong water absorption in the near-infrared, wavelengths beyond 850 nm were
removed, leaving 221 spectral channels in each image; however, the reflectance of the 850 nm
channel was used as a method to identify and remove both sun glint and bank pixels from
the image. To simplify the classification task, pixels containing material other than water
(e.g., floating debris and bank vegetation), or pixels containing shadows or sun glint, needed
to be removed from images prior to classification. Using spectral profiles and professional
judgement, a reflectance greater than 5% at 850 nm was found to be an effective means of sepa-
rating pixels containing submerged objects from pixels containing sun glint or non-submerged
material, whereas a reflectance less than 1.5% at 550 nm was found to isolate shadowed water
pixels for removal.

Hyperspectral image data were spatially corrected using Resonon SpectrononPro software39

to align the imagery with cardinal directions and latitude and longitude while also accounting for
spatial deviations in imagery caused by following bends in the river. This spatial correction was
performed using an automated georectification tool that used data from the onboard GPS and
inertial measurement unit data, along with ground elevation, flight height, and focal length of the
imaging system.

2.4 Classification Algorithm

2.4.1 Training

Image classification was based on a supervised random forest classification model implemented
using Scikit-Learn.40 The model was trained and validated on 2,157,996 manually labeled pixels
from hyperspectral imagery collected along the UCFR during 2021 to 2022. Images were
selected between June and September to capture benthic growth under a variety of conditions
throughout the summer growing season, including changes in physical characteristics (e.g., flow
rates and water temperature) and biological characteristics (e.g., phenological state and biomass
accrual). Representative pixels from 13 hyperspectral images were visually identified and labeled
into three classes: benthic growth dominated by Cladophora (Clado, n ¼759,873 pixels),
benthic growth not dominated by Cladophora (non-Clado, n ¼705,483), and benthic growth
below a visually detectable threshold (bare substrate, n ¼692,640). These representative pixels
were manually labeled by drawing polygons around homogeneous pixel groups based on pro-
fessional judgment using RGB composite color images (with the MATLAB Image Processing
Toolbox41). The RGB images were created with SpectrononPro using wavelengths of 639.8,
550.0, and 459.7 nm. Contrast was enhanced with the histogram equalization method with the
“process bands individually” option selected. The pixel labels in the initial, manually drawn
polygons were validated by visual inspection of the pixel spectra that were displayed as the
mouse was hovered over individual pixels within the polygon in SpectrononPro, to ensure
similarity of the spectral shape of each class (Fig. 2). For example, pixels labeled as Clado con-
tained relatively strong reflectance in green (∼550 to 560 nm) and near-infrared wavelengths
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(∼700 to 750 nm), although no quantitative threshold was used. Similarly, pixels labeled as non-
Clado lacked both a prominent green peak (∼550 to 560 nm) and prominent chl a absorption dip
(∼670 to 690 nm), giving them a dark brown visual appearance, with a small near-infrared reflec-
tance peak (∼700 to 750 nm) that indicated the presence of vegetation. Bare substrate pixels had a
relatively featureless spectrum across the visible wavelengths (400 to 700 nm) resulting in a light
gray or tan appearance. Benthic growth labeled asCladowas often highly separable from the other
classes; however, non-Clado and bare substratewere spectrally similar at times, likely due to trace
amounts of growth across the benthos, which may have introduced errors in the manual labeling
process. Labeled pixels were randomly split into 30% testing and 70% training subsets using the
“train_test_split()” function in Scikit-Learn40 to train and validate the random forest model. Hyper
parameters were tuned using a randomized search across the training data subset with 5-fold cross-
validation across 50 iterations, leading to the parameters shown in Table 1.

The fivefold cross-validation on the tuned random forest model produced a mean training accu-
racy of 99.9% and a mean validation accuracy of 99.6% across all folds. The tuned classifier showed
little confusion when predicting classes, with the largest error attributed to incorrect classification

Fig. 2 Example spectra for the three labeled classes, including pixels containing benthic growth
visually labeled as Clado (upper left), non-Clado (bottom right), and bare substrate (upper right).

Table 1 Optimal random forest classifier hyper parameters selected
after randomized search with 5-fold cross-validation across 50 iterations.

Parameter Value

Number of trees 75

Loss function Gini impurity

Minimum samples to split a node 10

Minimum samples for leaf node 2

Maximum number of features Square root

Maximum depth of tree 50
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between non-Clado and bare substrate [Fig. 3(a)]. As full-spectrum images were used during clas-
sification (i.e., without dimensionality reduction), the importance of the ten spectral bands with the
highest predictive power were analyzed using the mean decrease in impurity [Fig. 3(b)].

Two of the top ten bands matched spectral channels previously used to predict chl a abun-
dance in the UCFR35 and surrounded a known chl a absorption line near 675 nm.42,43 In addition,
two green wavelengths were identified, likely because of their utility in differentiating between
the typical bright green Cladophora and areas of benthic growth other than Cladophora, which
are generally dark green or brown.

Though the classifier showed promising early results, the random train/test split was
based on pixel-by-pixel assignment, therefore, the accuracy metrics may have been biased
high due to spatial autocorrelation (i.e., adjacent pixels that are spectrally related present
in both training and validation sets). To further assess the accuracy of the method, two labeled
hyperspectral images were withheld from the training and validation process and used only to
test accuracy. The trained algorithm was run on these unseen images and the accuracy of the
labeled regions was reported per class in terms of precision, recall, and F1-score (Table 2)
along with confusion matrices (Fig. 4). Precision is a measure of the positive predictions that
were correct (true positives) out of all positive predictions [Eq. (2)], recall measures true pos-
itives identified from all positive labeled data [Eq. (3)], and F1-score is the harmonic mean of
recall and precision [Eq. (4)]:

EQ-TARGET;temp:intralink-;e002;114;27 7Precision ¼ TP

TP þ FP
; (2)

EQ-TARGET;temp:intralink-;e003;114;224Recall ¼ TP

TP þ FN
; (3)

EQ-TARGET;temp:intralink-;e004;114;189F1 − Score ¼ 2TP

2TP þ FP þ FN
; (4)

where Tp is the number of true positives, Fp is the number of false positives, and Fn is the
number of false negatives. The classification algorithm showed good performance, with an
average F1-score of 99% across the 122,075 labeled pixels.

2.4.2 Percent cover estimates

After classification and preprocessing, including identification and removal of pixels containing
riverbank material, all labeled pixels contained only submerged material, from which percent

Fig. 3 (a) Confusion matrix of the tuned random forest model, showing a summary of the predic-
tions made by the classifier, where the largest classification error was between the non-Clado and
bare substrate classes, though this error was less than 1%; and (b) top 10 wavelengths for making
class predictions extracted using mean decrease in impurity, where the most important features
(right) surround known chl a absorption lines42,43 and match salient wavelengths identified in pre-
vious work.35
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cover estimates could be obtained. Percent cover was calculated for both Clado and non-Clado
by dividing the number of pixels classified as either class by the total number of pixels identified
as being within the water (i.e., pixels with a reflectance less than 5% at 850 nm). The resulting
value gave a percent cover estimate for each classified data cube, spanning roughly 80 m. The
average percent cover for each UAV flight was calculated as the mean of all classified data cubes
collected along each 1-km river reach.

3 Results and Discussion
UAV flights were conducted between June and September of 2021 (Table 3) at the three field
sites discussed in Sec. 2.1. Individual, preprocessed hyperspectral data cubes captured during
each flight were used as inputs to the trained random forest classifier. Each classified image
contained predictions for every pixel in the data cube, where green pixels represent Clado, blue
represent non-Clado, gray represent bare substrate, and black represent non-submerged or shad-
owed pixels removed during preprocessing (Fig. 5).

After classification, the spatially corrected images gathered at each site were manually
stitched together and the average percent cover was calculated across the entirety of the reach.
Percent cover estimates generally showed higher levels of non-Clado across the growing season,
with an average percentClado cover of 26%, 42%, and 29% and average percent non-Clado cover
of 58%, 42%, and 37% for Deer Lodge, Gold Creek, and Bear Gulch, respectively (Table 3).

Fig. 4 Confusion matrices of the tuned random forest model tested on (a) validation image 1 and
(b) validation image 2. Both images showed minimal confusion between Clado and non-Clado
pixels, though there was slight confusion between non-Clado and bare substrate.

Table 2 Accuracy metrics of the random forest classification algorithms after testing on unseen
validation images, reported as precision, recall, F1-score, and the total number of samples in each
class. Validation image 1 contained no examples of bare substrate so no metrics are included.

Class Precision Recall F1-score Number of samples

Validation image 1 Clado 1.00 1.00 1.00 37,501

Non-Clado 1.00 0.97 0.98 35,276

Bare substrate 0.00 0.00 0.00 0

Validation image 2 Clado 1.00 0.99 1.00 16,862

Non-Clado 0.98 0.97 0.98 7,846

Bare substrate 0.99 0.99 0.99 24,590
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Fig. 5 Hyperspectral data cube (a) before and (b) after classification using the trained random
forest model at Gold Creek on 1 July 2021, with percent cover estimations of approximately
55% and 29% for Clado and non-Clado, respectively. Covering approximately 80 m, the classi-
fication map shows a large bloom of Clado in green, regions of non-Clado near the banks in blue,
areas of bare substrate in gray, and non-submerged objects in black. Note the removal of the
bridge and associated shadow.

Table 3 Dates, locations, and percent cover estimates of UAV flights during the 2021 data
collection period. The average percent cover (bottom row, bold font) indicates that non-Clado
benthic growth generally dominated across the 2021 growing season, with the exception of
Gold Creek, where percent cover was approximately equal.

Date (2021)

Field site

Deer Lodge Gold Creek Bear Gulch

Clado non-Clado Clado non-Clado Clado non-Clado

30 June 41% 42% — — — —

1 July — — 47% 30% 61% 21%

8 July 19% 70% — — — —

9 July — — 43% 38% 35% 48%

14 July 20% 72% — — — —

15 July — — 61% 28% 30% 61%

21 July 36% 41% — — — —

22 July — — 21% 64% 3% 27%

28 July — — 26% 61% 16% 29%

12 August 17% 72% — — — —

13 August — — — — 21% 49%

17 Augusta — — 41% 45% — —

25 August 15% 69% — — — —

1 September 31% 44% — — — —

2 September — — 44% 34% 40% 27%

16 September — — 53% 35% — —

Season average 26% 58% 42% 42% 29% 37%

aThe percent cover estimates from 17 August at Gold Creek are based on an 80-m reach at Gold Creek due to
limited data collection during flight.
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Clado coverage estimates generally declined at all sites until late July, with the exception of
significant growth at Gold Creek on 15 July, indicating that maximum algal cover occurred prior
to UAV flights (Fig. 6). Cladophora growth showed signs of resurgence in early August at Gold
Creek and Bear Gulch, with percent cover estimates gradually increasing until the end of the
sampling period. Deer Lodge also showed signs of a resurgence event, with percent cover increas-
ing during the final UAV flight in early September. Non-Clado benthic growth showed an inverse
relationship with Clado at Deer Lodge and Gold Creek, with more variability observed at
Bear Gulch.

Surprisingly, the seasonal average of non-Clado coverage was higher than Clado
coverage at Deer Lodge and Bear Gulch but was equal at Gold Creek. Non-Clado coverage
tended to decrease moving farther downstream from the headwaters of the UCFR, dropping
from a seasonal average of 58% at the most upstream site to 37% at the most downstream site.

As noted in previous work on the UCFR, algal growth was spatially variable within each
reach,17 ranging from nearly total coverage to areas with little to no algal growth [Fig. 7(a)].
Estimating percent cover in 80-m steps along the full 1-km reach at the Bear Gulch field site
on 2 September 2021 revealed that Clado and non-Clado varied by up to 42% and 46%, respec-
tively [Fig. 7(b)]. Given this spatial variability, existing measurement methods that rely on spot
sampling along a small section of a reach may not capture the true character of algal activity in
the river.

Many factors influence Cladophora growth rates; however, growth has been shown to be
related to stream velocity,44 which may explain the tendency of blooms to form along outer
bends in the river, though more work is required to understand the exact relationship between
stream morphology and algal growth.3 In addition to spatially variable growth, rapid temporal
shifts were also noted across all sites and sampling periods, with Clado cover fluctuating by
40% between 15 and 22 July at Gold Creek and non-Clado coverage following similar
patterns.

Fig. 6 Decimal percent cover estimates for (a) Deer Lodge, (b) Gold Creek, and (c) Bear Gulch
across the summer growing season of 2021, with Clado shown in green and non-Clado shown in
dashed blue.
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4 Conclusion
The significant spatial and temporal variability of Clado and non-Clado in the UCFR suggests
that spatially limited traditional methods of measuring percent cover may provide misleading
results by missing this variability. Using a custom-trained random forest classifier, georectified
spatial distribution maps were created for three field sites along the UCFR between June and
September of 2021, highlighting the spatial and temporal variation of algal growth in the UCFR
and an inverse relationship between Clado and non-Clado. Though the method showed prom-
ising results, with training and validation accuracies greater than 99% and an average F1-score of
99%, there are limitations. First, ground control points were not used during the georectification
process, introducing possible errors in spatial accuracy. Second, the removal of bank and shadow
pixels was not field-verified, again possibly introducing small errors in the estimation of percent

Fig. 7 (a) Example of a full-reach image (∼1 km) at Bear Gulch on 2 September 2021, shown in
RGB (top) and after classification (bottom) with an average Clado cover (green) of 40% and non-
Clado (blue) cover of 27% with bare substrate shown in gray; and (b) percent cover as a function of
distance along the river, where each point represents the calculated percent cover across an 80-m
ground swath. Calculated estimates varied by up to 42% for Clado and 46% for non-Clado when
sampled with 4-cm spatial resolution across a 1-km reach, with the rest of the reach classified as
bare substrate, suggesting that spatially limited sampling techniques, such as spot measurements,
could be improved with high-spatial-resolution remote sensing methods.
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cover. Finally, though the presence of Cladophora and other forms of benthic growth were
verified in the field, ground-truth samples were not collected to assess the accuracy of the
classification method versus in-situ samples and the role of depth in identifying benthic growth
was not explored.

The ability to classify algal growth along continuous river reaches allows for better assess-
ment of benthic algal cover but is also a step forward in species identification by differentiating
between areas dominated by either Cladophora or benthic growth other than Cladophora.
Separation by growth form allows for further studies of habitat preference, seasonal shifts in
dominant growth forms, and a better understanding of eutrophication over larger scales. In future
work, the classification methods presented here will be combined with techniques for estimating
algal biomass, as chl a abundance, to provide georectified classification and biomass maps.
Additionally, the salient spectral bands are being used to develop a low-cost, compact multispec-
tral algae imager.36

Code and Data Availability
The software and data presented in this article are publicly available at: Logan, R. (2024). River
Algae Mapping Using Hyperspectral Imagery from UAVs, HydroShare (http://www.hydroshare
.org/resource/840938d8c4004e22999fe8a2eb89523d).
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