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1 Introduction
In attempts to push the limit of optical lithography, several
resolution enhancement techniques (RETs) have been widely
applied to improve the lithographic performance.1–3 Inverse
lithography technology (ILT),4,5 as an active approach of
RETs, is considered as an effective and economically viable
way to meet various challenges in current and future tech-
nology nodes.6,7 To put ILT into practice, various methods
have been proposed by academic as well as industrial com-
munities on mask manufacturing rule constraints,8,9 pattern
grouping strategy to accelerate computing,10 GPU-based
hardware accelerated techniques,11 and mathematical solu-
tion methods for the inverse problem.4,5 In this paper, we
focus on improvement of mathematical solution methods,
where the computational efficiency is one of the most note-
worthy issues. Currently, as critical dimension (CD) shrinks,
the pattern density of integrated circuits gets much denser
and lithographic process variations, such as lens-wafer defo-
cus and exposure dose variation, become more pronounced.
It, therefore, requires finer mask models and through process
window compensated approaches, which in return signifi-
cantly increase the computational burden.

Inverse lithography technique treats the mask design as
an inverse mathematical problem that aims at synthesizing
an input mask to deliver a desired output pattern on the
wafer. Liu and Zakhor pioneered a mask design method
based on the branch and bound algorithm and simulated
annealing.12,13 But this is a time-consuming process. In
order to reduce the computational complexity, iterative
methods were proposed to solve the inverse problem via

an optimization process,14,15 and they were further classified
as linear, quadratic, and nonlinear optimization prob-
lems.16,17 Meanwhile, Poonawala and Milanfar designed
the model-based optical proximity correction system and
introduced the steepest descent algorithm for the optimiza-
tion framework.18,19 Subsequently, the optimization frame-
work was further generalized for phase-shifting masks20,21

and partially coherent imaging systems,22–26 and the optimi-
zation algorithm was improved with an active set method21

and with an augmented Lagrangian method.27 Most recently,
Lv et al. further improved the computational efficiency of the
mask synthesis by using the conjugate gradient and an opti-
mal iterative step,28 and by introducing a mask filtering tech-
nique to enhance the regularity of the synthesized mask
pattern.29,30 On the other hand, with ever-shrinking feature
size, the printed feature becomes increasingly sensitive to
the fluctuation of the fabrication process, which limits the
yield in semiconductor industry. In order to synthesize
masks that are robust to process variations, the average
wafer performance is optimized via minimizing the expect-
ation of the difference between the desired pattern and the
output pattern with respect to process fluctuations.31–36

This approach takes into account process variations explic-
itly, and is well understood and easily accomplished.
However, it further increases the computational complexity.
It is noted that all these methods discretize mask as a raster
image constituted by grids (pixels) and perform mask syn-
thesis on a certain fine grid throughout the mask synthesizing
process. Since the computational complexity of such itera-
tive methods is O½K × logðKÞ�,14,17,18 where K is total grid
numbers used in the discretization of mask, the mask grid
size strongly impacts the computational cost. Naturally,
one would like to employ a coarser grid to model mask*Address all correspondence to: Shiyuan Liu, E-mail: shyliu@mail.hust.edu.cn
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and, thus, to cut down the runtime. Unfortunately, such
straightforward strategy usually leads to inaccurate simula-
tion results and a poorly performing mask that fails to
optimally utilize the imaging capability of the lithography
scanner. There has been a tradeoff between the runtime
and mask quality.

In this paper, a cascadic multigrid (CMG) algorithm37,38 is
introduced to improve the computational efficiency of robust
inverse mask synthesis, while maintaining the model accu-
racy and mask pattern quality. The fundamental idea of CMG
algorithms is to perform more iterations on coarser grids and
fewer iterations on fine ones, so that the overall runtime may
be dramatically reduced. The CMG algorithm is a one-way
multigrid method that requires no coarse grid correction and
is, thus, easy to implement. Since the computational com-
plexity of iterative methods is O½K × logðKÞ�, the CMG
algorithm significantly reduces the runtime compared to
the conventional methods, which accomplish mask synthesis
on a fixed fine grid. More details of the CMG algorithm will
be presented in Sec. 3.3. For theoretical convergence results
and complexity analysis on CMG algorithms, interested
readers may refer to Refs. 37 to 40.

Moreover, we have recently developed an analytical
circle-sampling technique for fast imaging simulation of par-
tially coherent systems by decomposing the double-impulse
response (DIR) function into analytical kernels.41 The DIR
function,42 whose Fourier transform is the familiar transmis-
sion cross-coefficient (TCC), is projected onto the circle-
sampling function (CSF)41 space and converted into a
much smaller projected matrix. Singular value decomposi-
tion (SVD) is performed to the smaller projected matrix,
and then we obtain analytical optical kernels with its eigen-
vectors and the CSFs. We have demonstrated that this
method avoids directly performing SVD to the large TCC
matrix; the simulation speed is, thus, dramatically improved.
In particular, the derived optical kernels have analytical
forms; as a result, the grid size of the kernels can be set
to any desired value without re-preforming decomposition.
Also, most recently we developed a metric called edge dis-
tance error (EDE) to guide mask synthesis.29,30 Compared to
the commonly used metric pattern error,16–28 the metric EDE
has a dimension of length and is independent of the simu-
lation grid size. The analytical circle-sampling technique
and EDE are both independent of grid size. Such nature
is well suited for the CMG algorithm, which frequently
changes the mask grid size during its synthesizing process.
In this paper, we will apply the analytical circle-sampling
technique to the forward lithography imaging modeling
and employ EDE to guide mask synthesis.

The remainder of this paper is organized as follows.
Section 2 details the forward lithography imaging model
using an analytical circle-sampling technique. Section 3
introduces the robust inverse lithography problem and
presents CMG algorithm in detail. Section 4 provides sim-
ulation results to demonstrate the validity and efficiency of
the proposed method. Finally, we draw some conclusions
in Sec. 5.

2 Forward Lithography Imaging Model
We apply an analytical circle-sampling technique to the
forward lithography imaging simulation. The lithography
imaging process is often decomposed into two parts, namely

the optical image formation and the resist development. The
optical image IðrÞ generated by a partially coherent imaging
system can be expressed by a bilinear transform in the spatial
domain as43

IðrÞ ¼
Z Z

Dðr − r1; r − r2ÞMðr1ÞM†ðr2Þdr1dr2; (1)

where r represents the spatial coordinate (x; y), MðrÞ is the
mask transmittance function, † denotes complex conjuga-
tion, and

Dðr1; r2Þ ¼ Jðr1 − r2ÞHðr1ÞH†ðr2Þ (2)

is called the DIR function whose Fourier transform is the
familiar TCC.42 Here, Jðr1; r2Þ is the mutual intensity func-
tion that describes the coherence of the illumination source,
and HðrÞ is the point spread function (PSF) of the optical
system that may be obtained by an inverse Fourier transform
of the pupil function H̃ðfÞ as
HðrÞ ¼ IFTfH̃ðfÞg; (3)

where H̃ðfÞ is the pupil function without any aberrations and
f is the normalized pupil plane coordinate.

Since the DIR function is Hermitian and band-limited, it
is possible to approximate the DIR function as a finite CSF
series as41

Dðr1; r2Þ ¼
XN
k¼1

XN
l¼1

pk;lφkðr1Þφ†

l ðr2Þ; (4)

where N is the total number of CSFs, φk (r) is the k’th CSF,
and pk;l are the expansion coefficients. It is noted that the
projected matrix P, i.e., [pk;l], is also Hermitian and positive
definite, so that we can perform SVD to further decompose
the projected matrix P into eigenvalues and eigenvectors, as
follows:

P ¼
XQ
i¼1

μisisHi ; (5)

where si is the i’th eigenvector with Q eigenvectors in total,
sHi is its Hermitian conjugate, and μi is the corresponding
eigenvalue. Substituting Eq. (5) into Eq. (4), we can analyti-
cally express the DIR function as

Dðr1; r2Þ ¼
XQ
i¼1

μiϕiðr1Þϕ†
i ðr2Þ; (6)

where ϕi (r) is called the i’th analytical optical kernel, which
is calculated as

ϕiðrÞ ¼
XN
l¼1

si;lφlðrÞ; (7)

where si;l is the l’th element of si. Figure 1 illustrates the flow
chart of the DIR function decomposition into analytical
kernels.

Substituting Eq. (6) into Eq. (1), the optical image is given
by
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IðrÞ ¼
XQ
i¼1

μijϕiðrÞ ⊗ MðrÞj2: (8)

Subsequently, the optical image IðrÞ goes through the
resist development to form the printed image on the wafer.
The resist effect is often approximated by a constant thresh-
old resist model using the following logarithmic Sigmoid
function:18

sig½IðrÞ� ¼ 1

1þ expf−a½IðrÞ − t�g ; (9)

where a is the steepness of the Sigmoid function and t is
the threshold level of the resist.

Putting Eqs. (8) and (9) together, the lithography imaging
equation can be formulated as

ZðrÞ ¼ ΓfMðrÞg ¼ sig½IðrÞ�

¼ sig

�XQ
i¼1

μijϕiðrÞ ⊗ MðrÞj2
�
; (10)

where the operator Γf·g implements the forward mapping
from the input mask MðrÞ to the output pattern ZðrÞ on
the wafer.

3 Inverse Mask Synthesis
Ideally, the output pattern on the wafer is desired to match
the input design intent that serves as the start point in most
mask synthesis routines. However, the optical imaging
system typically acts as a low-pass spatial frequency filter
and cannot deliver the high-frequency components of the
intended pattern on wafer.7 The band-limited system causes
the output pattern to be a distorted version of the input intent.
So, the objective of inverse lithography is to synthesize
a mask pattern to precompensate the effect of frequency
loss so as to deliver a wafer image closer to the desired
pattern.

3.1 Evaluation Metrics

In order to evaluate the performance of the synthesized mask
pattern, we introduce some evaluation metrics.

An EDE is introduced as a metric to evaluate the differ-
ence between the output pattern of the input mask and
the desired pattern. Figure 2 depicts the pixel-based repre-
sentation of a mask pattern and its output pattern on the
wafer, where the red dots are discrete sampling elements
(grids or pixels) of the patterns, Sshadow denotes the absolute
difference area between the desired pattern contour and the
output pattern contour, L is the perimeter of the desired pat-
tern contour, and δx and δy are the lengths of the element
along the x and y directions, respectively. EDE is defined as

EDE ¼ Sshadow
L

: (11)

Assuming that the element size is small enough in Fig. 2,
the absolute difference area Sshadow can be approximated by
multiplying the total number of elements Ns in shadow and
the element area as

Sshadow ¼ Ns · ðδx · δyÞ: (12)

Noticing that the value of the grid in the output pattern is
either 0 or 1, the number Ns is approximately equal to the
pattern error as

Ns ¼ kΓfMg − Z�k22; (13)

where k · k2 is the L2 norm, Z� is the desired pattern, and
kΓfMg − Z�k22 is usually called pattern error, which is
often employed as a metric to evaluate the difference
between the output pattern of the input mask and the desired
pattern. However, pattern error is a dimensionless quantity
and highly depends on mask feature and simulation grid
size. Therefore, pattern error is inappropriate to act as a met-
ric, especially when the simulation grid size is constantly
changed. Substituting Eq. (13) into Eq. (12) and then into
Eq. (11), we have the expression of EDE as

EDEðMÞ ¼ δx · δy
L

kΓfMg − Z�k22: (14)

It is noted that EDE has the dimension of length and, thus,
is independent of the simulation grid size. More detailed
physical description of EDE can be found in Ref. 30.

In addition, in order to quantify the manufacturability of
the synthesized mask, mask quadratic error metric RQðMÞ

Fig. 1 Flow chart of the double-impulse response function decompo-
sition into analytical kernels.

Fig. 2 Pixel-based representation of a mask pattern and its output
pattern on the wafer.
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and mask complexity metric RTVðMÞ are adopted.18,19 Since
we focus on the binary mask in this paper, the mask quadratic
error metric RQðMÞ and the mask complexity metric RTVðMÞ
are expressed, respectively, as

RQðMÞ ¼
Z
Ω
½1 − ð2M − 1Þ2�dr; (15)

RTVðMÞ ¼
Z
Ω
ðj∇Mxj þ j∇MyjÞdr; (16)

where ∇Mx ¼ ∂M∕∂x, ∇My ¼ ∂M∕∂y, and Ω is the simu-
lation area, or the total number of grids in mask M.

3.2 Formulation of Robust Inverse Lithography

From Sec. 3.1, there are, overall, three evaluation metrics that
need to be optimized, i.e., the EDE, the mask quadratic error
metric, and the mask complexity metric. In the literature,
they are usually combined with certain proportions β1 and
β2 to be stated as one single optimization objective as

FðMÞ ¼ EDEðMÞ þ β1RQðMÞ þ β2RTVðMÞ: (17)

Here, FfMg is also called cost function. Therefore, the
inverse lithography problem under the nominal condition
is defined as

M� ¼ argmin
M

FðMÞ: (18)

However, the formulation Eq. (18) of inverse lithography
problem is under the assumption of an ideal imaging system
without any process variations. However, in practice, process
variations are significant and should not be ignored. In this
paper, we take into account the two most important varia-
tions in lithography process, i.e., lens-wafer defocus and
exposure dose variation, and employ a statistical strategy
to optimize the average wafer performance via minimizing
the expectation of the difference between the desired pattern
and the output pattern with respect to process fluctuations.
Specifically, exposure dose variation can be accounted for
by varying the resist threshold t in Eq. (9); the effect of defo-
cus h on the image intensity distribution is effectively an
even-type lens aberration, leading to a defocused PSF func-
tion Hðr; hÞ.32

Hðr; hÞ ¼ IFT

�
H̃ðfÞ · exp

�
jπh

NA2

λ
f2
��

; (19)

where j ¼ ffiffiffiffiffiffi
−1

p
, NA is the numerical aperture, and λ is the

incident light wavelength. Therefore, the expectation of the
difference between the desired pattern and the output pattern
with respect to process fluctuations is expressed by

EDEsðMÞ ¼
XNh

m

XNt

n

½αðhmÞ · ζðtnÞ · EDEðM; hm; tnÞ�;

(20)

where hm are the discretized values of defocus h with a
density distribution αðhmÞ; tn are the discretized values of
equivalent exposure dose t with a density distribution

ζðtnÞ, and Nh and Nt are the corresponding discretization
number. EDEsðMÞ is called statistical EDE, and it takes
process variations into account explicitly. In this paper,
the statistical EDE is used to evaluate the average wafer
performance with respect to process fluctuations, namely,
to evaluate the robustness of mask.

Now, the cost function in the robust inverse lithography is
expressed as

GðMÞ ¼ EDEsðMÞ þ β1RQðMÞ þ β2RTVðMÞ: (21)

The robust inverse lithography problem is, thus, defined
as

M� ¼ argmin
M

GðMÞ: (22)

3.3 Cascadic Multigrid Algorithm

In this section, we develop a CMG algorithm to solve the
robust inverse lithography problem. For the setup of
CMG algorithm, we define a sequence of spaces

fΩ1;Ω2; : : : ;ΩCg; (23)

with the corresponding space grid size

δ1 > δ2 > : : : > δC: (24)

Since the grid is usually square, and we use only a param-
eter δ to describe the space grid size for simplicity, that
means δ ¼ δx ¼ δy. ΩC denotes the finest grid space cur-
rently used for discretization of a mask. First, we solve
the robust inverse lithography problem, i.e., Eq. (22), on
the coarsest space Ω1 and obtain a mask M�

1. The obtained
maskM�

1 on the space Ω1 is then embedded in the next space
Ω2 via an interpolation operation, and then the interpolated
mask M0

2 servers as the initial value on the space Ω2. With
the initial valueM0

2, it calculates a maskM�
2 on the space Ω2.

The computation repeats in this manner until a mask M�
C on

the finest space ΩC is obtained. The pseudo-code of CMG
algorithm is described in Table 1.

The CMG algorithm starts mask synthesis on the coarsest
space Ω1. Since the coarsest mask contains much less opti-
mization variables (grids) than the finest mask on space ΩC,
it spends much less runtime to find a solution and is more
likely to change each variable. From the perspective of signal
processing, the coarse mask can be considered as the low-
frequency portions of mask. The low-frequency portions
are first optimized and then further corrected by adding
high-frequency details on the refined spaces. By contrast,
conventional methods perform mask synthesis directly on
the finest space ΩC, where it is expensive to change each
variable and impossible to separate and treat efficiently
the low-frequency information content of the mask.
Therefore, the CMG algorithm can achieve a mask pattern
by taking less runtime with better solution performance,
compared to the conventional methods. This is the funda-
mental rationale behind the CMG algorithm, and simulation
results below demonstrate its advantages.
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3.4 Conjugate Gradient Method

In this section, we present a solution procedure of solving
Eq. (22) on a certain space with a conjugate gradient
(CG) method. First of all, we calculate the gradient of the
cost function GðMÞ with respect to mask M as

∇GðMÞ ¼ ∇EDEsðMÞ þ β1∇RQðMÞ þ β2∇RTVðMÞ:
(25)

Detailed expression of Eq. (25) is given in the Appendix.
In CG method, the optimization direction vk in the k’th iter-
ation is defined by

vk ¼
�
−gk þ ηkvk−1 if k ≥ 1

−gk if k ¼ 0
: (26)

Here, gk is a matrix representing the gradient ∇GðMÞ of
cost function GðMÞ at mask M, and ηk is a factor that
depends on different CG methods. When ηk ¼ 0, the evolu-
tion velocity is the negative gradient, and the CG method
reduces to the steepest descent method. In this paper, we
employ the Polak-Ribière-Polyak (PRP) CG method.28 In
practical computations, the PRP CG method is generally
believed to be one of the most efficient CG methods. It
makes use of the velocity information in the previous itera-
tion and can automatically adjust ηk to avoid jamming. It
essentially performs a restart when a bad direction occurs.
In PRP CG method, ηk is defined as

ηk ¼ kgkk22 −
P

gk · gk−1

kgk−1k22
: (27)

Now, the optimization procedure is described as follows:

Iteration 0: Since the mask value is bound-constrained to
[0, 1], we use the following parametric transformation:

M ¼ 1þ cosðθÞ
2

; θ ∈ ð−∞;þ∞Þ: (28)

Then given a desired output pattern Z�(r), we
compute the initial value θ0.

M0ðrÞ ¼ κ1 · Z�ðrÞ þ κ2; (29)

θ0ðrÞ ¼ cos−1ð2M0 − 1Þ; (30)

where κ1 and κ2 are parameters to adjust the initial
mask value; for example, κ1 ¼ 0.90 and κ2 ¼ 0.05
in this paper. We do that because Mði; jÞ ¼ 0 or 1
would degrade the gradient of location (i; j) to 0,
and therefore, the optimization freedom would be
reduced.25,30 Finally, we calculate the initial gradient
g0 and the optimization direction v0 based on
Eq. (26).

g0 ¼ ∇θ0GðMÞ ¼ ∂G
∂M0

∂M0

∂θ0
; (31)

v0 ¼ −g0; (32)

where

∂M
∂θ

¼ − sinðθÞ
2

: (33)

Iteration k:

Step i: Search the step length γk in the direction vk,

γk ¼ arg min
γ
½Gðθk þ γ · vkÞ�: (34)

Step ii: Update θkþ1,

θkþ1 ¼ θk þ γk · vk: (35)

Step iii: Calculate the optimization direction for the
next iteration.

gkþ1 ¼ ∇θkþ1GðMÞ ¼ ∂G
∂Mkþ1

∂Mkþ1

∂θkþ1
; (36)

ηkþ1 ¼ kgkþ1k22 −
P

gkþ1 · gk

kgkk22
; (37)

vkþ1 ¼ −gkþ1 þ ηkþ1 · vk: (38)

If kvkþ1k < Λ or k > Ψ, go to Stop.
Else, return to Step i.

Stop: Obtain the mask.

M�ðrÞ ¼ 1þ cosðθkþ1Þ
2

: (39)

In the above procedure, the iteration is terminated when
kvkþ1k < Λ or k > Ψ, where Λ is defined as the minimum
value of the norm of velocity and Ψ is the prescribed
upper limit of the number of iterations. The termination cri-
terion kvkþ1k < Λ means that the iteration stops when the
gradient is zero or rather small.

Table 1 The pseudo-code of cascadic multigrid (CMG) algorithm.

The procedure:

Setup: Set C spaces fΩ1;Ω2; : : : ;ΩCg, and initial mask
M0

1 ¼ Z �; M0
1 ∈ Ω1.

For k ¼ 1;2; : : : ; C do

1: Solve M�
k ¼ argminMGðMÞ; M ∈ Ωk with an initial value M0

k ;

2: Prolong to next space Ωkþ1: M�
k → M0

kþ1;

3: k þ 1 → k .

End For

Output: M�
C is the optimal mask.
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4 Simulations
Simulations were performed on a partially coherent imaging
system with a quasar source illumination (σout∕σin∕degree ¼
0.9∕0.6∕45 deg). The wavelength λ in the simulations was
set at 193 nm and NA was 1.35. The resist effect was
approximated by a Sigmoid function with a ¼ 100 and
t ¼ 0.4. The mask quadratic error regularization factor β1
and the mask complexity regularization factor β2 were
both set at 0.01. The parameter κ1 and κ2 of the initial
mask in Eq. (29) were 0.90 and 0.05, respectively. The
value of Λ was set at 0.3 in termination criterion
kvkþ1k < Λ. Instead of computing the step length γk in
Eq. (34) accurately, we directly set γk at a small constant
0.3. All the simulations were carried out with in-house
MATLAB® codes on an HPZ820 Workstation (2 × 2 GHz
Intel Xeons with 8Cores/16Threads) using a Windows 7
(64 bit) operating system.

4.1 Results of Robust Inverse Lithography

Figure 3 depicts the synthesized mask patterns by nominal
and robust ILT. Figure 3(a) shows the desired pattern con-
sisting of 361 × 361 pixels with a grid size of 2.5 nm,
which is commonly encountered in logic circuit design.
From Fig. 3, the synthesized mask patterns by robust ILT
are quite different from that by nominal ILT. It is particularly
interesting to note that subresolution assist features (SRAFs)
are generated in Fig. 3(c), but not in Fig. 3(b). The reason
might be that defocus from the nominal condition results
in much worsened image contrast; thus SRAFs tend to be
produced in order to enhance the image quality.

Moreover, we compare the exposure-defocus (E-D) trees
of the synthesized mask patterns by setting the EDE to within
�10% of the CD target (45 nm in this case) in Fig. 4. As
expected, the synthesized mask patterns by robust ILT
have wider E-D windows. This is because the robust ILT fur-
ther takes the process variations into consideration. As
shown in Figs. 3 and 4, the robust ILT tends to generate
SRAFs and has the capability of achieving wider E-D win-
dows compared to that synthesized for the nominal condi-
tion only.

4.2 Results of Cascadic Multigrid Algorithm

In this case, we set three level spaces in total,Ω1,Ω2, andΩ3,
with the corresponding grid size of 15, 5, and 2.5 nm. A
bilinear method is used to interpolate from a coarse grid
space to a finer one. Figure 5 depicts the simulated images
of the CMG algorithm. Since the grid size on the space Ω1 is
very coarse, the synthesized mask pattern, Fig. 5(b), on the

space Ω1 reveals a general pattern and consists of numerous
gray-level SRAFs. These general pattern and gray-level
SRAFs are difficult to manufacture in practice and require
further correction on the fine spaces. Compared to the
mask pattern synthesized by the conventional method
[Fig. 3(c)], the mask pattern synthesized by CMG algorithm
[Fig. 5(f)] is mostly the same but possesses more SRAFs.

Figure 6(a) illustrates the convergence comparison for the
statistical EDE. The CMG algorithm takes 132 iterations to
find an optimal mask pattern, Fig. 5(b), with a statistical EDE
of 4.20 nm, and this mask pattern is then interpolated to serve
as an initial value on the space Ω2, as shown in Fig. 5(c). It is
noted that the convergence history jumps to 5.34 nm here
[shown in the blue circle in Fig. 6(a)]; this is because the
synthesized coarse mask pattern [Fig. 5(b)] is not exactly
accurate and, thus, required further correction. The CMG
algorithm takes further 87 iterations on space Ω2 and reaches
a mask pattern, Fig. 5(d), with a statistical EDE of 4.44 nm.
Finally, the CMG algorithm achieves a mask pattern,
Fig. 5(f), after 20 iterations on the finest space Ω3. From
Fig. 6(a), it is observed that the CMG algorithm achieves
a smaller statistical EDE of 4.46 nm compared to
4.51 nm by the conventional method, which directly synthe-
sizes mask on the finest space Ω3. Moreover, we also depict
the convergence of pattern error in the CMG algorithm. It is
observed that pattern error changed significantly when
mask is interpolated from one grid space to another, and
it is, thus, not intuitive to study on the convergence. Since
pattern error is a dimensionless quantity and highly depends
on mask feature and simulation parameters (such as simula-
tion grid resolution), it is not suited for the CMG algorithm.

Fig. 3 (a) Desired pattern. (b) The synthesized mask pattern by nominal inverse lithography technology
(ILT). (c) The synthesized mask pattern by robust ILT. The horizontal axis and vertical axis denote x and
y position of the patterns in nanometers, respectively.

Fig. 4 Exposure-defocus (E-D) trees of the synthesized mask pat-
terns [(b) and (c)] obtained, respectively, by nominal and robust ILT.
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The runtime of the conventional method and the CMG
algorithm on each space is shown in Table 2. Since the
optimization variables (grids) are relatively less on the
space Ω1, it synthesizes an optimal mask pattern, Fig. 5(b),
after 8.67 s compared to 620.03 s by directly synthesizing
mask on the finest space Ω3. Overall, the CMG algorithm

takes 239 iterations using 135.35 s compared to 193 iter-
ations using 620.03 s by the conventional method; in
other words, the CMG algorithm is 4.6× faster than the
conventional method although taking more iterations.
Moreover, we compare the E-D windows for the syn-
thesized mask pattern by the conventional method and
the CMG algorithm in Fig. 6(b). It is observed that the
synthesized mask pattern by the CMG algorithm has
slightly improved the E-D window. The reason might be
that CMG algorithm generates more SRAFs.

Since there are rather less optimization variables 61 × 61
grids on the space Ω1 than 361 × 361 grids on the space Ω3,
it takes much less runtime and is more likely to change each
variable to find a better solution. As expected, the syn-
thesized result on the coarsest space Ω1 contains a general
pattern with numerous SRAFs. From the perspective of
signal processing, these patterns can be considered low-
frequency portions in mask, and these patterns are further
corrected by adding high-frequency details on the fine
space. The conventional method accomplishes mask synthe-
sis directly on the fine space Ω3; it, therefore, is expensive to
change each variable and cannot handle the low-frequency
portions in mask explicitly. As a result, the CMG algorithm
has the capacity of achieving a mask pattern with smaller
statistical EDE and wider E-D window compared to the con-
ventional method.

Fig. 5 (a) Desired pattern. (b) The synthesized mask pattern on the coarsest space Ω1. (c) The inter-
polated mask pattern of (b) from the space Ω1 to the space Ω2. (d) The synthesized mask pattern on
the space Ω2 with an initial value (c). (e) The interpolated mask of (d) from the space Ω2 to the space Ω3.
(f) The synthesized mask pattern on the finest space Ω3. The horizontal axis and vertical axis denote x
and y position of the patterns in nanometers, respectively.

Fig. 6 (a) Convergence history of the conventional method and cas-
cadic multigrid (CMG) algorithm. (b) E-D trees of the synthesized
mask patterns [(c) and (f)] obtained, respectively, by the conventional
method and CMG algorithm.

Table 2 Runtime of the conventional method and CMG algorithm on
each space for a desired pattern Fig. 5(a).

CMG algorithm

Conventional method15 nm 5 nm 2.5 nm Total

Iteration num. 132 87 20 239 193

Time (s) 8.67 62.41 64.27 135.35 620.03
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We also performed simulations for a more complicated
pattern in Fig. 7. Figure 7(a) shows the desired pattern,
which is a metal layer of the benchmark clock gate circuit
pattern within a simulation area of 2 μm × 3.3 μm.44 As
expected, the synthesized mask pattern, Fig. 7(b), by nomi-
nal ILT is quite different from that synthesized by robust ILT,
Figs. 7(c) and 7(d), and the robust ILT has significantly
improved the E-D window (see Fig. 8). On the other
hand, compared to the synthesized mask pattern by the
conventional method, CMG algorithm reaches a mostly
same pattern but with more SRAFs; the E-D window has,
thus, slightly improved. The runtime of the conventional
method and the CMG algorithm on each space is shown
in Table 3. It is revealed that the CMG algorithm is overall
4.3× faster than the conventional method. This set of simu-
lations further demonstrates that the CMG algorithm has big
improvement in computation efficiency, along with a slightly
better lithographic performance (wider E-D window).

5 Conclusions
In this paper, we report a CMG method for robust inverse
mask synthesis. This method synthesizes mask hierarchi-
cally. It first computes an initial mask pattern on a coarse
grid and, therefore, spends less runtime and is more likely
to change each variable to find a better solution. This initial
mask is then interpolated to a fine grid and to be further cor-
rected, which requires a small number of iterations on the
fine grid. Overall, the CMG algorithm is able to run more
than four times faster than conventional mask synthesis
methods working on a fixed fine grid. In addition, we
apply an analytical circle-sampling technique to the forward
lithography imaging modeling and employ a novel EDE
metric to guide mask synthesis. These two techniques are
both independent of grid size and are well suited for the
CMG algorithm. It is expected that the proposed method
will provide a useful mask synthesis strategy in practical
optical lithography.
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Appendix: Derivation of Eq. (25)
The gradient of the cost function GðMÞ with respect to mask
M is expressed in Eq. (25). In the following, we present
the detailed expression of each term in Eq. (25), i.e.,
∇MEDEsðMÞ, ∇MRQðMÞ, and ∇MRTVðMÞ. In the present
content, r and ρ denote the spatial coordinate (x; y).

According to Ref. 28, with a fixed defocus hm and dose
variation tn, the gradient of EDE with respect to mask M is

∇MEDEðM; hm; tnÞ ¼
∂EDEðM; hm; tnÞ

∂M
¼ a ·

δx · δy
L

×
�XQ

i¼1

μiϕ
flip
i ðr; hmÞ ⊗ ½ðZ − Z�Þ · Z

· ð1 − ZÞ · ð½ϕiðr; hmÞ�† ⊗ MÞ�
�

þ a ·
δx · δy
L

�XQ
i¼1

½μiϕflip
i ðr; hmÞ�†

⊗ ½ðZ − Z�Þ · Z · ð1 − ZÞ

· ðϕiðr; hmÞ ⊗ MÞ�
�
; (40)

where ϕi (r; h) is the i’th optical kernels with the defocus h
and Z is the corresponding resist image of input mask M
under the defocus hm and dose variation tn. So the gradient
of the statistical EDE with respect to mask M is

∇MEDEsðMÞ¼ ∂
PNh

m
PNt

n ½αðhmÞ · ζðtnÞ ·EDEðM;hm;tnÞ�
∂M

¼
XNh

m

XNt

n

�
αðhmÞ · ζðtnÞ ·

∂EDEðM;hm;tnÞ
∂M

�

¼
XNh

m

XNt

n

½αðhmÞ · ζðtnÞ ·∇MEDEðM;hm;tnÞ�:

(41)

The gradient of the mask quadratic error RQðMÞ with
respect to mask M is

∇MRQðMÞ ¼ ∂
R
Ωf1 − ½2MðrÞ − 1�2gdr

∂MðρÞ

¼ ∂
P

rf−4M2ðrÞ þ 4MðrÞg
∂MðρÞ ¼ −8M þ 4: (42)

The gradient of the mask complexity RTVðMÞ with
respect to mask M is

∇MRTVðMÞ ¼ ∂
R
Ωðj∇Mxj þ j∇MyjÞdr

∂MðρÞ

¼ ∂
P

r½jYMðrÞj þ jMðrÞYT j�
∂MðρÞ

¼ YTsign½YM� þ sign½MYT �Y; (43)

where sign[·] is the Signum function, and Y is an operator of
the first derivative as

Y ¼

2
666664

1 −1 0

1 −1
. .
. . .

.

1 −1
0 −1 1

3
777775
: (44)
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