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Abstract

Purpose: We propose a method to identify sensitive and reliable whole-lung radiomic features
from computed tomography (CT) images in a nonhuman primate model of coronavirus disease
2019 (COVID-19). Criteria used for feature selection in this method may improve the perfor-
mance and robustness of predictive models.

Approach: Fourteen crab-eating macaques were assigned to two experimental groups and
exposed to either severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or a mock
inoculum. High-resolution CT scans were acquired before exposure and on several post-expo-
sure days. Lung volumes were segmented using a deep-learning methodology, and radiomic
features were extracted from the original image. The reliability of each feature was assessed by
the intraclass correlation coefficient (ICC) using the mock-exposed group data. The sensitivity of
each feature was assessed using the virus-exposed group data by defining a factor R that estimates
the excess of variation above the maximum normal variation computed in the mock-exposed
group. R and ICC were used to rank features and identify non-sensitive and unstable features.

Results: Out of 111 radiomic features, 43% had excellent reliability (ICC > 0.90), and 55% had
either good (ICC > 0.75) or moderate (ICC > 0.50) reliability. Nineteen features were not sen-
sitive to the radiological manifestations of SARS-CoV-2 exposure. The sensitivity of features
showed patterns that suggested a correlation with the radiological manifestations.

Conclusions: Features were quantified and ranked based on their sensitivity and reliability.
Features to be excluded to create more robust models were identified. Applicability to similar
viral pneumonia studies is also possible.
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1 Introduction

As of May 8, 2022, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused
514 million confirmed coronavirus disease 2019 (COVID-19) cases and over 6 million
COVID-19 confirmed deaths worldwide.1,2 The efficacy of recently approved medical counter-
measures for COVID-19 may be circumvented by emergent SARS-CoV-2 variants that are
more transmissible and immune-evasive.3 Data from patients during the first few months of the
COVID-19 pandemic (in early 2020) showed that chest CT is sensitive to the detection of the
radiographic lung abnormalities associated with COVID-19.4 Independent of SARS-CoV-2
variants, pathogenesis is similar, and computed tomography (CT) continues to be an option for
determining prognosis. However, the use of medical imaging as a means of evaluating medical
countermeasure efficacy in randomized clinical trials is critically hindered by the lack of stand-
ardized quantitative image analysis methods and reliable animal models.5 In animal models of
severe COVID-19, quantitative image analysis methods enable accurate, quantifiable, unbiased,
and reproducible measurements of COVID-19 pulmonary disease from medical images.6

In particular, noninvasive quantitative imaging biomarkers that do not require serial euthanasia
are essential to the characterization of disease severity, progression, and pathogenesis in animal
models.7–12 Quantitation of COVID-19-like lung abnormalities using multimodality imaging
biomarkers, including volumetric assessment of radiodensity (CT), has been described in
crab-eating (cynomolgus) macaques (Macaca fascicularis) exposed to SARS-CoV-2.6

In the past, toward fast and accurate clinical evaluation and prognostication, radiomics analy-
sis of chest CT images was proposed to explore imaging correlates with non-imaging markers of
the development, progression, severity, and outcomes of COVID-19. Textural features to assess
the classification of lung abnormalities were analyzed using artificial neural networks13,14 and
machine learning techniques.15 Radiomics, which is a method that extracts and analyzes a large
number of features from medical images using data characterization algorithms, includes textural
features that were initially used to characterize topography from satellite images in the early
1970s16–20 and was first introduced about a decade ago.21 The use of textural features enables
the translation of medical images into quantitative data to phenotypically profile lung
abnormalities.22 During the last decade, the vast majority of lung studies using radiomics ana-
lyzed features extracted from segmented lesions and focused mainly on tumor characterization,
phenotype differentiation,23,24 and prognostication of recurrence and survival.25,26 Radiomic
analyses began to be used for COVID-19 in 2020, when chest CT was identified as a sensitive
SARS-CoV-2 infection diagnostic tool.4

Cai et al.27 proposed a model based on CT radiomic features that could predict a negative
reverse transcription quantitative polymerase chain reaction (RT-qPCR) test for SARS-CoV-2
and could be used to recommend early patient discharge from hospitals. Other authors focused
on the prediction of patient outcomes,28–30 prediction of residual lung lesions after discharge,31

diagnosis,32,33 discrimination of stable and progressive disease,34 and differentiating COVID-19
from other causes of pneumonia.34–37 Areas of interest to compute radiomic features ranged from
the manual delineation of bounding boxes around lesions38 to semiautomatic segmentation of
lesions39 and whole-lung volumes.34 Some clinical studies used data from just a single hospital,4

whereas others included data from multiple locations with different acquisition protocols40 and
faced challenges in comparing differentially acquired image datasets. Although each study
used different software for radiomics feature extraction, in general, they adhered to the Image
Biomarker Standardisation Initiative (IBSI).41 Given the critical nature of the pandemic, baseline
(preinfection) reference scans have not typically been available in these studies. Furthermore,
radiomic feature reliability has not always been addressed.42–45 COVID-19 animal model
research has been used to investigate both the natural history of the disease and the efficacy
of medical countermeasures in preclinical studies; radiomic features may be used not only
to predict outcomes and differentiate different pathologies but also as subject-specific imaging
biomarkers of the disease when preexposure images are acquired and control groups are
considered.

In the field of radiomics, several analytic terms (e.g., repeatability, reproducibility, reliability,
robustness, stability, and sensitivity) are used across studies, but their meanings may depend on
the scope of the research;46 thus terminology should be clarified. Here, repeatability refers to
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features that remain the samewhen the subject is imaged multiple times. Reproducibility refers to
features that remain the same when images are acquired using different equipment, software,
acquisition settings, and operators (e.g., in studies that include multiple hospitals).47

Reliability is the extent to which measurements can be replicated under either similar or different
conditions. Reliability, which is often regarded as a measure of robustness, reflects the corre-
lation and agreement between measurements and represents the ratio of true variance over the
true variance plus error variance;48 it is useful for the analysis of intrasubject and intersubject
variations.48,49 In delta (Δ) radiomics, longitudinal data can be used to assess intra-individual
reproducibility and relative differences in pre- and post-treatment radiomic features to predict
outcomes and treatment response. Δ radiomics has been referred to as “patient-specific”
radiomics50 and was first proposed a few years ago to improve reproducibility and predictive
power.23 Δ radiomics has since been studied in clinical and experimental settings to assess
recovery or response to treatment in cancer research.25,51 However, to the best of our knowledge,
Δ radiomics has not been applied to imaging studies related to COVID-19. In principle, Δ radio-
mics also has the potential to be used to characterize the evolution of an infectious disease
when “normal” preinfection baseline information is available. Under this context, we will use
stability to describe features that do not exceed the intrasubject normal range and refer to
sensitivity as the range of a feature during the course of the disease relative to the intrasubject
normal range.

The reproducibility of radiomics features is affected by different scanners and acquisition
parameters,52,53 and reproducible features can be grouped into a limited number of clusters due
to redundancy of information. There may be a high demand for research in the areas of image
acquisition, image postprocessing, volume-of-interest segmentation, image discretization, and
feature calculation to select features with sufficient dynamic range among patients, intrapatient
reproducibility, and low sensitivity to image acquisition and reconstruction protocols.54,55

Intraobserver delineation variability, respiratory motion, and reconstruction kernels were also
found to strongly affect feature reproducibility.56–58 In our previous work, we found that B-kernel
(smooth) reconstructions were more reliable than D-kernel (sharp) ones;59 therefore B-kernels
are used in this work. To the best of our knowledge, the reliability of features based on the intra-
subject and inter-subject variability in animal models, the determination of ranges of normal
variation, and the sensitivity to radiological manifestations have not been investigated in the
past. This information may be used to increase the robustness of future analysis via standard
radiomics and Δ radiomics.

In this work, crab-eating macaques were exposed to either SARS-CoV-2 or a mock inoc-
ulum. CT images were acquired prior to exposure and at multiple time points after exposure,
whole-lung fields were segmented, and radiomic features were extracted. The animals included
in this work were scanned with two identical scanners with the same acquisition protocols, and
different reconstructions were not used interchangeably for radiomics analysis. The reliability of
radiomic features was characterized by the intrasubject and intersubject variability, and stability
and sensitivity to the disease were assessed by analysis of the change of features during the
course of the disease with respect to the baseline scan. This information can contribute to build-
ing robust standard and Δ-radiomics signatures that correlate with nonimaging features to help
identify disease stage and severity, evaluate the efficacy of candidate medical countermeasures,
and predict clinical outcomes.

2 Methodology

2.1 Animals and Virus

Initially, the study was to use a total of 25 crab-eating macaques (Macaca fascicularis).
However, 11 were excluded due to abnormalities at the baseline scan or not meeting the
CT-score criterion for inclusion—a score of no more than two at every time point. (This criterion
was set to better characterize the normal variation of radiomic features computed from the seg-
mented lungs.) Thus, a total of 14 (four males and 10 females; age range: 4 to 7 years old, weight
range: 2.56 to 6.83 kg) macaques were assigned to two experimental groups (Mock: NmTOT = 6
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and Virus: NvTOT = 8). The macaques were anesthetized in accordance with standard proce-
dures prior to all manipulations, including intrabronchial exposure, sample collection, and
medical imaging. Animals in the Mock group were administered 2 mL of cell culture medium
supplemented with 2% heat-inactivated fetal bovine serum into each bronchus followed by
1 mL of normal saline flush and 5 mL of air. Animals in the Virus group were exposed to
2 mL containing 9.13 × 105 PFU∕mL of SARS-CoV-2 (isolate 2019-nCoV/USA/A12/2020,
obtained from the US Centers for Disease Control and Prevention [CDC], Atlanta, GA) for
a total dose of 3.6 × 106 PFU.6 RT-qPCR analysis was performed to determine the presence
of SARS-CoV-2 RNAs in the collected specimens.6 All experiments were performed in a
maximum (biosafety level 4 [BSL-4]) containment laboratory at the IRF-Frederick, a facility
accredited by the Association for Assessment and Accreditation of Laboratory Animal Care
International (AAALAC). Experimental procedures were approved by the National Institute
of Allergy and Infectious Diseases (NIAID) Division of Clinical Research (DCR) Animal
Care and Use Committee (ACUC) and conducted in compliance with the Animal Welfare Act
regulations, Public Health Service policy, and the Guide for the Care and Use of Laboratory
Animals (Eighth Edition).

2.2 Imaging of Crab-Eating Macaques

The animals considered in this work had been assigned to one of three studies with identical
exposure and imaging protocols; however, in the first study, the animals were scanned for a
longer period of time after exposure. Animals in both groups were scanned before exposure
and either eight or four times after exposure (at 2, 4, 6, 8, 10, 12, 19, and 30 days for those
in the first study or at 2, 4, 6, and 8 days for those in the second and third studies)
(Table 1). High-resolution chest CT scans were performed using the 16-slice CT component
of either a Gemini TF 16 scanner (Philips Healthcare, Cleveland, OH) or a Precedence scanner
(Philips Healthcare). Images were acquired in helical scan mode with the following parameter
settings: ultra-high resolution, 140 kVp, 300 mAs per slice, 1-mm thickness, 0.5-mm increment,
0.688-mm pitch, collimation 16×, and 0.75-s rotation. CT image reconstruction used a
512 × 512 matrix size for a 250-mm transverse field-of-view (FOV), leading to a pixel size
of 0.488 mm. CT images were produced with the standard B reconstruction kernel for smoother
images because, in previous work, we showed that radiomic features extracted from CT
images reconstructed with a bone-enhanced D reconstruction kernel for sharper images were
less reproducible.59 No contrast agent was administered. Each macaque underwent a 15 to
20 s breath-hold during acquisition. The pressure for the breath-hold was maintained at
150 mm H2O. For imaging procedures, each macaque was anesthetized intramuscularly with
15 mg∕kg ketamine following 0.06 mg∕kg glycopyrrolate intramuscularly. Anesthesia was
maintained using a constant rate intravenous infusion of propofol at 0.3 mg∕kg∕min.
Macaques were placed on the scanner bed in a supine head-out/feet-in position and connected
to a ventilator to facilitate breath holds. Vital signs were monitored throughout the procedure.6

All images were visually inspected for possible signal loss and/or artifacts. Inclusion criteria
were different for each group. Animals in the Mock group were required to have qualitatively
normal scans on all scan days to accurately estimate the maximum normal variation of the
radiomic features. Animals in the Virus group were required to have a normal baseline scan to
avoid inaccurate estimation of changes in radiomic features during the course of the disease
due to abnormalities present at baseline.

Table 1 Number of P.E. scans for all animals included in this study.

Animal ID M#1 M#2 M#3 M#4 M#5 M#6 V#1 V#2 V#3 V#4 V#5 V#6 V#7 V#8

#P.E. scans 8 8 4 4 4 4 8 8 4 8 4 4 4 4

P.E.: postexposure with either mock inoculum (Mock) or SARS-CoV-2 (Virus)
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2.3 Whole-Lung Segmentation

For training purposes, a total of 64 whole-lung CT scans (reconstructed using a B kernel of crab-
eating macaques with the same imaging protocols) were used. The automated organ segmenta-
tion method, based on the convolutional neural network (CNN), used in this work has been
described before.60 The feature pyramids network (FPN), which produces a multiscale feature
representation in which all levels, even the high-resolution levels, are semantically strong, was
used in this work. The network was trained using input patches of size 64 × 64 × 64 voxels,
which were randomly extracted from both lung and nonlung areas with equal numbers. The
output of the CNN was a probability map, which was resampled to the original image size and
smoothed using a Gaussian filter. The quality of the segmentations was evaluated. Whole-lung
masked CT images were generated.

2.4 Radiomic Feature Extraction

In this study, 90 whole-lung masked CT images from 14 crab-eating macaques were generated
using the methodology described in the previous section. Radiomics feature extraction from
the whole-lung masked CT images was performed using PyRadiomics 2.2.0.61 For each image,
111 features were extracted: 17 3D shape features and 94 intensity features split into 19
first-order features and 75 second-order features. The latter were derived from five different
matrices: (1) 24 features from the gray-level co-occurrence matrix (GLCM); (2) 14 features
from the gray-level dependence matrix (GLDM); (3) 16 features from the gray-level run length
matrix (GLRLM); (4) 16 features from the gray-level size zone matrix (GLSZM); (5) five
features from the neighboring gray tone difference matrix (NGTDM). Images were discretized
using a 25-HU bin width, resulting in ≈ 30 to 40 bins. A shift of 1024 HU was set for the
first-order features to avoid negative attenuations. For each voxel, two neighbors were con-
sidered for each of the 13 directions corresponding to the first neighbors in the second-order
features.

2.5 Data Analysis

In this work, we studied the reliability regarding intrasubject and inter-subject reproducibility in
a normal population scanned under the same conditions, as well as the stability and sensitivity of
features during the disease course.

First, all scans from the Mock group were used to compute the intra-class correlation
coefficient (ICC) to assess the reliability of radiomic features when both intrasubject and
inter-subject variations were present under the same scanning conditions. ICC estimates
and their 95% confidence intervals were calculated using the R package IRR version 0.84.1,
based on a single measurement (k ¼ 1), absolute-agreement, two-way mixed-effects model.
To manage the different number of scans among subjects, ICC was computed from two
different subsets of five scans and averaged for each feature. Reliability of ICC values was
considered as follows: 0.00 to 0.50 (poor), 0.50 to 0.75 (moderate), 0.75 to 0.90 (good), and
0.90 to 1.00 (excellent).49 This information has the potential to be used to identify features
not reliable for standard radiomic analysis. The reliability of each radiomic feature was
assessed.

Second, the maximum normal intrasubject variation of each feature, along with a comparison
of the intrasubject dynamic range of the feature within the course of the disease, was investi-
gated. To estimate the maximum normal intrasubject variation Δf (%) of each radiomic feature
f, only scans from the Mock group were considered, and for each animal m, the maximum
percent change Δf

m with respect to that lowest measurement was computed. The maximum
among all animals was used as an estimate of the maximum normal intrasubject variation:
Δf ¼ maxmfΔf

mg. Afterward, for each animal v in the Virus group and each feature f, the
lower and upper thresholds of the normal range fL and fU, respectively, were computed from
Δf and the feature value at the baseline scan. The percent change at each postexposure scan was
computed with respect to the baseline scan, and the dynamic range Δf

v was identified and
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compared with Δf. For each animal, each feature was classified as follows: C1 = not sensitive
(the feature value was between fL and fU at all postexposure scans); C2 = not stable (the feature
value was predominantly above/below fL∕fU but also beyond the opposite threshold at some
time points); C3 = sensitive and increasing (the feature value was above fU for at least one
day and remained within normal values for the rest of the scans); and C4 = sensitive and decreas-
ing (the feature value was below fL for the at least one day and remained within normal values
for the rest of the days). Only features in categories C3 and C4 were considered; those in
category C1 were not sensitive for radiomic analysis, and those in C2 should be evaluated
separately.

For each animal v in the Virus group and each radiomic feature in C3 and C4, the maximum
variation Δf

v was identified, and the ratio Rf
v ¼ ðΔf

v − ΔfÞ100∕Δf
v was computed. Note that

jRf
vj ranges between 0 and 100, both inclusive, where jRf

vj ≈ 0 means that Δf and Δf
v are

comparable; e.g., Rf
v ¼ 50 means that Δf

v is two times Δf. The average among all animals
in the Virus group was computed, and a ranking was generated. This information has the poten-
tial to be useful in identifying features that are unstable and nonsensitive to the disease in
Δ-radiomics analysis.

3 Results

3.1 Whole-lung CT Images

After exposure, SARS-CoV-2 infection was confirmed in all virus-exposed but not in mock-
exposed animals (data not shown).6 Initially, the Mock and Virus groups included a total of
13 and 12 animals, respectively. In the Mock group, seven animals were excluded because
they did not pass the criterion to have a total CT score6 of no more than two at every time
point. This criterion was set to avoid overestimation of the maximum normal variation of
radiomic features computed from the segmented lungs. In the Virus group, four animals were
excluded because they had abnormalities at the baseline scan, although they did not reach
the threshold to have a CT score above 0. This criterion was set to avoid underestimation of
the changes in the radiomic features with respect to baseline in the virus group. Therefore,
a total of 14 animals were included in the study (six in the Mock group and eight in the
Virus group).

Selected axial slices exhibiting representative lesions from scans at the peak of the radio-
logical manifestation (typically, at Day 2 and/or Day 4) of all animals in the Virus group are
displayed in Fig. 1. Selected axial slices from arbitrary scans of all animals in the Mock group are
shown in Fig. 2. Binary masks were created using a deep learning algorithm from CT images. All
animals were scanned before exposure and either four or eight times after exposure (Table 1).
Scans were reconstructed using a B kernel. All masks were visually compared with their
corresponding CT images to assess their accuracies.

3.2 Radiomic Features Reliability

ICC estimates and their 95% confidence intervals were calculated from B-kernel reconstructions
based on a single measurement (k ¼ 1), absolute-agreement, two-way mixed-effects model. In
previous work, we showed that the estimated ICC averaged over all features was greater for the
B-kernel (0.819) than the D-kernel (0.722) and 93 features had a higher ICC when the B-kernel
was used for reconstruction;59 therefore, all results in this paper are based on B-kernel recon-
structions. The number of features with ICC values with poor (0.00 to 0.50), moderate (0.50 to
0.75), good (0.75 to 0.90), and excellent (0.90 to 1.00) reliability is shown in Fig. 3(a). Poor
reliability (ICC < 0.50) was observed in only two features (GLCM-Imc1 and NGTDM-
Strength), and 48 features exhibited excellent reliability (ICC > 0.90) (Table 2). The reliability
of features within each type is shown in Fig. 3(b). Figure 5 shows the ICC of all features along
with the ratio R that compares their maximum variation due to the disease with the maximum
normal variation (Secs. 3.2 and 3.3).
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Fig. 1 Selected axial slices exhibiting representative lesions from scans at the peak of the radio-
logical manifestation (typically 2 or 4 days after exposure) of all animals in the Virus group. The
experiment was designed to mimic mild disease in humans. For each animal in the Virus group,
four slices were chosen from locations where the most visually noticeable lesions appeared at the
peak of the disease. The selected pictures show a range of abnormalities from mild to severe at
a glance.

Castro et al.: Toward the determination of sensitive and reliable whole-lung computed tomography features. . .

Journal of Medical Imaging 066003-7 Nov∕Dec 2022 • Vol. 9(6)



3.3 Maximum Intrasubject Normal Variation Compared with Variations due to
the Disease

To characterize the maximum intrasubject normal variation (Δf) of each radiomic feature (f),
only animals in the Mock group were considered: two animals were scanned nine times and the
other four animals were scanned five times (Table 1). For each animal, the minimum value of
each radiomic feature and the corresponding time point were identified; subsequently, all other
scans were individually compared with the minimum values to arrive at the percent change for
each feature. The maximum of those values s is called the maximum intrasubject normal varia-
tion Δf. The number of features with different ranges of Δf is shown in Fig. 4(a). In Fig. 4(b),
the number of features is discriminated among feature types. Overall, Δfaverage ¼ 66% and
Δfmedian ¼ 29%. All 49 features with Δf < 25% are shown in Table 3. Note that the maximum
normal variation of a given feature as an indicator of stability must be combined with the varia-
tion of the feature during the course of the disease with respect to its baseline value to determine
the usefulness of that feature. Figure 5 shows the ICC of all features along with the ratio R that
compares their maximum variation due to the disease with the maximum normal variation.

Fig. 2 Selected axial slices from the scans of all animals M#1 to M#6 in the Mock group.

Fig. 3 (a) Number of features in the four ICC ranges for B-kernel reconstructions. Reliability of
ICC values: 0.00 to 0.50 (poor), 0.50 to 0.75 (moderate), 0.75 to 0.90 (good), and 0.90 to 1.00
(excellent). (b) Reliability of each type of feature.
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Table 2 All 48 features extracted from B-kernel reconstruction with excellent reliability
(ICC > 0.90).

TYPE FEATURE ICC

First-order Minimum 1.000

GLRLM RunLengthNonUniformity 0.998

GLDM DependenceNonUniformity 0.997

Shape SurfaceArea 0.997

Shape LeastAxisLength 0.997

GLSZM SizeZoneNonUniformity 0.995

Shape MeshVolume 0.995

Shape VoxelVolume 0.995

Shape Maximum2DDiameterColumn 0.994

Shape Maximum3DDiameter 0.993

Shape MajorAxisLength 0.992

GLSZM GrayLevelNonUniformity 0.991

GLSZM SmallAreaHighGrayLevelEmphasis 0.991

GLRLM GrayLevelNonUniformity 0.990

Shape Maximum2DDiameterRow 0.990

Shape MinorAxisLength 0.989

GLSZM HighGrayLevelZoneEmphasis 0.989

GLDM LargeDependenceHighGrayLevelEmphasis 0.988

First-order 10Percentile 0.988

First-order Energy 0.983

First-order TotalEnergy 0.983

NGTDM Busyness 0.982

GLRLM GrayLevelVariance 0.982

First-order 90Percentile 0.979

Shape Maximum2DDiameterSlice 0.978

First-order Mean 0.978

GLCM ClusterProminence 0.978

GLDM GrayLevelNonUniformity 0.978

First-order RootMeanSquared 0.976

First-order Median 0.973

First-order MeanAbsoluteDeviation 0.970

First-order Variance 0.968

First-order StandardDeviation 0.968
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3.4 Radiomic Features Insensitive to Radiological Manifestations

For a feature f that is not sensitive to the radiological manifestation in animals in the Virus group,
Rf ¼ 0. The 19 nonsensitive features are listed in Table 4. An example of a nonsensitive feature
is shown in Fig. 6(a).

Table 2 (Continued).

TYPE FEATURE ICC

NGTDM Complexity 0.966

GLCM ClusterShade 0.959

GLRLM ShortRunHighGrayLevelEmphasis 0.950

GLDM SmallDependenceHighGrayLevelEmphasis 0.949

GLRLM HighGrayLevelRunEmphasis 0.946

GLDM GrayLevelVariance 0.942

GLDM HighGrayLevelEmphasis 0.939

GLCM ClusterTendency 0.938

First-order Range 0.935

GLSZM ZoneEntropy 0.935

GLSZM GrayLevelVariance 0.930

First-order InterquartileRange 0.921

GLRLM LongRunHighGrayLevelEmphasis 0.912

First-order RobustMeanAbsoluteDeviation 0.907

GLCM SumSquares 0.905

GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run length
matrix; GLZSM, gray-level size zone matrix; NGTDM, neighboring gray tone difference matrix.

Fig. 4 (a) The number of features in the four ICC ranges for B-kernel reconstructions. Reliability of
ICC values: 0.00 to 0.50 (poor), 0.50 to 0.75 (moderate), 0.75 to 0.90 (good), and 0.90 to 1.00
(excellent). (b) Reliability of each type of feature.
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Table 3 All 49 features extracted from B-kernel reconstruction with maximum normal variation
Δf < 25%.

TYPE FEATURE Δf (%)

GLCM IDMN 0.48

GLCM IDN 1.87

GLSZM ZoneEntropy 2.09

Shape LeastAxisLength 2.80

GLSZM SmallAreaEmphasis 3.17

First-order Median 4.10

Shape Maximum3DDiameter 4.48

First-order Mean 4.50

First-order 10Percentile 5.18

Shape Maximum2DDiameterColumn 5.21

Shape Maximum2DDiameterRow 5.30

GLCM InverseVariance 5.45

Shape MinorAxisLength 5.69

Shape MajorAxisLength 5.94

First-order 90Percentile 6.35

GLSZM SizeZoneNonUniformityNormalized 6.42

GLCM SumEntropy 6.61

Shape SphericalDisproportion 6.75

Shape Sphericity 6.75

Shape Elongation 7.34

Shape Flatness 7.45

GLDM DependenceEntropy 8.14

Shape SurfaceArea 8.33

First-order StandardDeviation 8.58

Shape SurfaceVolumeRatio 9.22

First-order MeanAbsoluteDeviation 9.61

Shape Maximum2DDiameterSlice 10.08

First-order Entropy 10.23

Shape Compactness1 10.30

GLRLM RunEntropy 10.86

GLRLM GrayLevelVariance 10.98

GLRLM ShortRunEmphasis 12.96

Shape MeshVolume 14.38
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3.5 Radiomic Features Sensitive to Radiological Manifestations but Unstable

It was observed that a limited number of features sensitive to radiological manifestation can at
the same time vary beyond the opposite threshold of the normal interval. The occurrence was
only in 17 out of 1776 computations from three animals in the Virus group: V#1 (6/17), V#4
(2/17), and V#5 (9/17). An example is shown in Fig. 6(b), and the results are shown in Table 5.
These features should be investigated separately.

3.6 Radiomic Features Sensitive to Radiological Manifestations

A total of 74 features had a variation beyond Δf with respect to the baseline scan for at least one
animal in the Virus group. First, a ranking of hRfi was generated to determine which features are
more sensitive to the radiological manifestations in animals in the Virus group. An arbitrary
threshold was set to differentiate those features f for which Rf varied <5% above or below
ΔfðΔf � 5%Þ.

Figure 7(a) shows the results for features extracted along with the average for each feature
over all animals in the group. As an example, a comparison of two animals’ CT scans—one
dominated by large consolidations and other lesions [Fig. 7(b)] and the other having smaller
lesions with less attenuation [Fig. 7(c)]—is shown in Fig. 7(d). Also, as an example, the evo-
lution along the course of the disease is shown for two sensitive features, one increasing above
the normal range [GLRLM short-run high gray-level emphasis, Fig. 8(a)] and the other sensitive
and decreasing below the normal range [first-order skew, Fig. 8(b)].

Figure 9 shows the lung involvement over time at a selected axial slice in the baseline scan
and the eight postexposure scans for V#1. Although scans are visually different, the information

Table 3 (Continued).

TYPE FEATURE Δf (%)

Shape VoxelVolume 14.39

GLSZM GrayLevelNonUniformityNormalized 14.84

First-order Skewness 15.27

GLCM ClusterTendency 15.94

GLCM JointEntropy 17.38

GLDM GrayLevelVariance 17.79

First-order Variance 17.89

GLDM SmallDependenceHighGrayLevelEmphasis 18.13

First-order RootMeanSquared 19.10

GLCM SumSquares 20.65

GLCM DifferenceEntropy 20.90

Shape Compactness2 21.66

First-order RobustMeanAbsoluteDeviation 21.66

First-order Minimum 21.97

First-order Kurtosis 22.52

GLRLM GrayLevelNonUniformityNormalized 23.67

Δf , maximum normal variation of feature f ; GLCM, gray-level co-occurrence matrix; GLDM, gray-level depend-
ence matrix; GLRLM, gray-level run length matrix; GLZSM, gray-level size zone matrix; NGTDM, neighboring
gray tone difference matrix.
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Fig. 5 ICC values for each feature (white and black) along with hRf i as a measure of sensitivity
(blue). Reliability of ICC values were considered as 0.00 to 0.50 (poor), 0.50 to 0.75 (moderate), 0.75
to 0.90 (good), and 0.90 to 1.00 (excellent). hRf i with an absolute value near zero indicates that the
feature f is not sensitive to the disease when compared with its baseline value. GLCM, gray-level
co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix;
GLSZM, gray-level size zone matrix; NGTDM, neighboring gray tone difference matrix.
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Table 4 Features not sensitive to the radiological manifestations in the Virus
group.

Type Feature (f )

Shape Maximum 2D diameter slice

GLCM Maximum probability

GLCM Difference entropy

GLDM Small dependence emphasis

GLDM Dependence nonuniformity normalized

GLDM Large dependence emphasis

GLDM Large dependence low gray level emphasis

GLDM Dependence variance

GLDM Small dependence low gray level emphasis

First-order Minimum

GLRLM Run variance

GLRLM Long run emphasis

GLRLM Short run emphasis

GLRLM Run percentage

GLRLM Long run low gray level emphasis

GLRLM Run length non uniformity normalized

GLSZM Zone percentage

GLSZM Low gray level zone emphasis

GLSZM Small area low gray level emphasis

GLCM, gray-level cooccurrence matrix; GLDM, gray-level dependencematrix; GLRLM,
gray-level run length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighboring
gray tone difference matrix.

Fig. 6 Time evolution along the course of the disease in V#1 of radiomic features: (a) GLRLM long
run low gray level emphasis (not sensitive and with Δf ¼ 61.5%) and (b) GLCM cluster promi-
nence (sensitive but not stable and with Δf ¼ 15.4%). Dotted lines represent the lower and upper
thresholds of the normal variation range. GLCM, gray-level co-occurrence matrix; GLRLM, gray-
level run length matrix.
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obtained from a visual inspection helps to identify differences in some first-order features.
However, changes in higher-order features are usually difficult to assess visually.

4 Discussion

Animal models of human disease are a critical part of biological research, including in the inves-
tigation of pathogenesis and the evaluation of candidate medical countermeasures, such as thera-
peutics and vaccines. Noninvasive quantitative imaging biomarkers that do not require serial
euthanasia help with characterizing the progression of a disease severity and progression and
understanding the underlying mechanisms. Measurable changes in imaging biomarkers through-
out the course of the disease provide useful information when compared with baseline scans,
which are typically not acquired in clinical settings. Furthermore, information from a control
group is essential for determining the range of normal variation for imaging biomarkers. In
recent years, radiomics has been explored as a tool, for instance, to investigate associations
between both textural and nontextural features and survival rate, to predict outcomes, or for
differential diagnosis. Although radiomics has been used to investigate COVID-19 in humans,
to the best of our knowledge, application to animal models has not been reported yet. The char-
acteristics and uniqueness of our data allow for the implementation of both standard radiomics
and delta radiomics, particularly to quantify the progression of the disease, evaluate therapeutic
options, and potentially predict outcomes.

Radiomics data are typically analyzed with statistical and machine learning methods that may
depend on the disease context and image modality, among other factors. Machine learning tech-
niques can capture complex interactions among features, feature combinations, and clinical bio-
markers to build efficient prognostic and predictive models. However, the inclusion of radiomic
features that are not reliable, not sensitive, and/or redundant may affect the robustness of those
techniques. In particular, features with low intrasubject and intersubject repeatability may affect
the statistical power, ability to interpret, and extrapolation to a more general application. Within
the scope ofΔ–radiomics, the identification and inclusion of specific features that are sensitive to
radiological manifestations during the course of the disease may help to establish a connection
between the number of features and their change above the normal variation during a given stage

Table 5 Features that are sensitive and unstable.

Type Feature (f ) Nf hRf i (%)

GLCM Cluster shade 3 67.9

GLCM Cluster prominence 2 71.9

GLDM Gray level variance 0 52.4

GLDM Small dependence high gray level emphasis 1 30.0

First-order Standard deviation 0 50.6

First-order Range 1 20.5

First-order Variance 0 52.4

First-order Maximum 1 22.4

GLRLM Gray level variance 1 70.0

GLSZM Gray level nonuniformity normalized 0 −13.0

NGTDM Strength 1 30.5

Nf : number of animals in the Virus group with an unstable feature f . hRf i: average among all animals v in the
Virus group of Rf

v ¼ ðΔf
v − Δf Þ∕Δf

v without considering those Nf animals. GLCM, gray-level co-occurrence
matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size
zone matrix; NGTDM, neighboring gray tone difference matrix.
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of disease. However, there is no “one-fits-all” solution; deciding which features to include and
exclude depends on several factors—e.g., the disease, the type of lesion or abnormality under
scrutiny, the imaging modality, and the area of interest (i.e., organ or lesion).

The animal-model experiments performed at the IRF-Frederick used two identical CT scan-
ners with the same imaging protocol; therefore, no reproducibility study was required. Instead,
reliability focused on intrasubject repeatability and intersubject normal variation when images
from all scans of mock-exposed control animals without underlying abnormality were consid-
ered. The dynamic range of features extracted from CT images of virus-exposed animals during
the course of the disease was analyzed along with the normal variation. If the dynamic range of

Fig. 7 (a) Factor Rf
v as defined in Sec. 2.5 of features sensitive to radiological manifestations

computed from all scans of the eight animals in the Virus group for the B-kernel reconstruction
along with the average over all animals in the group for each feature; (b) arbitrary axial slice of V#1
showing a large consolidation and other lesions; (c) arbitrary slice of V#7 dominated by smaller
lesions with less attenuation; (d) comparison betweenRf

v in V#1 and V#7 only for features with Rf

that vary <5% above or below Δf . GLCM, gray-level co-occurrence matrix; GLDM, gray-level
dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix;
NGTDM, neighboring gray tone difference matrix.
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a given feature did not exceed the maximum intrasubject normal variation for all animals in the
virus-exposed group, regardless of the radiological manifestation, that feature was considered
not sensitive to the radiological manifestations, and therefore, that feature was not expected to
provide any meaningful information. Sensitive feature values remained within the normal range
unless near the peak of the disease.

The animals in the Virus group had a variety of radiological manifestations, and a given
feature may be sensitive for some animals but not for others. To characterize the sensitivity

Fig. 8 Time evolution along the course of the disease in animal V#1 of radiomic features
(a) GLRLM short run high gray level emphasis (sensitive and increasing above the normal range
with Δf ¼ 47.1%) and (b) first-order skewness (sensitive and decreasing below the normal range
with Δf ¼ 13.7%). Dotted lines represent the lower and upper thresholds of the normal variation
range. GLRLM, gray-level run length matrix.

Fig. 9 Time evolution of the lung involvement at a selected axial slice along the course of the
disease in animal V#1.
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compared with the stability, a ratio R that takes into account the percent of the dynamic range that
is above the normal variation was proposed to rank those features. A limited number of features
varied beyond the normal range near the peak of the disease and later varied beyond the opposite
threshold of the normal range when recovering. Those features were marked as sensitive to the
disease but unstable. The meaningfulness of those features should be investigated in more detail
and the opposite threshold should eventually be relaxed to avoid misclassification.

We focused on the B-kernel reconstructions because of their higher reliability. From the stan-
dard radiomics perspective, features with poor and moderate reliability (ICC < 0.75) should be
excluded from further analysis. Otherwise, larger variations of features in both the mock-exposed
control group and the virus-exposed group may occur. From the Δ-radiomics perspective, the
aim would be to include only the features expected to vary beyond the normal range. A threshold
to decide which features should be included has not been investigated in detail; however,
we identified features with Rf that did not exceed �5%. It is worth mentioning that 69% of
the features with Δf > 50% also had Rf below �5%, and only 15% of the features with ICC >
90% had Δf > 50%.

The results presented in this work have the potential to be useful either to exclude irrelevant
features for more accurate standard radiomics analysis62 or to perform delta-radiomics analysis
using changes of features with respect to their baseline values within a normal range. For exam-
ple, five out of nine features based on low gray-level emphasis were not sensitive to radiological
manifestations, whereas the other four had a ratio Rf < 5%. On the other hand, eight out of
nine features based on high gray level emphasis were sensitive to radiological manifestations
(Rf > 5%), whereas the remaining feature was sensitive but unstable because Rf fell below
the lower threshold of the normal interval at some time points. Nevertheless, the study had some
limitations. Both the average R and a set of features with a certain range of ratios R might
eventually be characteristic of specific radiological manifestations. However, the total number
of animals was not large enough to include a sufficient number of animals with the most common
abnormalities; therefore, a characterization of abnormalities based on R was not pursued.
As a preliminary result, it was found that R significantly varied between an animal with
large areas of highly attenuated abnormalities and another with smaller areas with lower attenu-
ation. Also, the use of the intrasubject dynamic range computed as the maximum percent change
with respect to the baseline scan was useful to exclude not sensitive features when compared
with the maximum intrasubject normal variation. However, the analysis of the time evolution of
the overall abnormalities at every time point was lacking. Potentially, the stage of the disease
might be assessed at each time point based on the set of sensitive features and their correspond-
ing ratios.

In further analyses, more animals will be included to allow for a better association of changes
in radiomic features and a radiological manifestation. Features from preprocessed images, such
as, Laplacian of Gaussian and wavelets, will also be explored. The associations of delta-radiomic
features with nonimaging biomarkers will be studied as well to pursue one of the main goals
of radiomic analysis while concurrently addressing a significant need for animal models of
COVID-19.
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