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ABSTRACT. Significance: Photoacoustic tomography (PAT) has great potential in monitoring
disease progression and treatment response in breast cancer. However, due to var-
iations in breast repositioning, there is a chance of geometric misalignment between
images. Further, poor repositioning can affect light fluence distribution and imaging
field-of-view, making images different from one another. The net effect is that it
becomes challenging to distinguish between image changes due to repositioning
effects and those due to true biological variations.

Aim: The aim is to develop a three-dimensional image registration framework for
geometrically aligning repeated PAT volumetric images, which are potentially
affected by repositioning effects such as misalignment, changed radiant exposure
conditions, and different fields-of-view.

Approach: The proposed framework involves the use of a coordinate-based neural
network to represent the displacement field between pairs of PAT volumetric
images. A loss function based on normalized cross correlation and Frangi vessel-
ness feature extraction at multiple scales was implemented. We refer to our image
registration framework as MUVINN-reg, which stands for multiscale vesselness-
based image registration using neural networks. The approach was tested on a
longitudinal dataset of healthy volunteer breast PAT images acquired with the hybrid
photoacoustic-ultrasound Photoacoustic Mammoscope 3 imaging system. The
registration performance was also tested under unfavorable repositioning conditions
such as intentional mispositioning, and variation in breast-supporting cup size
between measurements.

Results: A total of 13 pairs of repeated PAT scans were included in this study.
MUVINN-reg showed excellent performance in co-registering each pair of images.
The proposed framework was shown to be robust to image intensity shifts and field-
of-view changes. Furthermore, MUVINN-reg could align vessels at imaging depths
greater than 4 cm.

Conclusions: The proposed framework will enable the use of PAT for quantitative
and reproducible monitoring of disease progression and treatment response.
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1 Introduction
In photoacoustic (PA) imaging, short-pulsed near-infrared light is applied to tissue. Various tissue
chromophores absorb the light to trigger thermoelastic expansion and pressure wave generation.
Detection of these waves, which have frequencies in the ultrasound (US) regime, allows for
image reconstruction of the absorbed optical energy.1 A strongly absorbing chromophore is
hemoglobin, which enables PA imaging to accurately depict blood vessels. Further, due to the
specific absorption spectra of hemoglobin in its two states, oxygenated and deoxygenated, the
method can potentially report on blood oxygen saturation in tissue. It is known that vasculari-
zation associated with cancer is more abundant and structurally different than in healthy tissues,
and oxygen saturation is an important physiological biomarker in tumor hypoxia. This makes PA
imaging highly attractive for oncology.2 Furthermore, the method is noninvasive, contrast agent-
free, relatively cheap, and with image acquisition times lower than conventional magnetic res-
onance imaging (MRI) protocols.

In the context of breast cancer, PA tomography (PAT) has shown encouraging results with
multiple proposed devices exploiting different light delivery systems and US detection
geometries.3 Promising PAT applications for breast cancer span tumor detection,4 diagnosis,5,6

and neoadjuvant chemotherapy (NAC) monitoring.6,7 The latter is a systemic therapy adminis-
tered before surgery, with the goals of (1) reducing tumor size enabling breast-conserving sur-
gery; (2) treating possible future metastatic disease, even if undetectable in preoperative staging;
and (3) tailoring future chemotherapeutic decisions.

It is important to monitor response to NAC, to spare nonresponding patients the toxicity (and
expenses) of ineffective treatments, and to prevent further tumor progression due to postponed
surgery. Repetitive imaging at optimal time-points during NAC is conducted using MRI tech-
niques, radionuclide (positron emission tomography) imaging, and hybrid imaging.8 This longi-
tudinal imaging enables tumor assessment by evaluating the changes in size, shape, and
characteristics of the tumor, and helps to gauge the effectiveness of NAC. Compared to the stan-
dard of care imaging modalities, PAT has advantages for repeat measurements and could play an
important role in NAC response monitoring by providing a safe and noninvasive method to visu-
alize biological and functional response in the tumor microenvironment.

One of the requirements in longitudinal imaging is that data between imaging sessions are
comparable, from the point of view of patient positioning. In particular in PAT, repositioning of
the breast inside the recording aperture can cause changes in the field-of-view as well as geo-
metric misalignment of blood vessels between PAT scans, which challenges the measurement of
qualitative and quantitative vascular changes.9 An available solution to this problem is the use of
breast-supporting cups, which partially enable reproducible repositioning, but their use is inher-
ently prone to human error and dependent on the operator’s experience.9 Further, such solutions
can be complex to implement due to large variability in breast size, morphology, and
composition.

Approaches based on image co-registration can constitute an effective and easy-to-
implement solution to the problem of geometric misalignment between repeated scans. In this
case, PAT scans acquired before and at different time points during the therapeutic regimen can
be aligned in the same reference coordinate system such that the same anatomical structures
become geometrically matched. This would allow the radiologist to conveniently focus on
observing locoregional evolution in time or also, to develop and train computer-aided systems
to extract changes in quantitative imaging biomarkers to monitor or predict the tumor response.

Several image registration algorithms have been proposed for PA imaging but most of them
aimed at registering PA images with conventional imaging modalities such as MRI.6,10–13 To the
best of our knowledge, only two research studies deal with the problem of unimodal registration
of serial PA images.14,15 A parametric approach using an intensity-based scheme and gradient
descent optimizer was proposed to co-register PAT images of hands.14 However, one major limi-
tation of parametric registration algorithms is the requirement to choose the anticipated defor-
mation field parametrization (examples are rigid, affine, or B-splines). This can be problematic in
the case of complex and unknown deformations, i.e., the breast repositioning within the record-
ing aperture. In a second study,15 a registration method based on PAT image decomposition (into
foreground, noisy background, and corrupted foreground) and coarse-to-fine alignment was pro-
posed. This was intended to correct body motion in in vivo PAT images by co-registering multiple
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shot-volumes before averaging.15 Integrating image decomposition with a multiscale approach
was a key to cope with the sparse nature of PAT images, presence of noise, and variety in sizes of
blood vessels. However, the algorithm is only able to correct for global affine transformations
reducing its use to a limited number of applications. Several deep learning approaches have been
proposed for medical image registration.16 However, most of these require a pretraining phase,
and their generalization ability strongly depends on the amount of available training data. This
makes their application inconvenient in PAT image registration owing to the general paucity of
standardized datasets. Therefore, we believe that there is a strong need in this research field for an
image registration framework able to align in vivo three-dimensional (3D) PAT images affected
by complex and nonlinear deformations.

In this work, we propose a registration framework based on the use of coordinate-based
neural networks and multiscale Frangi vesselness filtering to co-register longitudinal 3D PAT
scans. The algorithm does not require any training data, a priori parametric deformation model,
or manual landmark annotation. Following the recent study by Wolterink et al.,17 a multilayer
perceptron (MLP) network is used to transform coordinates of the fixed image domain to the
moving image domain, and hence, implicitly represent deformation fields. Thanks to the use of
sinusoidal activation functions, the network is able to represent local and nonlinear deformation
fields. We show the effectiveness of the framework in aligning repeated PAT scans acquired with
the recently developed hybrid PA-US system [Photoacoustic Mammoscope 3 (PAM3)]18 under
various conditions such as different illumination wavelengths and different breast supporting
cups. Comparison with conventional image registration approaches shows the superiority of the
proposed framework in serial PAT image alignment. We refer to the proposed framework as
MUVINN-reg, which stands for multiscale vesselness-based image registration using neural net-
works. The proposed framework is implemented in Python and fully available together with data
on GitHub (available at https://github.com/brunodesanti/muvinn-reg).

2 Background

2.1 Image Registration Algorithm

2.1.1 Image registration as a minimization problem

The image registration problem can be defined as finding the optimal transformation Φ̂ such that

EQ-TARGET;temp:intralink-;e001;117;350ðM ∘ Φ̂ÞðxÞ ¼ FðxÞ; (1)

where M∶ΩM ⊂ Rn → R and F∶ΩF ⊂ Rn → R are the moving and fixed image, respectively,
and ΩM and ΩF are the moving and fixed image domains, respectively. The optimal transfor-
mation can be found by solving the following minimization problem:

EQ-TARGET;temp:intralink-;e002;117;289Φ̂ ¼ arg min
Φ

LdataðM ∘ Φ; FÞ þ αLregðΦÞ; (2)

where Ldata is a similarity measure between two images, Lreg is a regularization term to encour-
age regular deformation field, and α is a non-negative weighting parameter.

2.1.2 Coordinate-based networks and their use for image registration

According to the universal approximation theorem, any continuous function can be approxi-
mated by a multilayer neural network with nonlinear activation functions.19 This allows a
MLP network to represent a signal (e.g., image) by mapping its coordinate domain (x and y
pixel coordinates) to the signal intensity (pixel intensity values). These networks can be referred
to as coordinate-based neural networks and are the basis of a fast growing category of deep
learning techniques called implicit neural representations (INRs). Excellent results have been
demonstrated using INRs in many applications such as scene rendering,20 image reconstruc-
tion,21 and recently image registration.17,22

In image registration, an MLP network can be optimized to represent the displacement field
uðxÞ such that coordinate x in the fixed image geometrically corresponds to coordinate ϕðxÞ ¼
uðxÞ þ x in the moving image.17 A loss function based on a data term and a regularization term is
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used to maximize similarity between the images and encourage smooth displacement fields [see
Eq. (2)]. The network is trained by using batches of coordinates from the fixed image domain as
input. Using coordinate-based networks for image registration has several advantages compared
to traditional or convolutional-based approaches. First, they allow to represent the deformation
field continuously over the image domain with a low and fixed number of parameters (network
weights). Second, they do not require any a priori information regarding the transformation
model. Third, they allow derivatives to be computed analytically making the regularization task
free of finite differences computations. Finally, these methods are highly flexible and extendable
to different registration tasks, by changing the similarity metric, regularization term, or activation
function.

2.2 PAM3 Imaging System
In this study, the hybrid PA-US PAM3 imaging system was used.18 The system is embedded in a
custom-designed bed, which includes the laser system and the hemispherical US recording
aperture. The subject lies prone on the bed with her breast positioned within the imaging bowl
(26 cm diameter). The bowl accommodates the water-coupled US aperture, which comprises 512
single-element US transducers flush with the inside of the bowl. For PA excitation, the bowl has
40 optical fiber bundle terminations distributed on the inner surface of the bowl. Acquisition
parameters such as number of bowl rotations, number of wavelengths, number of averages, and
number of US shots can be programmed for each individual acquisition. Eight breast-supporting
cups with different sizes are available and used to stabilize the breast during the measurements.
The operator chooses the appropriate cup size before the acquisition.18 An iterative full-wave
model-based image reconstruction method is to reconstruct PA images, which can make use
of different speed of sound (SOS) models.23 Number of iterations was equal to 10 and voxel
size equal to 0.4 mm.18 In the present work, we used a 2-SOS model with the known SOS for
the coupling water and a single SOS for the whole breast, which is manually chosen to maximize
the sharpness of the reconstructed blood vessels.

3 Methods

3.1 MUVINN Image Registration Framework
The proposed MUVINN framework aims to co-register serial PAT scans of the breast. A coor-
dinate-based MLP is optimized to find the displacement field between a first or reference PAT
scan called the fixed image, and a second PAT scan called the moving image, acquired after
breast repositioning inside the recording aperture. The framework is based on Wolterink
et al.17 who proposed the use of coordinate-based neural networks for co-registration of inspira-
tion and expiration 3D computed tomography lung images. The algorithm was modified to adapt
its use on PAT images of the breast, mainly by implementing a coarse-to-fine strategy with the
use of multiscale Frangi vesselness filtering within the network optimization. An overview of the
proposed framework is shown in Fig. 1. The entire framework was implemented in CUDA-
enabled PyTorch.

3.1.1 Coarse-to-fine similarity term

In the context of PAT image registration, vascular structures are a valuable source of common
information, since PAs are sensitive to blood. For this reason, the similarity metric was computed
on Frangi vesselness filtered versions of the original images. A coarse-to-fine strategy was
adopted to favor alignment of vessels with different sizes; network optimization starts with a
higher value of the standard deviation σ of the gaussian kernel to enhance only the main vascular
structure, then, σ is progressively decreased in a step-wise fashion during training iterations to
enhance smaller vessels. Using a higher σ provides the network with low noise and less sparse (in
spatial domain) data in the first iterations, which has the positive effects of improving robustness
to noise and improving gradients for the network optimization (see section 1 in the
Supplementary Material). For each experiment, five values of sigma were used during optimi-
zation, σ ¼ f12; 9; 5; 3; 2g, 4000 training iterations each. Intensities of the Frangi filtered images
were adaptively modulated to improve image contrast.24,25 Normalized cross correlation (NCC),
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which is more robust compared to intensity difference-based metrics such as L1 or mean square
error, was used as the similarity metric to intensity shifts that might be caused by changes in light
fluence due to breast repositioning.

3.1.2 Regularization and activation function

Image registration is an ill-posed problem, hence, regularization is fundamental to avoid insta-
bilities and converge to smooth deformation fields.26 Jacobian regularization was used to penal-
ize excessive expansion and shrinkage of vascular features. It is reasonable to assume that breast
repositioning will not heavily affect the size of biological structures in the tissue. Furthermore,
any expansion and shrinkage is of interest when capturing biological changes over time due to
therapy or disease progression, thus, not to be corrected. The weighting parameter α was set to
0.95 for all experiments.

Activation functions of the MLP have a direct effect on the ability of the network to accu-
rately represent the signal (in this case, the displacement field). It has been shown that sinusoidal
activation function has a superior ability to represent high frequency content than rectified linear
unit.27 To correct for small and local misalignments of vessels, sinusoidal activation functions
were employed in this study with an angular frequency ω equal to 30.

3.1.3 Training and implementation details

As usually done for INRs,27 image coordinates were normalized in the range ½−1; 1�3. A coarse
segmentation mask of vessels was obtained on the fixed image by Frangi vesselness filtering σ ¼
½2; 3; and 4� and adaptive thresholding (threshold map exponentially decaying as a function of
depth). In each training epoch, a batch of 200 coordinates was randomly sampled from the set of
coordinates belonging to the mask. A 5 × 5 × 5 cubical patch was defined leading to a total
number of 200 · 53 ¼ 25;000 coordinates for each training epoch. The side length of the patch
was changed according to the scale of the Frangi filtering in the iteration, according to
2.5 · σc∕100 (in normalized units). This allowed to compute NCC in local patches with a size
depending on the enhanced vessels around the sampled points during the optimization process.
After transforming the coordinates through the network, intensity values were sampled from the
fixed and moving images by linear interpolation and the loss was computed. Regarding model
hyperparameters, an MLP was used with six hidden layers, each of which contained 300 units
with sinusoidal activation function (except for the last one which uses linear activation functions
to ensure linear mapping). Adam optimizer with learning rate of 5e − 5 and 20,000 epochs was
used. Training and tests were done on a Windows 11 machine with an Intel Core i9-11900K @
3.5 GHz, 128 GB RAM and NVIDIA RTX3090 24 GB.

Fig. 1 Overview of MUVINN image registration framework. (a) Coordinate sampling from the fixed
image domain. (b) MUVINN uses a coordinate-based MLP with sinusoidal activation functions to
represent the displacement field, uðxÞ such that transformed coordinates ΦðxÞ ¼ x þ uðxÞ on the
moving image anatomically correspond to coordinates x . in the fixed image. NCC between multi-
scale Frangi vesselness filtered images are used as data similarity term. Jacobian regularization is
used to find smooth and regular deformation fields. (c) Coordinate transformation into the moving
image domain.
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3.2 Experimental Protocol
The study was approved by the Medical Ethics Review Board and acknowledged by the Dutch
Central Committee for Research on human subjects. A 59-year-old woman volunteered in the
study. She was classified with Fitzpatrick skin type 2 and wore brassiere size 80E. The volunteer
was informed about the study, and informed consent was obtained.

3.2.1 Imaging session

A total of 15 scans were acquired in the imaging session. The imaging session was divided into
two phases. In phase A, seven repeated PAM3 scans (S1 to S7) of the left breast were performed
by using the breast supporting cup with the optimal size equal to 7 out of 8 (largest size). The
optimal cup size was determined through test-fitting various cup sizes on the volunteer by the
operator (author R.F.G.B.) prior to the start of the imaging session. Between each pair of repeated
scans, the volunteer was asked to stand up and then lie down on the imager to reposition the
breast in the cup. Scans S1 to S3 were acquired with dual wavelength (720 and 870 nm) while the
remaining four (S4 to S7) were acquired with a single wavelength (720 nm). For scans S6 and S7,
the breast was deliberately mispositioned in the cup to test the algorithm performance when a
more severe deformation occurs. In phase B, the right breast was scanned eight times (S8 to S15)
with a single wavelength (720 nm) using different breast-supporting cups (S8 and S9: cup size 7,
S10 and S11: cup size 5, S12 and S13: cup size 4, and S14 and S15: cup size 8).

3.2.2 MUVINN-reg registration experiments

The performances of the proposed image registration framework were evaluated under different
serial imaging scenarios: experiment 1–standard breast repositioning; experiment 2–breast repo-
sitioning and different illumination wavelength; and experiment 3–breast repositioning and differ-
ent breast-supporting cups. Table 1 shows an overview of the registration experiments conducted.

3.2.3 Baseline methods

We compared the proposed MUVINN-reg algorithm with two conventional image registration
approaches: a parametric approach using Elastix28 and non-parametric approach with the diffeo-
morphic demons algorithm.29 For the comparison, we used the dataset of experiment 1 consisting
of seven pairs of repeated scans: S1 and S2, S1 and S3, S1 and S4, S1 and S5, S1 and S6, and S1

Table 1 Overview of the MUVINN-reg registration experiments. For simplicity, the same fixed
scan was used within the same experiment.

Scan Wavelength (nm) Cup size

Experiment 1: breast
repositioning

Fixed image S1 720 7

Moving image(s) S2 to S5 (normal
repositioning)

720 7

S6 and S7 (deliberate
mispositioning)

Experiment 2: breast
repositioning with different
illumination wavelength

Fixed image S1 720 7

Moving image(s) S2 and S3 870 7

Experiment 3: breast
repositioning with different
breast-supporting cup

Fixed image S8 720 7

Moving image(s) S10a and S11 720 5

S12 and S13 720 4

S14 and S15 720 8

aS10 went missing due to technical issues in the data transfer.
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and S7. For a fair comparison, images were preprocessed using Frangi vesselness filtering with
same standard deviation values used for MUVINN-reg (σ ¼ f12; 9; 5; 3; 2g) and adaptive inten-
sity modulation before image registration. Also, since the performance of these algorithms can
highly depend on parameters, experimental tuning was performed to find a parameter configu-
ration yielding accurate registration results in similar computational times of MUVINN-reg. For
more information regarding the implementation and tuning of these methods, the reader can refer
to section 2 in the Supplementary Material.

3.2.4 Evaluation metrics

Peak signal-to-noise ratio (PSNR), NCC, Dice similarity coefficient (DSC), and target registra-
tion error (TRE) were computed to quantify performance of the proposed framework. While
PSNR and NCC are based on similarity between image intensities,30 DSC and TRE measure
the geometric overlap between vascular structures. DSC was computed between binary masks
of vessel segmentation (performed on both fixed and moving images as described in Sec. 3.1.3.)
before and after alignment. Regarding the TRE analysis, matching landmarks in correspondence
of vessel branching points were manually annotated on both fixed and moving images using the
open source software MeVisLab.31 After the co-registration, coordinates of the annotated points
on the fixed image were transformed by feedforwarding them through the trained network into
the moving coordinate system. Distances between corresponding points were computed before
and after co-registration. Registration results were also evaluated qualitatively by plotting maxi-
mum intensity projections (MIPs) of the image pair overlay. The fixed image was encoded in the
blue channel, whereas the moving one in the red channel. Overlapping structures appear as
magenta. For better visualization of vascular features, images were processed using Frangi ves-
selness filtering and intensity adaptive modulation, similarly to previous studies.4,7,24,25

4 Results

4.1 Experiment 1: Performance of MUVINN-reg in Correcting Misalignments
due to Breast Repositioning

Despite the use of breast supporting cups, misalignment of vascular structures always occurred
after breast repositioning inside the recording aperture. In Fig. 2(a), MIPs of the overlay of pair
S1 and S3 are shown. Misalignment was observed also in deeper regions of the breast, as shown
in the depth-layered MIPs in Fig. 2(b). TRE analysis showed a displacement equal to 6.99�
2.34 mm [Fig. 2(c)]. As shown in the bottom row of Fig. 2(a), co-registration by MUVINN-reg
improved alignment of vascular features. Also, Fig. 2(b) shows the improvement in the alignment
of a vessel deeper than 4 cm (pointed by the black arrows). After co-registration, TRE decreased
to 0.90� 0.40 mm, which represents a mean error of less than 2 voxels [bottom row of Fig. 2(c)].
Similar results were obtained also in other cases (Table 2).

For deliberate mispositioning, the breast was intentionally mispositioned inside the cup to
cause larger and more complex deformation. In fact, this produced a greater initial displacement
(maximum of mean displacements equal to 33.31 mm compared to 10.97 mm for the normal repo-
sitioning as shown in Table 2). This was also prominent in the MIPs of the overlay [pair S1 and S6
before co-registration shown in Fig. 3(a)]. For the specific case of pair S1 and S6, TRE analysis
resulted in an initial displacement of 24.98� 6.75 mm. Despite the larger displacement,
MUVINN-reg was able to successfully co-register this pair of scans. MIPs of the overlay showed
the presence of vessels missing in one of the two scans due to different positioning of the breast
inside the cup [shown by the black arrows in Fig. 3(a), after co-registration]. TRE analysis showed
a decrease of the displacement to 1.97� 2.62 mm. In general, for every case of experiment 1, we
observed an improvement of all the metrics from before to after co-registration (Table 2).

4.2 Experiment 2: Testing MUVINN-reg with Different Illumination Wavelengths
For this experiment, scan S1 at 720 nm was defined as fixed, and scans S2 and S3 at 870 nm as
moving. Figure 4 shows the performance of MUVINN-reg in co-registering pair S1 and S2. MIPs
of PAT scans [shown in Fig. 4(a)] show differences in intensity due to different absorption of
tissue chromophores at the two wavelengths 720 and 870 nm (e.g., skin intensity is higher in the
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720 nm PAT scan due to higher absorption of melanin). To enable accurate comparison between
co-registered images, the displacement field represented by the network was applied to the
corresponding 720 nm version of the moving scans. MIPs of the overlays before and after
co-registration are shown in Fig. 4(b). As a result, the proposed framework was able to success-
fully co-register PAT scans with different illumination wavelengths and decreasing the TRE from
10.97� 3.78 mm and 6.99� 2.34 mm to 0.75� 0.29 mm and 0.92� 0.47 mm, respectively
for pairs S1 and S2 as well as S1 and S3. Values of displacement after co-registration were similar
to those obtained in experiment 1 for pairs S1 and S2 (both 720 nm) as well as S1 and S3 (both
720 nm) showing the robustness of MUVINN-reg to different illumination wavelengths. Image
similarity always increased from before to after co-registration (see Table 2).

4.3 Experiment 3: Testing MUVINN-reg with Different Breast Cup Sizes
The Twente PAM3 uses breast-supporting cups, which help to stabilize the breast during the
image acquisition. The selection of the appropriate cup size is determined by the breast size,
which is assessed through a fitting process prior to the acquisition. If the cup is inadvertently
chosen smaller than the breast, the outer regions of the breast closer to the chest wall will extend
beyond the cup and fall out of the field-of-view. On the other hand, choosing a cup bigger than
the breast will not stabilize the breast appropriately. Although it is unlikely that different cups
would be chosen for repeated measurements during NAC monitoring, it is still possible for the
breast to undergo morphological changes that would alter the field-of-view. So, it is important to
test the capabilities of the framework in case of field-of-view inconsistency between scans.

Figure 5 shows the MIPs of overlay of the fixed image S8 (cup size 7) with three scans
acquired with different cup sizes: (a) S11 (cup size 5), (b) S13 (cup size 4), (c) S15 (cup size

Fig. 2 Performances of MUVINN-reg in correcting misalignments due to normal breast repositioning.
(a) Coronal and axial MIPs of the overlay of pairs of PAT repeated scans (b) Sagittal MIPs of the
overlay at different depths from the breast surface (>0, 2, and 4 cm). (c) 3D rendered vascular network
of the moving image; before co-registration: green spheres represent the ground-truth, namely the
annotated points on the moving image, and blue spheres are the annotated points on the fixed image;
after co-registration: red spheres are the annotated points on fixed image after transformation to the
moving coordinate system. The black arrow indicates the alignment of a vessel deeper than 4 cm.
TRE is reported as mean and standard deviation of the distances between corresponding points.
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Fig. 3 Performances of MUVINN-reg in correcting misalignments due to deliberate breast mispo-
sitioning. Refer to Fig. 2 for explanation. The black arrows show vessels missing in one of the two
repeated scans due to the different positioning of the breast. TRE is reported as mean and stan-
dard deviation of the distances between corresponding points.

Table 2 Quantitative results for each experiment.

Before co-registration After co-registration

Pair PSNR (dB) NCC DSC TRE (mm) PSNR (dB) NCC DSC TRE (mm)

S1 and S2 (both 720 nm) 39.95 0.36 0.33 10.97 ± 3.78 44.01 0.73 0.63 0.89 ± 0.48

S1 and S3 (both 720 nm) 38.75 0.14 0.12 6.99 ± 2.34 44.40 0.75 0.69 0.90 ± 0.40

S1 and S4 (both 720 nm) 38.79 0.14 0.13 6.22 ± 1.79 44.80 0.78 0.69 0.64 ± 0.33

S1 and S5 (both 720 nm) 38.55 0.13 0.10 5.99 ± 1.23 44.85 0.78 0.69 0.63 ± 0.26

S1 and S6 (both 720 nm) 37.96 0.12 0.09 24.98 ± 6.75 41.84 0.58 0.48 1.97 ± 2.62

S1 and S7 (both 720 nm) 38.27 0.12 0.08 33.31 ± 5.16 41.43 0.51 0.43 2.33 ± 2.25

S1 (720 nm) and S2 (870 nm) 39.95 0.36 0.39 10.97 ± 3.78 43.57 0.69 0.64 0.75 ± 0.29

S1 (720 nm) and S3 (870 nm) 38.75 0.14 0.12 6.99 ± 2.34 43.80 0.71 0.66 0.92 ± 0.47

S8 (cup 7) and S11 (cup 5) 37.69 0.07 0.05 17.3 ± 3.71 42.82 0.68 0.49 0.82 ± 0.56

S8 (cup 7) and S12 (cup 4) 37.21 0.05 0.04 20.77 ± 2.78 42.45 0.67 0.43 1.32 ± 1.02

S8 (cup 7) and S13 (cup 4) 37.40 0.05 0.04 28.11 ± 5.25 41.79 0.60 0.41 1.45 ± 0.9

S8 (cup 7) and S14 (cup 8) 38.15 0.10 0.04 9.19 ± 2.26 43.42 0.71 0.59 1.30 ± 0.44

S8 (cup 7) and S15 (cup 8) 37.96 0.09 0.05 15.17 ± 3.23 42.27 0.62 0.54 0.81 ± 0.42
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Fig. 5 Performances of MUVINN-reg in co-registering repeated PAT scans with different breast-
supporting cups. (a) MIPs of the overlay before co-registration for pairs S8 (cup size 7) and S11
(cup size 5), S8 (cup size 7) and S13 (cup size 4), as well as S8 (cup size 7) and S15 (cup size 8).
(b) MIPs of the overlay after co-registration for the same pairs. TRE is reported as mean and stan-
dard deviation of the distances between corresponding points.

Fig. 4 Performances of MUVINN-reg in co-registering repeated PAT scans with different illumi-
nation wavelengths. (a) MIPs of fixed and moving PAT images for pair S1 and S2. (b) Coronal and
axial MIPs of the overlay of pairs of PAT repeated scans showing misalignment before and after
co-registration. TRE is reported as mean and standard deviation of the distances between cor-
responding points.
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8) before [panel (a)] and after [panel (b)] co-registration by MUVINN-reg. TRE analysis showed
larger initial displacements than the other experiments. MUVINN-reg was able to retrieve the
deformation field accurately for each pair. After co-registration, from the MIPs of overlay, the
inconsistency of field-of-view between different cup sizes was clearer to notice: for pairs S8 and
S11 as well as S8 and S13, deeper vascular structures of the breast were mostly blue due to their
absence in the smaller cup scan [see Fig. 5(b)]. Comparing S8 and S15 after co-registration,
vessels closer to the chest wall were imaged in S15 and not in S8. TRE analysis after co-
registration showed a decrease of the displacement from 17.3� 3.71 mm, 28.11� 5.25 mm,
and 15.17� 3.23 mm to 0.82� 0.56 mm, 1.45� 0.9 mm, and 0.81� 0.42 mm, respectively,
for pairs S8 and S11, S8 and S13, as well as S8 and S15, respectively. Also for this experiment,
the result of the quantitative analysis is an increase of all similarity metrics (Table 2).

4.4 Comparison with Baseline Methods
Optimal configuration of parameters was selected for each baseline method after experimental
tuning (data shown in section 2 in the Supplementary Material). Figure 6 shows the qualitative
comparison of MIPs of the overlay after co-registration by Elastix, Demons, and MUVINN-reg
for two pairs of repeated PAT scans: S1 and S2 (normal repositioning) as well as S1 and S6
(deliberate mispositioning). Although, for pair S1 and S2 (normal repositioning), major vascular
structures were found to be aligned after co-registration, the black arrows point to regions where
misalignment of vascular structures was present. In contrast, this was not the case for MUVINN-
reg. Regarding the S1 and S6 pair (deliberate mispositioning), both Elastix and Demons were not

Fig. 6 Comparison between parametric approach using Elastix, non-parametric diffeomorphic
Demons algorithm, and the proposed MUVINN-reg. (a) Coronal and axial MIPs of the overlay
before co-registration and after co-registration using Elastix, Demons and MUVINN-reg for pair
S1 and S3 (normal breast repositioning). The black arrows show regions with misalignment of
vascular structures. (b) Coronal and axial MIPs of the overlay before co-registration and after
co-registration using Elastix, Demons, and MUVINN-reg for pair S1 and S6 (deliberate breast mis-
positioning). TRE and computational time (T ) are reported.
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able to correctly align the main vascular structure, in contrast to our proposed algorithm. The
weak performance of the parametric approach by Elastix might be attributed to two main factors:
(1) the parameterization of the transformation model (rigid + B-spline) may not be appropriate
for the deformation that occurs in the case of breast repositioning, and (2) a too low number of
iterations in order to achieve the global minimum. Regarding to the nonparametric approach by
Demons, one possible reason could be the use of an intensity-based metric such as the sum of
squared differences that does not take into account variations in intensity between the two images
due to different light distribution. Regarding computational times, these are heavily dependent on
the parameter selection (mainly the number of iterations and the stopping condition if present).
To avoid excessively long computational times, only configurations with a reasonable number of
iterations were tested (see section 2 in the Supplementary Material). However, with the selected
configurations of parameters, MUVINN-reg showed better performance at the cost of
slightly higher computational times (e.g., pair S1 and S3, MUVINN-reg: 21.08 min, Elastix:
T ¼ 18.61 min, Demons: T ¼ 18.65 min).

5 Discussion
Promising developments have been presented in the research into PA imaging for NAC
monitoring.6,7 However, the analysis of longitudinal PA images in this setting has hitherto been
qualitative. Issues related to organ repositioning in the imaging volume cannot be discounted,
which can result in nonoptimal correlation between images and consequently complications in
their comparison to extract subtle biological changes. Specifically, repositioning affects the posi-
tion of vascular structures relative to the coordinate system of the device, posing challenges to
identify the same structure-of-interest across multiple serial images. The use of a breast-
supporting cup makes the repositioning procedure more reproducible9 as it provides a rigid con-
tainment structure for the breast. Nevertheless, the present study showed that despite the use of
cups, mean displacements in the range of 5.99 to 10.97 mm were found between images.

To address these problems, we developed MUVINN-reg, a framework that uses coordinate-
based neural networks and multiscale Frangi vesselness filtering to co-register longitudinal PAT
scans in three dimensions. The effectiveness of the framework was investigated in correcting for
geometric misalignments that could potentially take place in subject repositioning. MUVINN-
reg demonstrated a drastic reduction of displacement and increase in image similarity after co-
registration for several tested scenarios (Table 2).

The use of a coordinate-based neural network makes the proposed registration framework
unique in that it is capable of being able to represent deformation fields in a continuous domain.
This allows the deformation field to be known at any coordinate in the domain and avoids the use
of finite-differences techniques to calculate spatial derivatives of the deformation field.17 In addi-
tion, the approach gives the possibility to integrate similarity metrics, tailored for the image regis-
tration problem, as long as they are differentiable. For the specific case of PA images, using a
similarity term based on vesselness features allows only relevant structures within images to be
considered, and potential noise to be excluded. This feature combined with the use of NCC
allows the method to be robust to variations in image intensities (as shown in Fig. 4 for experi-
ment 2), which might occur in repeated PA imaging due to changes in light distribution. The
implementation of a coarse-to-fine strategy is critical to the success of the framework. As already
shown in other studies,15 decomposing the image in different scales facilitates the registration
process, which is the reason why image registration frameworks often work on multiple pyrami-
dal levels. We observed that the use of a coarse-to-fine strategy crucially improves accuracy and
consistency of the framework (see section 1 in the Supplementary Material). Finally, the con-
tribution of the Jacobian regularization in the loss function helps to represent regular deformation
fields and avoids that vessels are excessively shrunk or expanded. The combination of all these
features makes the algorithm capable of co-registering pairs of images at different displacement
magnitudes (experiment 1), affected by inconsistencies in image intensity (experiment 2), and
field-of-view (experiment 3).

In experiment 3, the algorithm was subjected to pairs of images with different fields-of-view,
where some vessels were present in only one of the two images. This is important in the context
of NAC monitoring as it is very hard to image the same breast volume in longitudinal imaging.
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There is also potential utility of the algorithm in image mosaicking or image stitching,28 in scan-
ning imaging systems where multiple smaller and overlapping images are compounded. Here,
MUVINN-reg can be applied to perform the mosaicking based on overlapping regions.

Comparison with baseline methods showed the superiority of MUVINN-reg over the
existing conventional image registration algorithms based on parameterized transformations and
intensity-based metrics. Adaption of these methods to PA imaging would require more intensive
image preprocessing and accurate parameter tuning to cope with the sparse nature of PA data, and
the complexity of the deformation fields.

One limitation of the proposed framework lies in the necessity of parameter tuning to ensure
optimal performance. The most critical parameters are the number of iterations and the values of
the Frangi scales during the optimization. A higher number of the iterations gives better results in
terms of co-registration accuracy but leads to higher computational times. Regarding the choice
of the scales, higher standard deviations produce more regular displacement fields with the risk of
not aligning fine structures in the image. On the other hand, the use of very low standard devia-
tions lead to the risks of noise being considered in the optimization process which would ulti-
mately produce wrong displacement fields and irregular distortion of structures in the
transformed image. Also, starting with larger σ values allows to mitigate the sparsity of the
image, therefore improving gradients for the network optimization. At this stage, parameter
selection was performed using a trial and error approach and a good parameter configuration
was found which can work in every scenario. However, the presence of inaccuracies in the align-
ment of some vessels was noted in certain cases (Fig. S3 in the Supplementary Material). We
believe this is because the misalignment of these small vascular structures did not have a sig-
nificant contribution to the loss function during optimization. This can be solved by increasing
either the number of iterations or the number of points sampled in each iteration, at the cost of
increasing the computational expenses. Also, in future, automated parameter optimization and a
user-friendly interface will be implemented to make the framework usable in a practical setting.
Another limitation lies in computational time. While the fact that INRs are self-supervised tech-
niques is a big advantage because they do not require a training set, each pair of images requires
optimization of a new neural network. This results in higher computational times compared to a
supervised technique. The computational time for each pair of image was 20.42� 0.56 min.
These are acceptable computational times when considering the context of disease or treatment
monitoring but become less convenient in the case of real time applications.

Finally, the effects of NAC on the patient’s breast can be heterogeneous, and it is largely
unknown how the therapy changes the morphology of the breast and blood vessels. For this reason,
it is essential to evaluate the framework in actual treatment monitoring conditions. It is worth noting
that the dataset at this point is limited to only one PAT device with its own recording aperture
geometry and breast-supporting system. We encourage researchers in the community to consider
applying our method to their own image datasets for further validation and exploration.

6 Conclusions
We presented MUVINN-reg, an automatic 3D image registration framework that can address the
challenges of geometric misalignment in longitudinal PAT breast scans. We demonstrated the
robust performance in co-registering images under different unfavorable repositioning scenarios.
MUVINN-reg can align vessels deeper than 4 cm. This advancement holds significant promise
for enabling reproducible and quantitative monitoring of disease progression and treatment
response in breast cancer using PAs.
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