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Abstract

Significance: The machine learning (ML) approach plays a critical role in assessing biomedical
imaging processes especially optical imaging (OI) including segmentation, classification, and
reconstruction, intending to achieve higher accuracy efficiently.

Aim: This research aims to develop an end-to-end deep learning framework for diffuse optical
imaging (DOI) with multiple datasets to detect breast cancer and reconstruct its optical properties
in the early stages.

Approach: The proposed Periodic-net is a nondestructive deep learning (DL) algorithm for the
reconstruction and evaluation of inhomogeneities in an inverse model with high accuracy, while
boundary measurements are calculated by solving a forward problem with sources/detectors
arranged uniformly around a circular domain in various combinations, including 16 × 15,
20 × 19, and 36 × 35 boundary measurement setups.

Results: The results of image reconstruction on numerical and phantom datasets demonstrate
that the proposed network provides higher-quality images with a greater amount of small details,
superior immunity to noise, and sharper edges with a reduction in image artifacts than other
state-of-the-art competitors.

Conclusions: The network is highly effective at the simultaneous reconstruction of optical
properties, i.e., absorption and reduced scattering coefficients, by optimizing the imaging time
without degrading inclusions localization and image quality.
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1 Introduction

Due to the excellent imaging capabilities, optical imaging (OI) techniques have been developed
and employed to restore, segment, classify, and identify tissue properties.1–4 Diffuse optical
imaging (DOI) is the one for being used in the reconstruction of optical properties of the brain
and breast. Due to the growing power of artificial intelligence, many inverse problems in DOI
are solved in deep learning-based algorithms to improve image reconstruction quality.5–8

Applications of ML in optical fields ranging from biotechnology9 to cancer diagnosis10 have
shown great potential for localization, classifying, and segmentation of tumors for diverse sam-
ples in biomedical applications.11–13 Despite the excellent performance of convolution neural
network (CNN)-based deep learning reconstruction methods, the locality of the convolution
operator makes it difficult to learn global and long-range image information, i.e., reconstructing
absorption and scattering coefficient in the same network well.14
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Previously, numerous data-driven algorithms for sources and detectors have been used to
reconstruct DOI optical-property images by generating simulation datasets for training.13–17

Some among those16 emphasize fast and accurate estimating of the bulk optical properties in
the breast by exploiting a convolutional neural network. Various deep-learning approaches for
numerous scientific domains and various forms of data analysis have been extensively reviewed
for current work in optical properties retrieval.18,19 Well-controlled data sets for training and
validation are among the most important topics in the neural network, but the lack of large,
publicly available data sets leads to unique challenges. The development of a data generation
pipeline20 based on Monte Carlo modeling has shown to be a useful method for rapid, robust, and
user-friendly image formation in a wide variety of applications. Three-layer deep neural network
is proposed in Ref. 21, and simulation, phantom, and clinical data with breast lesions are tested
for the mismatch between the target and reference sides.

Some deep learning algorithms focused on restoring high-quality images by simultaneously
considering both projection and image domains while the final images may suffer from secon-
dary artifacts due to the introduced errors from projections interpolation.22 Zhang et al.23 present
an encoder-decoder learning-based optimization network, which was highly effective in pre-
serving inclusion edges and recovering details. Fortunately, domain transformation24 called
AUTOMAP has the ability for reconstructing sensor information and shows good performance
in optical image reconstruction tasks, while Dense-net,25 U-net,26 and its variants perform well in
restoring directly from the image domain.

The primary contribution is that we first presented a network for DOI reconstruction called
Periodic-net directly employed to boundary data, and then we modified state-of-the-art models,
i.e., U-net and Dense-net for optical-property image reconstruction (these models are developed
for the purpose of restoring biomedical images, not for the reconstruction of images).
Additionally, our deep learning models include datasets that were previously unconsidered for
state-of-the-art networks in DOI.

2 Materials and Methods

2.1 DOI Preprocessing and Postprocessing

A unified formulation for the frequency domain (FD) system obtaining three combinations of
boundary observations and conditions is adapted. Figure 1 illustrates the schematic of the pre-
processing and postprocessing steps involved in the reconstruction of optical-property images.
Light from laser modules is transmitted to the optical switch, which sequentially passes it to
preselected points on the surface of the phantom to perform optical data acquisition. The boun-
dary of phantom designated a source and detector positions. A simulation dataset based on FD
measurements is generated using the finite-element forward solver, with Robin boundary
conditions.27

2.1.1 Signal generation in DOI

Signals are generated by photon radiance Lðr; ŝ; tÞ in forward solver, where ŝ denotes the direc-
tion of light r is position vector at time t. Photon radiance is calculated from radiation transport
equation (RTE) in the presence of a nonlinear source term Qðr; ŝ; tÞ to characterize tissue by the

Fig. 1 Flow chart of dataset(s) preparation for network training.
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scattering coefficient μs and the absorption coefficient μa; formulation of optical-property is
given as28
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where c; fðŝ 0; ŝÞ corresponds to the speed of light inside soft tissue and is a normalized phase
function representing the probability of scattering, respectively. The transport coefficient is rep-
resented by μt to calculate the loss of radiance and is equal to the sum of reduced scattering (μ 0

s)
and absorption coefficients (μa). Equation (1) can be further simplified and transformed into the
frequency domain as
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where ΦðrÞ, S0ðrÞ, and ω represent the photon density, source term, and frequency, respectively.

2.2 Dataset Preparation

2.2.1 Generation of training samples

Training datasets are created by solving the forward problem and then optimization of the inverse
problem is obtained through Tikhonov regularization (TR), applying Newton’s method to
minimize the objective function,29 i.e.,
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where L; λ are the dimensionless regularization matrix and the corresponding parameter of regu-
larization of photon density. Δχdenotes fluence rate and J is Jacobian matrix.

To collect boundary data for the network, multiple excitations and measurement locations
are employed; i.e., m source locations, equally spaced around the circular circumference, are
assumed for each of the n excitation positions (n ¼ m − 1), thus yielding a total of m × n ampli-
tude and m × n phase shift observations. This work employs three different simulation datasets
that include boundary data from various measurements, i.e., system design for 16 × 15, 20 × 19,
and 36 × 35 source–detector positions. A “noisy” boundary information obtained from the
forward solver is delivered to the reconstruction network.

2.2.2 Synthetic phantom data collection and calibration

The datasets with 16 × 15 measuring points (amplitude and phase shift) of each has been
employed to perform DOI from laboratory experiments at our institute.30–32 By calibrating the
data, it is possible to remove errors caused by model mismatches, such as detector responsivity,
optical fiber differences errors, and numerical noise in the inverse computation of the hetero-
geneous medium. To calibrate the computed homogeneous data with the measured heterogeneous
data, we performed calibrations using the computed homogeneous data. Optical-property coef-
ficients assigned to a homogeneous phantom are used to compute homogeneous data.

2.2.3 Simulation dataset for training

Three types of boundary data, i.e., 16 × 15, 20 × 19, and 36 × 35 were employed for training.
Within this study, all 10,000 simulation samples for three boundary data types were prepared by
our in-house computation code NIR•FD_PC.27,33–35 In addition, the code was also applied to
reconstruct optical-property images (μa and μs

0) using the TR method. A total of 4400 samples
were formed with one inclusion and 5500 samples with two inclusions.36 The shapes of phantom
background and its inclusion(s) for all samples were kept circular in the current study. The
diameters of 80 phantoms range from 60 to 150 mm with their inclusions selected randomly.
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The driving frequencies of FD DOI for all samples were taken in the range 10 to 100 MHz.
Background absorption and reduced scattering coefficients were chosen in the range 0.005
to 0.03 mm−1 and 0.05–3 mm−1, respectively, where ground truth images were formed directly
from the parameters of inclusion in a rectangular grid. Datasets were then divided into three
categories, i.e., training (85%), validation (10%), and testing (5%), respectively.

2.3 Deep Learning Framework

2.3.1 Issues with traditional encoder–decoder network

In our computation, we observed that traditional state-of-the-art machine learning encoder
decoder methods failed to detect tiny structures in most cases (see later in the Results,
Sec. 3). The reference networks are based on the encoder–decoder structure, i.e., U-net/
Dense-net structure as the basic skeleton and AUTOMAP24 serves as the input layer (Fig. 2.).

2.4 Mechanisms of Periodic-net

The overview of the proposed Periodic-net and its components are shown in Fig. 3. The overall
architecture is based on four different modules performing individual tasks. The purpose is not
only capturing small structures and reconstructing them but also to localize them in adequate
resolution for detecting early-stage breast cancer. Feature module skeleton consists of two kinds
of layers to extract features, i.e., convolution and batch normalization, each followed by
activation function. The structure begins with two 3 × 3 eight-channel 2D convolutional layers,
followed by a batch normalization and ReLU activation layer. Convolution is performed on an
input volume, batch normalization is utilized, and then ReLU activation is applied in each feature
block. The inside structure of feature module is shown in Fig. 3(a). Four feature blocks are
instantiated in an efficient module. In the first feature block, 1 × 1 convolution was applied,
followed by 3 × 3, and 5 × 5 filters with the same padding, which ensures that the output volume
sizes are identical to all blocks and the maximum information is extracted from limited neurons
since the input has a smaller number of neurons as compared with the output. A channel dimen-
sion is used to concatenate the output volumes. A major objective of the efficient module is to
assess how locally sparse structures can be approximated [Fig. 3(b)]. Input volumes are reduced
by the escalate module. This module utilizes two branches in a similar manner to the efficient
module. First, a 3 × 3 convolution is performed, but with a stride of 2 × 2 and valid padding,
resulting in a reduction in volume size. In the second branch, 3 × 3 maximum pooling is used
with a 2 × 2 stride. Then it is possible to concatenate the output volumes for both branches along
the channel axis [Fig. 3(d)]. Image reconstruction is performed in encompass module. Due to the
low contrast between background and inclusions, we employ dense layers to extract more dis-
criminative features. Four dense layers are in the encompass module, each followed by a batch
normalization layer and an activation of the ReLU layer. Dense layers are composed of 64, 128,
256, and 4096 neurons at the bottom. The final output size is 1 × 64 × 64 for the absorption
coefficient and 1 × 64 × 64 for the reduced scattering coefficients [Fig. 3(e)]. While Fig. 3(f)

Fig. 2 Modified U-net and Dense-net structures.
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shows expected output for circular phantom samples. During training, the periodic nature of
proposed network is shown in Fig. 3(f); apart from that, concatenation between two efficient
modules are performed to avoid degradation problems.

2.5 Network Configuration and Training

The simulation dataset consists of a total of 10,000 samples, which are divided into training,
validation, and test sets according to a distribution of 8500, 1000, and 500, respectively.6 Adam
optimizer is set to 0.001 and is used as gradient updating; other parameters include momentum of
0.5, batch size of 64, and weight decay of 10−4. A quantitative evaluation of reconstruction
results is conducted using the mean square error (MSE),37 peak signal-to-noise ratio (PSNR),38

and structural similarity index (SSIM).39 We trained all models for a total of 20 epochs, in
which

EQ-TARGET;temp:intralink-;e004;116;137PSNR ¼ 10 log10
max2ðxÞ
MSE

; (4)

is the PSNR that calculates the difference between corresponding pixels and the maximal inten-
sity value; the MSE is for the mean square error during training

Fig. 3 Flow of data in Periodic-net. (a) Feature module: consist of convolution layers. (b) Efficient
module: extract tiny structure. (c) Upsample module: increasing dimension for (d). (d) Escalate
module: concatenation of two modules. (e) Encompass module: reconstruction of optical images.
(f) Output: reshaping to get absorption and reduced scattering coefficients. (g) Overall architecture
of the proposed Periodic-net model. (a)–(d) Work as feature extraction; (e) working as
reconstruction.
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EQ-TARGET;temp:intralink-;e005;116;735SSIM ¼ ð2xtruexDOT þ const 1Þð2σtrue;DOT þ const_2Þ
ðx2true þ x2DOT þ const_1Þðσ2True þ σ2DOT þ const_2Þ ; (5)

where SSIM evaluates the structural similarities between reconstructed diffuse optical tomog-
raphy (DOT) and ground truth, xtrue, xDOT are true and reconstructed optical properties, i.e.,
absorption and reduced scattering coefficients, and σtrue; σDOT are the means and variances
of reconstructed images of absorption and reduced scattering coefficients. The positive constants
const_1 ¼ 0.012, const_2 ¼ 0.022 avoid a null denominator.

3 Results

In this section, three independent versions of the datasets were trained for the same network,
responsible for DOI images of breast cancer. We conduct a series of simulations and experiments
confirming and evaluating the performance of the proposed network described in detail in Sec. 2.4.
Initially, we present simulated and phantom experiment results that demonstrate the image for-
mation process works both with 16 source positions and 15 detector positions. The second step
involves evaluating the reconstructed images from simulated data by varying the number of
sources and detectors, i.e., 20 × 19 and 36 × 35. Selective test sample parameters and other spec-
ifications are given in section Table 1. A side-by-side comparison between different algorithms is
shown. Randomly generated Gaussian noise of 15% is added to the forward problem to mimic the
noise and aberrations that might arise in phantom test set due to experimental hardware. The flu-
ence rate values were normalized using the min-max method to fix all the values between 0 and 1.

The reconstructed images in the two-dimensional plane from all methods are shown in Fig. 4.
Absorption and reduced scattering coefficients are plotted from upper row to lower row accord-
ing to the dataset while each column represents reference and proposed methods: the first column
is for ground truth, the second column for Dense-net, the third column represents traditional
iterative Tikhonov regularization, the fourth column specify U-net, and the last column recon-
struct optical properties via Periodic-net.

3.1 Dataset 1: Phantom Case with 16 × 15 Boundary Data

Two different experimental samples were carried out from the test dataset with one and two inclu-
sions, respectively. We have performed laboratory phantom studies to confirm what we found.
However, a finer reconstruction can be seen in the first experiment, in which a single inclusion is
embedded into a medium (phantom) with an absorption coefficient μa ¼ 0.0059 mm−1 at a fre-
quency 20 MHz, and to match the background scattering coefficient of 0.69 mm−1. The target is
placed near the boundary [Fig. 4 (first – fourth rows)]. In the second experiment, two targets were
embedded, which were 11.25 and 6.77 mm diameter spheres. The diffusion is measured for both
samples in a circular domain using a DOT photon array system. We demonstrate that the U-net
model trained with 16 × 15 simulation measurements significantly outperforms the Dense-net
model trained with either the simulation absorption coefficients or reduced scattering coefficients
images. It should be noted that U-net-based methods produce erroneous boundaries for large
structures, especially when the boundaries are blurry, such as those depicted in Fig. 4(d).

Table 1 Random cases from test datasets for verification.

Dataset
Frequency
(MHz)

Phantom
diameter (mm)

Inclusion(s)
radius (mm)

16 × 15 20 50 5

10 70 11.25, 6.77

20 × 19 50 85 10.62, 5.27

36 × 35 80 80 10.39, 5.93
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U-net can localize structure representations in larger areas more effectively than in smaller struc-
tures. A blurred reconstructed image can be observed for TR, whereas a clear reconstructed image
of one inclusion and two inclusions with an accurate shape is found using U-net. In contrast,
Periodic-net has a high degree of precision in detecting tiny structures.

3.2 Dataset 2: Phantom Case with 20 × 19 Boundary Data

Figure 4 (rows 5 and 6) shows a reconstruction of optical properties from 20 × 19 measure-
ments, i.e., 19 detector positions around phantom at wavelengths λ ¼ 5.99 m during absorption

Fig. 4 Phantoms with different sizes, using one and two inclusions. (a) Ground truth. (b) Dense-
net. (c) TR. (d) U-net. (e) Periodic-net. Overall, Periodic-net and U-net perform well to reconstruct a
better shape and size of inclusion(s) with less noise.
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coefficients and similar for reduced scattering coefficients. The data from all source-detector
position pairs for the diameter range from 60 to 150 mm as input to our reconstruction network.
The FEM model consisted of a circular mesh with a radius of 10.62 and 5.27 mm. However, it is
evident that Dense-net [Fig. 4(b)] could not produce scattering and absorption coefficient images
with fine structure, and the respective values of different locations of imaging target(s) were
underestimated. Periodic-net improves resolution than U-net and TR. We observe that the
Dense-net gives the worst results as they do not reconstruct any inclusion. U-net gives slightly
better results than the TR but is still unsatisfactory.

3.3 Dataset 3: Phantom Case with 36 × 35 Boundary Data

In this section, the sample under consideration belongs to 36 source positions and 35 detector
positions that are arranged on the surface of the phantom uniformly. Therefore, there are a
total of 36 × 35 ¼ 1260 observations. In this sample, we considered an inhomogeneous medium
with two inclusions (Fig. 4, rows 7 and 8). The origin of the coordinates for the first inclusion
is set at the left bottom near the center and the second inclusion is set at the right upper half
near the center of the surface. A set of absorption and reduced scattering coefficients of μa ¼
0.0080 mm−1 and μs ¼ 0.5634 mm−1 are selected to simulate the background tissue. To quan-
tify the comparison among the four methods, we have reconstructed the absorption and scatter-
ing coefficient separately from the regularization method [Fig. 4(c)] and for two state-of-the-art
networks [Figs. 4(b) and 4(d)]. It is seen that there are significant improvements in reconstructed
image values with Periodic-net, as we expected, while those from U-net are better than those
from Dense-net. It is clear from Fig. 4(e) that in the proposed method leads to an enhanced
reconstructed contrast, thus resulting in clearer DOT images. The reconstruction results of the
proposed Periodic-net are the closest to the ground truth compared with those of the TR, modi-
fied U-net, and modified Dense-net models. The proposed model is helpful to recover the spatial
information that is lost during the iterative method [Fig. 4(c)].

4 Discussion

This study proposed a DL model, called Periodic-net, aiming for better imaging of breast tumors
and improving the overall performance in terms of spatial resolution, reconstruction time, and
memory storage. A greater number of source positions around the phantom has the advantage of
improving the reconstruction of absorption and scattering coefficients. However, it costs more
during the reconstruction time. Based on our results, the Periodic-net is capable of learning fea-
tures efficiently even for a small number of measurements. In order to make sure that the trained
network enables us to measure the correct contrast for various measurements, we used a variety
of contrasts in the training process.

Four key modules make up the overall structure of a Periodic-net: feature module, efficient
module, escalate module, and encompass module. In the feature module, raw data (fluence rate)
are transformed into numeric features that can be processed while preserving the information in
the original data set. Then, an end-to-end edge enhancement reconstruction subnetwork recon-
structs the initial image with sparse artifacts removal and image edges preservation in the effi-
cient module. However, the transforming domain may introduce unexpected artifacts. Therefore,
the data escalate module, which consists of two submodules (one for feature extraction, and the
other for domain correction), was introduced to reduce errors, ensure consistency, and improve
structural details. A submodule (upsample module) for edge enhancement is introduced to pre-
serve features and reduce blurring along the edge of the tomographic image. Finally, encompass
module is introduced to capture global features from the efficient module and reconstruct the
structure of optical properties, i.e., absorption and scattering coefficients.

U-net and Dense-net cannot be applied to DOI directly, so modification was made to these
two nets to reconstruct optical properties in different domains. Both these state-of-the-art net-
works have shown good performance on semantic segmentation, object detection, and classi-
fication with localization. There is a slight improvement in U-net performance over Dense-net
in terms of DOI reconstruction. It is worth noting that both networks are designed to take
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high-resolution images as inputs. The U-net architecture showed good performance on the one
inclusion data while failing to detect and construct small lesions. Since the U-net utilizes a
completely convolutional architecture, only high-level features are considered as a result. While
Dense-net has more layers and hyperparameters than U-net, it still fails to extract any useful
information such as edges or localizations. Careful arrangement of layers and cautious selection
of hyperparameters are crucial to the reconstruction of optical-property images.

Our architecture retrieves optical properties images of breast lesions from low-contrast DOI.
Furthermore, it does not rely on the number of radiances nor on the domain, i.e., multiple exci-
tations and measurement positions are used to produce the boundary data. Figure 4 illustrates the
reconstruction results of single and two inclusions cases for different boundary measurements.
For all simulations 16, 20, and 36 excitation positions and 15, 19, and 35 measurement locations
(both are equally spaced around the circular circumference in angular increments beginning near
0 deg, depending on local meshing details). It is also important to note that different modules of
network structures and loss functions are designed and implemented at different stages during
the training process. In addition to achieving good performance, we also achieve the benefits of
fewer parameters and faster convergence (∼3 s) (Table 2). We demonstrate an approach that
enables noninvasive OI behind scattering photons in breast cancer tissue. Experimental valida-
tion shows the efficiency and robustness of the method with various DOT samples, covering a
reconstruction of up to three different datasets w.r.t boundary data.

The superiority of the method compared with conventional techniques is shown by applying
it to DOT problems of different breast cancer data of a various number of measurement data.
In contrast to traditional segmentation, classification, and super-resolution imaging approaches,
our method does not utilize medical images directly for training to attain optical properties, but
rather focuses on reconstruction and improving image quality after changing sensor data into
images in one step, which is an end-to-end model. Using inhomogeneous cases, we demonstrate
that our method can also be applied to nonsparse and continuous objects. We note that a few

Table 2 Efficiency comparison between trained Periodic-net with
different networks using three datasets.

Dense-net U-net Periodic-net

Boundary data 16 × 15

Training time(s) per epoch (s) 31 20 3

Trainable parameters 18,292,788 17,681,797 1,258,308

Nontrainable parameters 3140 8212 9892

Memory (kb) 215,380 207,542 15,766

Boundary data 20 × 19

Training time(s) per epoch (s) 33 28 3

Trainable parameters 22,880,308 26,856,837 1,310,532

Nontrainable parameters 3140 8212 9892

Memory (kb) 269,140 315,062 16,378

Boundary data 36 × 35

Training time(s) per epoch (s) 45 32 ∼3

Trainable parameters 51,716,148 43,240,957 1,642,308

Nontrainable parameters 3140 8212 9892

Memory (kb) 607,060 507,059 20,266
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iterations are sufficient to recover the object reasonably well in our case. In addition, our tech-
nique is not limited by the number of independent illuminations/fluence rates that can be gen-
erated with one source/detector, since the scattering angle of the illumination can be tuned to
produce an extremely large number of independent illuminations with different positions.
Additionally, calibrated measure data have been used to increase the number of test samples
and check the impact of overfitting.

According to test results, U-net and TR are still unable to reconstruct small anatomical land-
marks with blurred borders. Although U-net is good at reconstructing large structures, it fails
when the inclusions are small or have noisy boundaries which can be seen in Fig. 4. Results
using simulated data suggest that qualitative images can be produced that readily highlight the
location of absorption and scattering heterogeneities. Our proposed (Periodic-net) modeling
approach was found to yield the best results after comparing various convolutional neural
network architectures, i.e., U-net, and Dense-net, as well as the conventional regularization
approach, i.e., TR.

A quantitative evaluation of all methods was also conducted. Figures 5 and 6 represent the
results for the reduced scattering coefficients and absorption coefficients, respectively. The MSE,
PSNR, and SSIM metrics were calculated to verify the effectiveness of the edge enhancement
reconstruction. A significant improvement in the absorption coefficients can be observed, where
the Periodic-net model has the lowest MSE value. The results of the Periodic-net showed a sig-
nificant reconstruction improvement compared with the other models, with a maximum SSIM
score of 0.89 for absorption coefficients. Likewise, for the reduced scattering coefficients the
Periodic-net model achieved the highest PSNR. Overall, the proposed Periodic-net model out-
performed the TR, modified U-net, and modified Dense-net in terms of the evaluation of SSIM

Fig. 5 Overview of statistical results for reduced scattering coefficients from (a) MSE, (b) SSIM,
and (c) PSNR. 500 samples from simulation datasets of 16 × 15, 20 × 19, and 36 × 35 boundary
data, and 12 samples from 16 × 15 experimental dataset are presented.
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and PSNR scores. This shows the power of the proposed model to learn complicated features
through various module connections in the proposed Periodic-net, which take advantage of the
learning features directly from boundary data as input. The SSIM and PSNR scores show that the
Dense-net performed worst, and U-net achieved better results than Dense-net. However, because
of its periodic nature (cycle repeats in equal intervals of times for each epoch), Periodic-net
outperformed TR and learning approaches in all evaluations. The Periodic-net has the smallest
MSEs and the largest PSNRs and SSIMs as compared with other competitors.

5 Concluding Remarks

Periodic-net offers a potential reconstruction of soft tissue optical coefficients that are not only
cost-effective, sensitive, and noninvasive but also provide better localization and suppresses
noise when compared with existing state-of-the-art networks. From the simulation and exper-
imental samples, it has been demonstrated that the proposed algorithm has not only remarkably
improved the predicted accuracy and resolutions well as significant improvement in performance
and reduction in testing and reconstruction time. The future directions of our work include
extending our method to explore the feasibility of our Periodic-net with ring system-type datasets
for more than one source and detector in different organizations.
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Fig. 6 Overview of statistical results for absorption coefficients from (a) MSE, (b) SSIM, and
(c) PSNR. 500 samples from simulation datasets of 16 × 15, 20 × 19, and 36 × 35 boundary data,
and 12 samples from 16 × 15 experimental dataset are presented.
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