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Abstract

Significance: Hyperspectral imaging (HSI) provides rich spectral information for improved his-
topathological cancer detection. However, acquiring high-resolution HSI data for whole-slide
imaging (WSI) can be time-consuming and requires a huge amount of storage space.

Aim: WSI using a color camera can be achieved with fast speed, high image resolution, and
excellent image quality due to the established techniques. We aim to develop an RGB-guided
unsupervised hyperspectral super-resolution reconstruction method that is hypothesized to
improve image quality while maintaining the spectral characteristics.

Approach: High-resolution hyperspectral images of 32 histologic slides were obtained via auto-
mated WSI. High-resolution RGB histology images were registered to the hyperspectral images
for RGB guidance. An unsupervised super-resolution network was trained to take the down-
sampled low-resolution hyperspectral patches (LR-HSI) and high-resolution RGB patches
(HR-RGB) as inputs to reconstruct high-resolution hyperspectral patches (HR-HSI). Then,
an Inception-based network was trained with the HR-RGB, original HR-HSI, and generated
HR-HSI, respectively, for whole-slide histopathological cancer detection.

Results: Our super-resolution reconstruction network generated high-resolution hyperspectral
images with well-maintained spectral characteristics and improved image quality. Image clas-
sification using the original hyperspectral data outperformed RGB because of the extra spectral
information. The generated hyperspectral image patches further improved the results.

Conclusions: The proposed method potentially reduces image acquisition time, saves storage
space without compromising image quality, and improves the image classification performance.
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1 Introduction

Computer-aided pathology (CAP) is an active research area that aims to improve the reproduc-
ibility and objectivity of pathological diagnosis and save time in routine examination.1 Machine
learning techniques, particularly deep learning models, have played an essential role in CAP.2
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Various studies of deep learning-based cancer detection in whole-slide digitized histology
images have been investigated, and most of them were carried out in RGB images. Hyperspectral
imaging (HSI) is a noncontact and label-free imaging modality that has emerged in the medical
imaging field. It captures the spatial and spectral information of the imaged tissue, revealing the
chemical composition and morphological features in a single image modality and thus offering
more fine features that are potentially useful for image segmentation and classification. Studies
have proven the usefulness of HSI in microscopy applications.3–15 One of the promising appli-
cations for this technology is employing HSI for whole-slide imaging (WSI) to aid the histo-
pathological cancer detection of tissue samples because HSI not only provides a reproducible
and quantitative diagnosis of the slides but also improves the classification results compared with
RGB.3,5 Although various steps such as fixation and embedding during the preparation of the
histological samples may alter a few tissue features, such as the texture and the water content,
lots of important molecules such as proteins are preserved in the tissue slides. The light absorp-
tion, scattering, and autofluorescence of these molecular components all contribute to the spec-
tral characteristics in hyperspectral histologic images,6,16 which provide a different perspective
from the traditional gross-level reflectance HSI. Even for the dyes, HSI can expand the three-
channel color information into a much wider spectral dimension, which might increase the dis-
criminability. Nakaya et al.17 used a support vector machine classifier and the average spectra of
nuclei extracted from hyperspectral images for colon cancer detection. Ishikawa et al.18 proposed
a pattern recognition method named hyperspectral analysis of histopathological slides based on
stain spectrum to process the spectra of the histologic hyperspectral images for pancreatic tumor
nuclei detection. Ortega et al.3 implemented automatic breast cancer cell detection in hyperspec-
tral histologic images with an average testing AUC of 0.90. The comparison between the clas-
sification results using HSI and RGB suggests that HSI outperforms RGB. Our previous studies
investigated the feasibility and usefulness of HSI for head and neck squamous cell carcinoma
(SCC) nuclei detection in histologic slides.4,19 The comparison between HSI, HSI-synthesized
RGB, and RGB indicates that the extra spectral information from HSI can improve the outcome.
We also investigated whole-image histopathological cancer detection and proved the advantage
of using HSI for head and neck cancers.5,20

There are a few difficulties when applying hyperspectral microscopy in real clinical situa-
tions. First, the size of a hyperspectral image file is large. For example, one hyperspectral image
with a dimension of 3600 pixels × 2048 pixels × 150 bands saved in single precision requires
about 4 GB of storage space. Awhole-slide hyperspectral image acquired at a low magnification
easily exceeds 100 GB. In some applications such as hematology, high magnification is neces-
sary, which may put an extreme burden on data storage devices. Current limitations on data
storage makes it difficult to establish a comprehensive hyperspectral microscopic dataset, which
is essential for a thorough study of deep learning methods. Second, the acquisition of hyper-
spectral images can be time-consuming. Most hyperspectral microscopy studies used push-
broom or spectral-scanning systems to obtain a sufficient spectral and spatial resolution. The
scanning process of each image can take several seconds, which greatly increases the acquisition
time of a whole-slide image. Even though a snapshot hyperspectral camera speeds up the acquis-
ition, its intrinsic low spatial resolution would not meet the requirement of some applications in
which fine structures in the slides need to be seen. Third, it is more difficult to implement auto-
focusing with a hyperspectral camera than a color camera. During the scanning of the histologi-
cal slides, the change of slide thickness can result in unfocused images, and cellular components
from different layers can become blurry. State-of-the-art microscopes and whole-slide scanners
are integrated with autofocusing and extended focal imaging (EFI) algorithms to solve these
problems; they are based on the acquisition of a stack of RGB images along the Z axis. For
example, in Figs. 1(a) and (b), the green and blue arrows point at two regions where tissues
with different thicknesses cannot be in focus simultaneously. With the EFI algorithm, a stack
of images is acquired at different Z positions and then flattened to make an evenly focused
image, as shown in Fig. 1(c). Although it is possible to apply such image enhancement algo-
rithms to HSI, it would further prolong the scanning time tremendously. Finally, some bands in a
hyperspectral image, especially the first and last several bands, can have large amounts of noise
due to the low sensitivity. Both the unsatisfied focus and noise can result in low image quality
and missing spatial details, i.e., high-frequency information, as shown in Figs. 1(d)–1(f). On the
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other hand, whole-slide scanning with a color camera has become routine in the field of path-
ology. Digital histology images that are acquired with high-quality color cameras have very high
image resolution and contrast. Making use of such advantageous features with HSI potentially
improves the image quality of hyperspectral images.

Hyperspectral image super-resolution reconstruction,21–23 also known as HSI pansharpen-
ing24 or HSI spatial resolution enhancement,25 is a technique that uses the spatial information
from a high-resolution panchromatic image (PAN) and the color information from a low-
resolution spectral image to generate a high-resolution spectral image. Different from the con-
cept of “super-resolution imaging” that aims to increase the optical resolution of an imaging
system, super-resolution image reconstruction uses various digital image processing techniques
to generate images with higher resolutions than the original ones. It has been developed mainly
for remote sensing applications. Previously proposed HSI super-resolution reconstruction meth-
ods, such as component substitution, multiresolution analysis, hybrid methods, and model-based
methods, either result in spectral distortion, generate blurry results, or add complexity to
implementation.24,26 In recent years, deep learning algorithms have been explored for the super-
resolution reconstruction of hyperspectral images. Masi et al.27 adopted a three-layer convolu-
tional neural network (CNN) named PNN to reconstruct high-resolution multispectral images
from the stack of interpolated low-resolution multispectral images and high-resolution PAN.
However, the network had a limited learning ability due to the shallow architecture. Yang et al.28

proposed a ResNet-based architecture named PanNet that did not fully exploit the spatial infor-
mation due to the use of the high-pass filter. Yao et al.29 implemented pixelwise regression for
hyperspectral pansharpening using a U-Net. Zheng et al.26 developed a two-part framework that
first enhanced the spatial resolution in hyperspectral images through contrast limited adaptive
histogram equalization and then used a deep residual neural network to further boost the fusion
accuracy.

Since many microscopes and whole-slide scanners can have more than one camera that share
the same field of view (FOV), applying the super-resolution reconstruction technique for hyper-
spectral microscopy andWSI is feasible. Considering the easy acquisition and wide utilization of

Fig. 1 Incidences of low image quality of hyperspectral images. (a) and (b) Two images showing
how tissues with different thicknesses in the same image cannot be in focus at the same time.
(c) RGB histology image acquired with EFI function integrated with the state-of-the-art microscope.
(d) High-resolution digital histology image of a thyroid slide with high image quality. (e) HSI-
synthesized RGB image of the same region as (d) but with lower contrast because of the
unsatisfying focusing during the slide scanning without autofocusing. (f) The first band from the
hyperspectral image of the same region as (d) with a lot of noise due to low sensitivity.
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high-quality RGB histology images, we propose using high-resolution RGB images to guide the
super-resolution reconstruction of high-resolution hyperspectral images. Dey et al.30 adopted a
linear degradation model to super-resolve imaging mass spectrometry with hematoxylin and
eosin (H&E)-stained histology images, which neglected the nonlinearity in spectral responses
and resulted in slightly noisy images. Jiang et al.25 used the matrix factorization method to fuse
high-resolution RGB histology images and low-resolution hyperspectral microscopic images
acquired with a push-broom camera, but the method was only tested for spatial enhancement
scales of 3× and 4×. Moreover, none of these studies have investigated deep learning algorithms.
Despite a wide variety of models proposed for super-resolution reconstruction in remote sensing,
most of them were based on supervised learning methods.26–29,31,32 Using this technique, the
reconstructed high-resolution hyperspectral image might inherit the noise from the reference
hyperspectral image. In addition, the goal of many previous studies was to reconstruct images
as close as possible to the real high-resolution spectral images, but what if we can generate
images with improved image quality?

Ideally, the super-resolution reconstruction of hyperspectral microscopic images should
take full advantage of the superb image quality of digital histology images while maintaining
the spectral features that are critical for image classification. Therefore, in this work, we develop
a simple yet effective unsupervised super-resolution reconstruction network that fuses the spatial
information from the high-resolution RGB images and the spectral information from the low-
resolution hyperspectral images. With the proposed method, it is possible to save the acquisition
time and storage space for hyperspectral images, as well as compensate for the low quality of
some bands in the hyperspectral images, thus promoting the application of HSI for WSI and
automatic histopathological cancer detection.

2 Methods

2.1 Histologic Slides and Hyperspectral Data Acquisition

In this work, we utilized 32 H&E-stained histologic slides from 16 patients with head and
neck SCC.33,34 Each slide was from either tumor (T) or normal (N) tissue, as confirmed and
annotated by board-certified pathologists. The tissue was resected during a routine surgery, after
which the specimen was inked, formalin-fixed, and paraffin-embedded. The top section of each
specimen was obtained using a microtome and stained with H&E. High-resolution digital his-
tology images of the slides were obtained using a whole-slide scanner with a 40× objective lens
right after the preparation of the slides.

For the acquisition of hyperspectral images, we used the hyperspectral microscopic imaging
system that has been reported in our previous works4,5,20 to scan the slides. The dimensions of the
hyperspectral images were 2000 pixels × 2000 pixels × 87 bands, covering a wavelength range
of 470 to 720 nm. With the objective lens of 10× magnification, the FOV of the hyperspectral
camera was about 1113 μm × 1113 μm. A motorized stage was automated to move the slide
along the horizontal and vertical directions with a step size of 1 mm, and one image was acquired
at each step. The two adjacent images had an overlap area of about 113 μm wide (203 pixels).
During the automatic scanning of the slide, the hyperspectral camera always waited for a few
seconds after the stage motion to start image acquistion, giving us adequate time to focus the
camera by manually adjusting the fine focusing knob without interrupting the scanning. Figure 2
shows an illustration of the scanning of an entire histologic slide. Each square in the figure
indicates one hyperspectral image with a spatial size of 2000 × 2000 pixels, and every two adja-
cent images overlap 203 pixels with a scanning step size of 1 mm.

2.2 Data Preprocessing

Before the scanning of each slide, a white reference hyperspectral image was obtained at a blank
area on the slide, and a dark current image was acquired automatically by the camera with the
camera shutter closed. Afterward, each raw hyperspectral image was calibrated with the white
reference and dark current images to obtain the transmittance of the tissue:
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EQ-TARGET;temp:intralink-;e001;116;444TransmittanceðλÞ ¼ IRawðλÞ − IDarkðλÞ
IWhiteðλÞ − IDarkðλÞ

; (1)

where TransmittanceðλÞ is the wavelength-dependent transmittance; IrawðλÞ is the intensity value
for wavelength λ in the raw hyperspectral image; and IwhiteðλÞ and IdarkðλÞ are the intensity val-
ues for wavelength λ in the white reference and dark current images, respectively.

For each calibrated hyperspectral image, we synthesized an RGB image using a customized
HSI-to-RGB transformation5 and a grayscale image by calculating the average of all 87 bands.
The HSI-synthesized RGB images were generated for a better visualization of the FOVof hyper-
spectral images but not used for the training or validation of any network. The grayscale images
were later used for image registration because registration algorithms cannot be directly applied
on the 87-band hyperspectral image. The high-resolution RGB images that were used to guide
the super-resolution reconstruction were cropped from digital histology images, which were
originally imaged with a whole-slide scanner at 40× objective magnification, as stated in the
previous section. We looked at each HSI-synthesized RGB image, found the corresponding
region in the whole-slide digital histology image, and cropped the high-resolution RGB image
with a slightly larger FOV than the HSI-synthesized RGB image. Then, all high-resolution RGB
images were registered to their matching hyperspectral images (average grayscale images) using
affine registration with the Oriented FASTand Rotated BRIEF (ORB) feature detector35 from the
OpenCV package and were resized to a spatial size of 2000 × 2000 pixels. The registration
achieved a pixel-to-pixel alignment between the high-resolution RGB images and the high-
resolution hyperspectral images. Afterward, both the hyperspectral images and RGB images
were cropped into 361 patches using a sliding window of 200 × 200 pixels with a step size of
100 pixels. Image patches with little tissue (<50% area of the whole patch) were removed from
the dataset. The generated patches from hyperspectral images and coregistered RGB images are
called high-resolution hyperspectral patches (HR-HSI) and high-resolution RGB patches (HR-
RGB). Then, all HR-HSI were downsampled using a “box” (average) interpolation kernel by 2,
4, 5, 8, and 10 times, respectively, to generate low-resolution hyperspectral patches (LR-HSI)
for five different super-resolution reconstruction networks. All image patches from the T and N
slides were labeled either as “1” for tumor or “0” for normal according to the slide from which
they were taken. Figure 3 shows some image patches with various anatomical structures from

Fig. 2 Whole-slide scanning with a step size of 1 mm. The gray grids are the positions where
no image was acquired because minimal tissue was detected in the FOV.
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cancerous slides and normal slides, respectively. Table 1 shows the number of hyperspectral
images and the number of image patches that we finally obtained for each slide.

In this study, we first used a small portion of the entire dataset to train, validate, and test our
proposed super-resolution reconstruction network. To make sure that the network is able to deal

Fig. 3 Coregistered RGB histological image patches (200 × 200 pixels) showing anatomical
diversity. (a) Patches extracted from images of cancerous slides with various histological features,
including nucleus atypia, basaloid SCC, SCC with chronic inflammation, SCC with keratin pearl,
and SCC with hemorrhage. (b) Patches generated from images of normal slides with various his-
tological features, including healthy stratified squamous epithelium, salivary glands, stroma,
chronic inflammation, and skeletal muscle.

Table 1 Summary of the hyperspectral histologic dataset.

Patient ID Organ

Number of images Number of patches

T slide N slide Total Cancerous Normal Total

1 Larynx 58 42 100 16,444 9756 26,200

2 Hypopharynx 95 45 140 21,040 17,350 38,390

3 Larynx 38 62 100 11,077 16,924 28,001

4 Larynx 22 28 50 5015 6819 11,834

5 Larynx 58 23 81 14,526 5508 20,034

6 Larynx 29 10 39 6903 2139 9042

7 Larynx 28 16 44 7087 2992 10,079

8 Buccal mucosa 23 12 35 4888 1841 6729

9 Larynx 20 37 57 3979 8199 12,178

10 Larynx 13 19 32 3111 4604 7715

11 Larynx 53 24 77 13,573 3671 17,244

12 Larynx 23 17 40 5375 2694 8069

13 Larynx 58 28 86 16,318 6401 22,719

14 Larynx 46 28 74 12,519 6518 19,037

15 Larynx 35 17 52 8750 4238 12,988

16 Larynx 81 40 121 20,002 10,073 30,075

Total 680 448 1,128 170,607 109,727 280,334
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with the staining variation and thickness variation of different slides, which can cause the change
of spectral signatures, we selected two images with minimal blank areas for each slide and used
them as the “super-resolution dataset” instead of using lots of images from only one patient.
In total, 22,053 patches from 64 images of 16 patients were selected, with 17,022 patches from
48 images of 12 patients used for training, 2166 patches from four images of two patients (#3
and #14) used for validation, and 2865 patches from four images of the rest two patients (#5 and
#15) used for testing. Then, after the super-resolution reconstruction network was trained, high-
resolution hyperspectral image patches were generated for all data using downsampled hyper-
spectral patches with RGB guidance, and an Inception-based CNN was trained for whole-slide
image classification using (1) high-resolution RGB histology image patches, (2) original high-
resolution hyperspectral image patches, and (3) generated high-resolution hyperspectral image
patches, respectively. The data partition for three types of data was exactly the same. In total
181,711 images patches from 10 patients were used for training, 46,564 image patches from
three patients (#3, #4, and #8) were used for validation, and 52,059 image patches from another
three patients (#5, #14, and #15) were used for testing. The data that were previously used as
the “super-resolution dataset” were not excluded for the image classification network to generate
a classification probability map of the whole slide. Nevertheless, those data took only a small
portion (<9%) in the entire dataset; thus they did not cause obvious bias for the classification
results. The overall workflow and data partition are as shown in Fig. 4. The numbers within the
parentheses show how many patients were used for training (TRAIN), validation (VAL), and
testing (TEST), and the numbers underneath indicate the specific number of image patches
included in each data group.

Fig. 4 Illustration of experiment workflow and data partition. The numbers within the parentheses
show how many patients were used for training (TRAIN), validation (VAL), and testing (TEST),
with the numbers underneath showing the specific number of image patches used in each data
group.
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2.3 Unsupervised Super-Resolution Reconstruction Network

We developed an unsupervised super-resolution reconstruction network that takes the LR-HSI
and HR-RGB as inputs and generates HR-HSI as well as LR-HSI for outputs. To consider differ-
ent acquisition methods of low-resolution hyperspectral images, we trained five networks with
different super-resolution scales. The first scenario is to use the same camera but reduce the
magnification of the video adapter (e.g., from 1× to 0.5×), which will result in a smaller image
size and lower image resolution. For this case, we trained a 2× super-resolution reconstruction
network. The second scenario is to use a camera that has a relatively lower spatial resolution,
such as the snapshot hyperspectral camera. For this case, we trained a 4× and a 5× network
because 4 × 4 and 5 × 5 are the two most common mosaic patterns of snapshot hyperspectral
cameras. Two other networks, namely 8× and 10×, were also implemented to evaluate whether
the proposed method has the ability for larger-scale spatial enhancement.

Figure 5 shows the architecture of a 4× super-resolution reconstruction network as an exam-
ple. The three channels (R, G, and B) of the input HR-RGB were duplicated by 35, 35, and 17
times, respectively, and stacked together to form an 87-band “stacked HR-RGB.” Specifically,
the blue channel was duplicated less than other two channels because our hyperspectral camera
did not cover the wavelength range of 370 to 470 nm, resulting in less blue-color related infor-
mation in the hyperspectral images. The LR-HSI input (50 × 50 × 87) was first upsampled to
200 × 200 × 87 using a two-dimensional (2D) deconvolution layer and then concatenated with
the stacked HR-RGB along the third dimension, i.e., the spectral dimension, to form a 200 ×
200 × 174 patch. What followed is a modified U-Net architecture, which took the concatenated
174-band patch as input and output an HR-HSI patch. In addition, a 4 × 4 average pooling layer
was applied to the generated HR-HSI to output an LR-HSI patch with the same size as the input
LR-HSI. Note that the dimensions of both the input and generated LR-HSI in Fig. 5 are for a
4× network. For the 2×, 5×, 8×, and 10× networks, the dimensions would be 100 × 100 × 87,
40 × 40 × 87, 25 × 25 × 87, and 20 × 20 × 87, respectively. The details of the network are
shown in Table 2.

Our purpose in this work is to generate high-resolution hyperspectral images that have spatial
contrast and details as clear as the high-resolution RGB images and spectral signatures close to
the original HSI. Thus, the network should be able to extract the spatial information and spectral
information from the RGB images and hyperspectral images, respectively, and fuse them in the
generated hyperspectral image. This was fulfilled by simultaneously minimizing the spatial loss
and spectral loss of the network. For the spatial loss, both the input stacked high-resolution RGB

Fig. 5 Architecture of the unsupervised 4× super-resolution reconstruction network, which takes
stacked HR-RGB and LR-HSI as inputs and outputs HR-HSI and LR-HSI. Dimensions of the LR-
HSI in the figure are for the 4× network only. For the 2×, 5×, 8×, and 10× networks, the dimensions
of both the input and generated LR-HSI would be 100 × 100 × 87, 40 × 40 × 87, 25 × 25 × 87, and
20 × 20 × 87, respectively.36
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and the generated high-resolution HSI were averaged along the spectral dimension, resulting in
two high-resolution panchromatic images; then the mean squared error (MSE) of the two pan-
chromatic images was calculated and used as the spatial loss, as Eq. (2) shows. The spectral loss
calculates the MSE between the generated and input LR-HSI, as shown in Eq. (3). The loss
weights of the loss functions were 0.5 and 0.5:

EQ-TARGET;temp:intralink-;e002;116;145Lspatial ¼
1

M × N

XM
i¼1

XN
j¼1

ðGi;j − Ĝi;jÞ2; (2)

EQ-TARGET;temp:intralink-;e003;116;81Lspectral ¼
1

m × n × b

Xm
i¼1

Xn
j¼1

Xb
k¼1

ðHi;j;k − Ĥi;j;kÞ2 ; (3)

Table 2 Super-resolution reconstruction network architecture.

Layer Kernel/strides/padding Output shape

Input_1: high-res RGB Image input 1 200 × 200 × 87

Input_2: low-res HSI Image input 2 W ×W × 87

Conv2D_Transpose ðS þ 1Þ × ðS þ 1Þ, S, ‘same’ 200 × 200 × 87

Concatenate Concatenated feature maps 200 × 200 × 174

Conv2D 3 × 3, 1, ‘same’ 200 × 200 × 196

Conv2D 3 × 3, 1, ‘same’ 200 × 200 × 256

Conv2D 3 × 3, 2, ‘same’ 100 × 100 × 384

Conv2D 3 × 3, 1, ‘same’ 100 × 100 × 512

Conv2D 3 × 3, 2, ‘same’ 50 × 50 × 640

Conv2D 3 × 3, 1, ‘same’ 50 × 50 × 768

Conv2D_Transpose 3 × 3, 2, ‘same’ 100 × 100 × 768

Concatenate Skip connection 100 × 100 × 1280

Conv2D 3 × 3, 1, ‘same’ 100 × 100 × 640

Conv2D 3 × 3, 1, ‘same’ 100 × 100 × 512

Conv2D_Transpose 3 × 3, 2, ‘same’ 200 × 200 × 256

Concatenate Skip connection 200 × 200 × 512

Conv2D 3 × 3, 1, ‘same’ 200 × 200 × 256

Conv2D 3 × 3, 1, ‘same’ 200 × 200 × 194

Conv2D 3 × 3, 1, ‘same’ 200 × 200 × 160

Conv2D 3 × 3, 1, ‘same’ 200 × 200 × 128

Conv2D 3 × 3, 1, ‘same’ 200 × 200 × 96

Conv2D 1 × 1, 1, ‘same’ 200 × 200 × 87

AveragePool S × S, S, ‘valid’ W ×W × 87

Note:W is the width of low-resolution image patches, S is the super-resolution
scale. For the 2× network,S ¼ 2,W ¼ 100; for the 4× network,S ¼ 4,W ¼ 50;
for the 5× network, S ¼ 5,W ¼ 40; for the 8× network, S ¼ 8,W ¼ 25; and for
the 10× network, S ¼ 10, W ¼ 20.

Ma et al.: Unsupervised super-resolution reconstruction of hyperspectral histology images. . .

Journal of Biomedical Optics 056502-9 May 2022 • Vol. 27(5)



whereM and N are the spatial dimensions of the high-resolution panchromatic images; m and n

are the spatial dimensions of the LR-HSI; b ¼ 87 is the number of bands in the LR-HSI;G and Ĝ
are the average panchromatic images of the stacked HR-RGB and the generated HR-HSI, respec-

tively; and H and Ĥ are the input and generated LR-HSI, respectively.
The unsupervised super-resolution reconstruction network was implemented using Keras on

a Titan XP NVIDIA GPU with 12 GB memory. We used the Adam optimizer37 with a learning
rate of 10−4. The network was trained with a batch size of 2. The five networks (2×, 4×, 5×, 8×,
and 10×) were trained for 7 to 13 epochs depending on how fast the validation loss stopped
decreasing. Each epoch took about 1 h.

2.4 Whole-Slide Image Classification

To evaluate the usefulness of our proposed super-resolution reconstruction network for image
classification, we used the HR-RGB, original HR-HSI, and generated HR-HSI to train, validate,
and test an Inception-based 2D CNN and compared the classification results. Specifically, recon-
structed HR-HSI were generated for all image patches using the downsampled LR-HSI and the
previously trained 4× super-resolution reconstruction network. The Inception-based CNN archi-
tecture was modified from the original Inception-v4 network38 to be adapted to our patch size.
Each convolutional layer was initialized using the “he_normal” weight initialization39 and was
followed by the “ReLU” activation and a 20% dropout, except the activation function of the
output layer was sigmoid. The CNN architecture and the input size of each layer/block are shown
in Table 3.

The CNN was implemented using Keras40 with a Tensorflow backend on the same Titan XP
NVIDIA GPU. The optimizer was Adadelta41 with an initial learning rate of 1 and decay rate of
rho ¼ 0.95. The network was trained with a batch size of 16, and the loss function was binary
cross-entropy. All data were split into the training, validation, and testing groups. Data from 10
patients were used for training, three patients (#3, #4, and #8) were used for validation, and three
patients (#5, #14, and #15) were used for testing. No data from the same patient were used in two
groups at the same time. The same data partition was used for HR-RGB, original HR-HSI, and
generated HR-HSI to avoid bias. The image classification network was trained for 10 epochs,
with a training time of 4.5 h per epoch using either type of hyperspectral data or 25 min per epoch
using the RGB data.

Table 3 CNN architecture for whole-slide classification.

Layer/block Input size

Conv2D, “same” 200 × 200 × 87

Conv2D, “same” 100 × 100 × 90

Conv2D, “same” 50 × 50 × 94

Inception A block ×4 25 × 25 × 96

Reduction A block 25 × 25 × 384

Inception B block ×7 11 × 11 × 1024

Reduction B block 11 × 11 × 1024

Inception C block ×3 5 × 5 × 1536

Average pool 5 × 5 × 1536

Flatten 1 × 1 × 1536

Dense (two neurons, ‘sigmoid) 1536
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2.5 Evaluation Metrics

To evaluate the performance of our super-resolution reconstruction network, we calculated
different metrics based on the entire hypercube (spatially and spectrally), grayscale image (spa-
tially), and spectral signatures (spectrally). We first used the MATLAB implementations of peak
signal-to-noise-ratio (PSNR) and mean absolute error (MAE) to quantify the super-resolution
reconstruction quality. PSNR measures the global intensity difference between generated HR-
HSI and original HR-HSI and is calculated by averaging the PSNR value in a band-by-band basis
across all 87 bands, with one band (B) from the real HR-HSI and the corresponding band (B̂)
from the generated HR-HSI:

EQ-TARGET;temp:intralink-;e004;116;619PSNRλðB; B̂Þ ¼ 10 log10ðpeak value2∕MSEÞ; (4)

EQ-TARGET;temp:intralink-;e005;116;574PSNRðReal HSI; Generated HSIÞ ¼ 1

87

X87
λ¼1

PSNRλðB; B̂Þ; (5)

MAE was also calculated a band-by-band basis across all 87 bands:

EQ-TARGET;temp:intralink-;e006;116;532MAEλðB; B̂Þ ¼
1

M × N

XM
i¼1

XN
j¼1

jBij − B̂ijj; (6)

EQ-TARGET;temp:intralink-;e007;116;468MAEðReal HSI;GeneratedHSIÞ ¼ 1

87

X87
λ¼1

MAEλðB; B̂Þ: (7)

For the spectral evaluation of generated HR-HSI, we used spectral angle mapper (SAM):42,43

EQ-TARGET;temp:intralink-;e008;116;426α ¼ cos−1

0
B@

P
M
i¼1

P
N
j¼1 tijrijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

M
i¼1

P
N
j¼1 t

2
ij

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
M
i¼1

P
N
j¼1 r

2
ij

q
1
CA; (8)

where tij is the spectral signature from the generated HR-HSI, rij is the reference spectral sig-
nature from the original HR-HSI, and α is the spectral angle between tij and rij.

Then, we used structural similarity index measure (SSIM)44 and perception-based image
quality evaluator (PIQUE)45 to evaluate the spatial character of generated HR-HSI. PIQUE
was trained to evaluate the image quality without a reference image; a low score value indicates
high perceptual quality. Since it only takes a grayscale or RGB image as input, we generated
panchromatic images for generated HR-HSI, original HR-HSI, and stacked HR-RGB by calcu-
lating their average across all bands and then calculated PIQUE scores of the three types of
panchromatic images. Usually, for super-resolution reconstruction tasks, SSIM is calculated
between the entire data cube of the original and generated hyperspectral images to evaluate how
“real” the generated images can be. However, due to the obvious improvement of spatial contrast
in the generated HR-HSI, which resulted in a disparity between the generated and original hyper-
spectral images, we only obtained SSIM scores in the range of 0.3 to 0.7. Considering that most
spatial information came from stacked HR-RGB, we calculated SSIM between the panchromatic

images (G and Ĝ) of stacked HR-RGB and generated HR-HSI:

EQ-TARGET;temp:intralink-;e009;116;178SSIMðG; ĜÞ ¼ ð2μGμĜ þ c1Þð2σGĜ þ c2Þ
ðμ2G þ μ2

Ĝ
þ c1Þðσ2G þ σ2

Ĝ
þ c2Þ

; (9)

where μ and σ are the mean and standard deviation of the panchromatic images, respectively,
and c1 ¼ ð0.01 × LÞ2 ¼ 0.0001 and c2 ¼ ð0.03 × LÞ2 ¼ 0.0009 are two constants chosen as the
default values dependent on the dynamic range (L) of the image values.

For the evaluation of whole-slide image classification, we use the area under the receiver
operating characteristic (ROC) curve (AUC), as well as accuracy, sensitivity, and specificity
as metrics. Accuracy is the ratio of all correctly labeled image patches to the total number
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of image patches. Sensitivity and specificity are determined by true positive (TP), true negative
(TN), false positive (FP), and false negative (FN), where positive is cancerous and negative is
normal. Sensitivity measures the percentage of correctly labeled cancerous image patches among
all cancerous patches, and specificity measures how well normal image patches are detected:

EQ-TARGET;temp:intralink-;e010;116;687Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
; (10)

EQ-TARGET;temp:intralink-;e011;116;634Sensitivity ¼ TP

TPþ FN
: (11)

EQ-TARGET;temp:intralink-;e012;116;601Specificity ¼ TN

TNþ FP
: (12)

3 Results

Our proposed unsupervised super-resolution reconstruction network fuses the spatial informa-
tion from the high-resolution digital histology images and the spectral information from the
low-resolution hyperspectral images and generates high-quality, high-resolution hyperspectral
images. The reconstruction time for each 200 × 200 pixels image patch was about 100 ms.
The quantitative evaluation results of five super-resolution reconstruction networks (2×, 4×,
5×, 8×, and 10×) are shown in Table 4. The PSNR, SSIM, and PIQUE measures are more related
to the spatial component of the hyperspectral images, whereas the MAE and SAM are more sen-
sitive to the spectral reconstruction errors.46 The PSNR and MAE of five networks indicate a sat-
isfying reconstruction performance both spatially and spectrally. Due to the significant
improvement in image quality of the generated HR-HSI, especially the recovered texture details
that were missing in the original HR-HSI, we did not get high SSIM values on the entire hyper-
spectral data cube. However, we calculated SSIM between the panchromatic images of generated
HR-HSI and stacked HR-RGB and got an average SSIM of 93.1% (2×), 95.0% (4×), 96.0% (5×),
96.5% (8×), and 97.0% (10×) in the validation data, as well as 89.6% (2×), 93.2% (4×), 94.6%
(5×), 95.9% (8×), and 96.7% (10×) in the testing data, which showed high-level similarity of
spatial components in generated HR-HSI and HR-RGB. Considering the inherent difference
between the two panchromatic images, which would have lowered the SSIM value to a certain
extent, the obtained SSIM scores indicate good maintenance of the spatial information. The

Table 4 Quantitative validation and testing results of the unsuper-
vised super-resolution reconstruction network.

Scale
PSNR
(dB)

MAE
(%)

SAM
(deg)

SSIM
(%) PIQUE

Validation 2× 25.1 4.4� 0.6 2.9 93.1 26.6

4× 24.3 4.8� 0.9 3.5 95.0 25.1

5× 23.2 5.5� 0.9 3.8 96.0 26.6

8× 22.7 5.8� 0.8 4.2 96.5 27.4

10× 22.3 6.1� 0.9 4.2 97.0 28.6

Testing 2× 23.8 5.0� 1.1 2.9 89.6 27.6

4× 22.8 5.7� 1.5 3.7 93.2 25.4

5× 21.6 6.4� 1.7 3.9 94.6 27.5

8× 21.1 7.1� 1.7 4.4 95.9 29.8

10× 20.7 7.4� 2.0 4.5 96.7 30.9
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PIQUE scores for the panchromatic images of generated HR-HSI were comparable to the
stacked HR-RGB (28.1 for validation and 30.0 for testing) and were lower than the original
HR-HSI (32.5 for validation and 37.5 for testing), also proving a significantly improved image
quality of the generated hyperspectral data. Regarding the spectral signatures, the average spec-
tral angles of all networks were lower than 5 deg, showing good maintenance of spectral infor-
mation. Still, due to the improved image contrast of the generated HR-HSI, the spectral signature
of each pixel in generated HR-HSI is not always the same as that of the corresponding pixel in
the original HR-HSI. It can be noticed that the network with a larger scale usually results in a
higher SSIM score and larger spectral angle because there is less spectral information from the
input, and the output is prone to rely more on the spatial information from HR-RGB.

Figure 6 shows five wavelength bands of the original HR-HSI and generated HR-HSI from
different super-resolution reconstruction networks. The intensity of each wavelength band in the
generated HR-HSI is close to that in the original HR-HSI. The spatial features were very well
reconstructed in all wavelength bands, even if some texture details were missing in the original
HR-HSI (e.g., 701 nm). It can be seen that the RGB-guided super-resolution reconstruction

Fig. 6 Single-band images of the original HR-HSI and generated HR-HSI from five different super-
resolution reconstruction networks showing high similarity and satisfying spatial reconstruction in
various wavelength bands. The major difference is in the first (e.g., 470 nm) and last (e.g., 701 nm)
several bands, where noise exists in the original HSI but gets removed from the generated HSI.
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network significantly reduced the noise in some wavelength bands (e.g., 470 nm) that was
caused by the low sensitivity of the image sensor. Moreover, our network also compensates for
the unsatisfying focusing issue on some hyperspectral images. The high-frequency spatial infor-
mation that was fused from the RGB images also increased the contrast in the generated hyper-
spectral images, especially when the hyperspectral camera was not perfectly focused and the
image quality was compromised, as shown in Fig. 7. Specifically, Fig. 7(a) shows an HSI-
synthesized RGB image patch that was out-of-focus due to an accidental impromptu focus
adjustment, and Fig. 7(d) is from a partially out-of-focus image caused by uneven slide thick-
ness. Our network was able to extract the spatial information from the digital histology images,
as shown Figs. 7(b) and 7(e), and recover the fiber structures as well as clear nuclei edges in the
reconstructed images, as shown in Figs. 7(c) and 7(f). Note that the out-of-focus images in this
figure are just examples to illustrate the performance of our proposed method, and they do not
imply intrinsic low image quality of HSI.

Figure 8 shows the spectral signatures of the extracted nucleus, cytoplasm, lymphocyte, and
blank area in the slide from the original HR-HSI and the generated HR-HSI, respectively. The
shape of spectra from different tissue types was well maintained, which is critical for effective
image classification.

To further validate the effectiveness of our proposed super-resolution reconstruction network,
we acquired hyperspectral images of the same region on a histologic slide using four objective
lenses with different magnifications, namely 4×, 10×, 20×, and 40×. Then, we reconstructed
high-resolution hyperspectral images (equivalent to the optical resolution with the 40× objective
lens) using the three relatively low-resolution images, i.e., the images acquired at 20×, 10×, and
4× objective magnification. Figure 9 shows the synthesized RGB images of the hyperspectral
images acquired with physically different optical resolutions as well as the reconstructed images.

Fig. 7 Improvement of image quality in generated high-resolution hyperspectral images. (a) HSI-
synthesized RGB of an original high-resolution hyperspectral image patch, which was out-of-focus
and lost the fiber structures due to an accidental impromptu focus adjustment. (b) Coregistered
high-resolution RGB histology image patch with fine structures of the tissue. (c) HSI-synthesized
RGB of the generated high-resolution hyperspectral image patch, where the fiber structures are
recovered. (d) HSI-synthesized RGB patch from a partially out-of-focus image, where the edges
of nuclei become fuzzy. (e) Coregistered high-resolution RGB histology image with clear edges
of nuclei. (f) HSI-synthesized RGB of the generated HR-HSI, where the shape of nuclei is well
recovered.
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Fig. 8 Comparison of spectral signatures of various cellular components from the original HR-HSI
and generated HR-HSI. The well-maintained spectral shapes indicate a good spectral reconstruc-
tion. (a) A high-resolution digital histology image patch from a head and neck cancer slide, includ-
ing cancer cells and lymphocytes. (b) Spectral signatures of the same blank area extracted from
the original HR-HSI and the generated HR-HSI. (c) Spectral signatures of the same lymphocyte
extracted from the original HR-HSI and the generated HR-HSI. (d) Spectral signatures of the same
nucelous from a cancer cell, extracted from the original HR-HSI and the generated HR-HSI.
(e) Spectral signatures of cytoplasm extracted from the same region in the original HR-HSI and
the generated HR-HSI.

Fig. 9 Super-resolution reconstruction using images with physically different resolutions. The
black contours in the low-resolution images outline the same region as the high-resolution image
acquired at 40× magnification.
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The black square contours in the low-resolution images show the same region of interest as the
high-resolution image. It can be seen that the detailed structures were very well recovered in the
reconstructed images, and the significant similarity of colors in the synthesized images indicates
a satisfying maintenance of the spectral characteristics. Therefore, despite our network being
trained using generated low-resolution hyperspectral data, it works well on real low-resolution
images.

In addition to the abovementioned evaluation metrics, we implemented image classification
using the original HR-HSI and generated HR-HSI to further prove the usefulness of our pro-
posed super-resolution reconstruction network. The validation and testing results using three
types of data are shown in Table 5. RGB histology images, which contained morphological and
color information of the slides, had satisfying classification results of 0.9 AUC, 0.85 accuracy,
0.88 sensitivity, and 0.77 specificity in the validation group, as well as 0.86 AUC, 0.80 accuracy,
0.82 sensitivity, and 0.76 specificity in the testing data group. The high image resolution,
together with the autofocusing and other image enhancement techniques integrated with the
whole-slide scanner, guaranteed sufficient spatial details of the anatomical structures, which
were critical for the classificantion. The prediction time using either hyperspectral data or
RGB data was <30 ms per patch. For the classification of a whole slide, the prediction time
varied from 0.5 to 3 min with the size of the slide.

Although the hyperspectral camera was focused by our manual adjustment, which might be
subjective and dependent on the operators, it was able to acquire hyperspectral images with a
very decent image quality. Regardless of the noise in a few wavelength bands and some partially
unfocused images, which would have slightly compromised the spatial characters, the original
high-resolution hyperspectral image patches still outperformed RGB because of the extra spec-
tral information, with 0.93 AUC, 0.87 accuracy, 0.89 sensitivity, and 0.87 specificity in valida-
tion data, as well as 0.87 AUC, 0.82 accuracy, 0.85 sensitivity, and 0.73 specificity in the testing
group. As for the generated HR-HSI, the unsupervised super-resolution reconstruction network
fused the spatial components from the RGB images and the spectral information from the hyper-
spectral images, resulted in an improved image quality in the generated HR-HSI. One significant
improvement was the removal of noise, which greatly increased the efficacy of the first and last
several bands. In addition, the out-of-focus images, which were caused by the uneven thickness
of slides and had fuzzy nuclei edges or blurry fiber structures, also regained sharpness. Due to the
improved image quality, using generated HR-HSI made the classification performance even
better.

Figure 10 shows the probability maps of whole-slide classification using the HR-RGB, origi-
nal HR-HSI, and generated HR-HSI. Although using RGB image patches achieved satisfying
results, it is prone to generate false positives at deformed epithelium or false negatives where
very few cancer nuclei exist, as shown in Figs. 10(a)–10(b), 10(e)–10(f). Classification using the
original hyperspectral image patches obviously reduced the number of false positives and false
negatives, which proved the usefulness of the spectral information. However, the probability
values of tumor and normal images using the original HR-HSI were not as extremely separated.
Instead, most tumor patches had a probability value of around 0.8, and most normal patches had

Table 5 Quantitative results of whole-slide image classification using different data.

Data AUC Accuracy Sensitivity Specificity

Validation HR-RGB 0.90 0.85 0.88 0.77

Original HR-HSI 0.93 0.87 0.89 0.87

Generated HR-HSI 0.94 0.90 0.89 0.90

Testing HR-RGB 0.86 0.80 0.82 0.76

Original HR-HSI 0.87 0.82 0.85 0.73

Generated HR-HSI 0.90 0.86 0.87 0.83
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a probability value of 0.2 to 0.3. This does not affect the classification results though, and it is
likely to be improved by increasing the dataset. The probability maps of generated HR-HSI show
improved classification performance compared with both HR-RGB and original HR-HSI. It
seems that the high-contrast spatial components from the high-resolution RGB images might
have provided critical cancer-related information, such as the morphology of cancerous nuclei,33

and the spectral components from the hyperspectral images were beneficial especially where
RGB images tend to give false results. In addition, at the bottom of the tumor slide in Fig. 10(e),
there is a small piece of tissue with dysplasia, which is a type of abnormalty but not tumor. None
of the networks misclassified it without being previously trained, although the probability maps
of HR-HSI did show abnormalty to some extent.

4 Discussion and Conclusion

In this work, we developed an unsupervised CNN based on a modified U-Net architecture for
hyperspectral super-resolution reconstruction with the guidance of high-quality RGB digital
histology images. The network fuses the spatial information from the high-resolution RGB
images and the spectral information from the low-resolution hyperspectral images to generate
high-resolution hyperspectral images. The generated hyperspectral images from all five super-
resolution reconstruction networks with different spatial enhancement scales (2×, 4×, 5×, 8×,
and 10×) maintained the shape of the original spectral signatures while being enriched with high-
frequency spatial information. In addition, the proposed method improved the image quality for
hyperspectral images, including reducing image noise, increasing image contrast, and deblurring
the image. Furthermore, the unsupervised method does not require any high-resolution hyper-
spectral image as ground truth for network training, which minimizes the complexity of the
workflow. We implemented image classification using the RGB image patches, original hyper-
spectral image patches, and hyperspectral patches generated from the 4× network, respectively.
The results show the usefulness of the spectral information in the hyperspectral images and prove
the ability of our proposed super-resolution reconstruction network for improving image quality.
By fusing the high-contrast spatial information from the RGB histology images and the rich

Fig. 10 Illustration of whole-slide image classification using different types of data. (a) The digital
histology image of a normal tissue slide. (b)–(d) Probability map of the normal slide using the RGB
image patches, original hyperspectral image patches, and generated hyperspectral image
patches, respectively. Note that the green contour in (a) was falsely classified as positive in
(b) using RGB image patches but was correctly classified as negative using either hyperspectral
image patches (c and d). (e) The digital histology image of a tumor slide with a little dysplasia
tissue (regarded as normal) at the bottom. The green rectangle region was falsely classified
as negative using RGB image patches but was correctly classified using hyperspectral patches.
(f)–(h) Probability maps of the tumor slide using RGB image patches, original hyperspectral image
patches, and generated hyperspectral image patches, respectively.

Ma et al.: Unsupervised super-resolution reconstruction of hyperspectral histology images. . .

Journal of Biomedical Optics 056502-17 May 2022 • Vol. 27(5)



spectral information from the hyperspectral images, our proposed method potentially brings
benefits to histopathological diagnosis.

One shortcoming of this study is the small dataset volume. To avoid potential data leakage
between the super-resolution reconstruction network and the whole-slide image classification
network, we only used a very small portion of data (two images per slide) for the super-resolution
reconstruction network and left the remainder for the whole-slide image classification network.
It is possible that, with more training data, our super-resolution reconstruction network could
perform even better for spectral signature reconstructions. As for the whole-slide image clas-
sification network, 32 entire slides may not be sufficient due to the anatomical variations of
SCC and the significantly increased number of features in the hyperspectral data. In addition,
the tissues in all slides were either tumor or normal, which made it slightly easier to get decent
image classification results. In the future, we will investigate whole-slide cancer detection in
tumor-normal margin slides and see if the generated HR-HSI is able to significantly improve
the outcome.

Another shortcoming in this work is that we used the simulated low-resolution hyperspectral
data to train the super-resolution reconstruction network, instead of acquiring a large number
of hyperspectral images with a physically lower resolution as training data. It is possible that the
differences between the real low-resolution hyperspectral images and simulated ones may affect
the network outcome. But acquiring images with different optical resolutions and registering the
high-resolution RGB images to the low-resolution hyperspectral images potentially introduces
misalignment and thus minor errors during the network training. On the other hand, the way that
we simulated the LR-HSI for training data (downsampling with “box” kernel) was the same as
how the network output the generated LR-HSI, which could have reduced some bias. In addition,
we tested the network trained with simulated LR-HSI on real LR-HSI to validate the perfor-
mance of the proposed method. The results indicate that, even though the network was trained
with simulated low-resolution data, it also worked well with images with actual lower resolu-
tions. In the future, we will further investigate this by acquiring more images with physically
different resolutions.

With HSI getting more attention in the medical imaging field, the conflict among the acquis-
ition speed, data storage, and resolution of hyperspectral images must be solved to apply this
technology in real clinical settings. Our proposed method makes it possible to generate high-
quality hyperspectral images for automatic histopathological analysis with a low-resolution HSI
camera and low-magnification objective lens, hence greatly reducing the acquisition time and the
file size of hyperspectral histologic images. For instance, with a 4× network, the acquisition time
of a line-scanning HSI system can be cut to 1/4, and the file size can be cut to 1/16. It also allows
for the use of snapshot cameras, which can easily reach video-rate imaging, without the concern
of low spatial image resolution. Moreover, our method does not change the routine workflow in
pathology. Instead of developing a new complex system, it can be achieved simply by mounting
a low-resolution hyperspectral camera onto a commercial whole-slide scanner. The acquired
low-resolution hyperspectral images can be stored and used for automatic digital pathological
analysis after super-resolution reconstruction, while the RGB digital histology images are still
available for pathologists to peruse and confirm the results.

In the future, we plan to develop an automatic whole-slide scanning HSI microscope with a
low-resolution hyperspectral camera (e.g., a snapshot camera) and the proposed super-resolution
reconstruction network built into the system. By synchronizing the color camera and the hyper-
spectral camera, the system will be able to acquire both data simultaneously. With the mature
autofocusing and image enhancement techniques of color cameras as well as our proposed
method, the image quality of both the RGB and hyperspectral images will be secured. We may
be able to establish a comprehensive database of whole-slide hyperspectral histologic images,
which is extremely beneficial for a thorough investigation of pathological features in hyperspec-
tral images as well as various deep learning algorithms. In addition, the super-resolution recon-
struction network and whole-slide image classification network may be combined into a single
and straightforward workflow in which high-resolution hyperspectral images can be generated
along with the acquisition of low-resolution hyperspectral images and high-resolution RGB
images and directly fed into the image classification network, so that histopathological diagnosis
can be achieved during the scanning of the slides.
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In conclusion, our deep learning-based hyperspectral image super-resolution reconstruction
method can bring high-resolution spatial features and rich spectral information to improve
pathological diagnosis, while increasing the image acquisition speed and reducing data storage
requirement, which will provide wide applications in digital and computational pathology.

Disclosures

The authors have no relevant financial interests in this article and no potential conflicts of interest
to disclose. Informed consent was obtained from all patients in accordance with Emory
Institutional Review Board policies under the Head and Neck Satellite Tissue Bank (HNSB,
IRB00003208) protocol.

Acknowledgments

This research was supported in part by the US National Institutes of Health (NIH) Grants
(R01CA156775, R01CA204254, R01HL140325, and R21CA231911) and by the Cancer
Prevention and Research Institute of Texas (CPRIT) Grant No. RP190588.

References

1. A. Madabhushi and G. Lee, “Image analysis and machine learning in digital pathology:
challenges and opportunities,” Medical Image Analysis 33, 170–175 (2016).

2. S. Nam et al., “Introduction to digital pathology and computer-aided pathology,” J. Pathol.
Transl. Med. 54(2), 125–134 (2020).

3. S. Ortega et al., “Hyperspectral imaging and deep learning for the detection of breast cancer
cells in digitized histological images,” Proc. SPIE 11320, 113200V (2020).

4. L. Ma et al., “Hyperspectral microscopic imaging for automatic detection of head and neck
squamous cell carcinoma using histologic image and machine learning,” Proc. SPIE 11320,
113200W (2020).

5. L. Ma et al., “Hyperspectral microscopic imaging for the detection of head and neck squ-
amous cell carcinoma in histologic images,” Proc. SPIE 11603, 116030P (2021).

6. X. Zhou et al., “Automatic detection of head and neck squamous cell carcinoma on patho-
logic slides using polarized hyperspectral imaging and machine learning,” Proc. SPIE
11603, 116030Q (2021).

7. S. Ortega et al., “Detecting brain tumor in pathological slides using hyperspectral imaging,”
Biomed. Opt. Express 9(2), 818–831 (2018).

8. S. Ortega et al., “Hyperspectral imaging for the detection of glioblastoma tumor cells in h&E
slides using convolutional neural networks,” Sensors 20(7), 1911 (2020).

9. S. Ortega et al., “Hyperspectral and multispectral imaging in digital and computational path-
ology: a systematic review,” Biomed. Opt. Express 11(6), 3195–3233 (2020).

10. S. Ortega et al., “Hyperspectral superpixel-wise glioblastoma tumor detection in histological
samples,” Appl. Sci. 10(13), 4448 (2020).

11. A. N. Pronichev et al., “The use of optical microscope equipped with multispectral detector
to distinguish different types of acute lymphoblastic leukemia,” J. Phys.: Conf. Ser. 784,
012003 (2017).

12. Y. Liu and F. Long, “Acute lymphoblastic leukemia cells image analysis with deep bag-
ging ensemble learning,” in ISBI 2019 C-NMC Challenge: Classification in Cancer Cell
Imaging, A. Gupta and R. Gupta, Eds., pp. 113–121, Springer, Singapore (2019).

13. A. Panda, R. B. Pachori, and N. D. Sinnappah-Kang, “Classification of chronic myeloid
leukemia neutrophils by hyperspectral imaging using Euclidean and Mahalanobis distan-
ces,” Biomed. Signal Process. Control 70, 103025 (2021).

14. F. Fereidouni, A. N. Bader, and H. C. Gerritsen, “Spectral phasor analysis allows rapid and
reliable unmixing of fluorescence microscopy spectral images,” Opt. Express 20(12),
12729–12741 (2012).

Ma et al.: Unsupervised super-resolution reconstruction of hyperspectral histology images. . .

Journal of Biomedical Optics 056502-19 May 2022 • Vol. 27(5)

https://doi.org/10.1016/j.media.2016.06.037
https://doi.org/10.4132/jptm.2019.12.31
https://doi.org/10.4132/jptm.2019.12.31
https://doi.org/10.1117/12.2548609
https://doi.org/10.1117/12.2549369
https://doi.org/10.1117/12.2581970
https://doi.org/10.1117/12.2582330
https://doi.org/10.1364/BOE.9.000818
https://doi.org/10.3390/s20071911
https://doi.org/10.1364/BOE.386338
https://doi.org/10.3390/app10134448
https://doi.org/10.1088/1742-6596/784/1/012003
https://doi.org/10.1016/j.bspc.2021.103025
https://doi.org/10.1364/OE.20.012729


15. G. A. Roth et al., “Hyperspectral microscopy as an analytical tool for nanomaterials,”Wiley
Interdiscipl. Rev.: Nanomed. Nanobiotechnol. 7(4), 565–579 (2015).

16. F. Fereidouni et al., “Dual-mode emission and transmission microscopy for virtual histo-
chemistry using hematoxylin- and eosin-stained tissue sections,” Biomed. Opt. Express
10(12), 6516–6530 (2019).

17. D. Nakaya et al., “Digital pathology with hyperspectral imaging for colon and ovarian
cancer,” Proc. SPIE 10956, 109560X (2019).

18. M. Ishikawa et al., “Detection of pancreatic tumor cell nuclei via a hyperspectral analysis
of pathological slides based on stain spectra,” Biomed. Opt. Express 10(9), 4568–4588 (2019).

19. L. Ma et al., “Automatic detection of head and neck squamous cell carcinoma on histologic
slides using hyperspectral microscopic imaging,” J. Biomed. Opt. 27(4), 046501 (2022).

20. M. H. Tran et al., “Thyroid carcinoma detection on whole histologic slides using hyper-
spectral imaging and deep learning,” Proc. SPIE 12039, 120390H (2022).

21. T. Akgun, Y. Altunbasak, and R. M. Mersereau, “Super-resolution reconstruction of hyper-
spectral images,” IEEE Trans. Image Process. 14(11), 1860–1875 (2005).

22. N. Sun and H. Li, “Super resolution reconstruction of images based on interpolation and
full convolutional neural network and application in medical fields,” IEEE Access 7,
186470–186479 (2019).

23. D. Qiu et al., “Super-resolution reconstruction of knee magnetic resonance imaging based
on deep learning,” Comput. Methods Prog. Biomed. 187, 105059 (2020).

24. L. Loncan et al., “Hyperspectral pansharpening: a review,” IEEE Geosci. Remote Sens. Mag.
3(3), 27–46 (2015).

25. Z. Jiang et al., “Spatial resolution enhancement for pushbroom-based microscopic hyper-
spectral imaging,” Appl. Opt. 58(4), 850–862 (2019).

26. Y. Zheng et al., “Deep residual learning for boosting the accuracy of hyperspectral pansharp-
ening,” IEEE Geosci. Remote Sens. Lett. 17(8), 1435–1439 (2020).

27. G. Masi et al., “Pansharpening by convolutional neural networks,” Remote Sens. 8(7), 594
(2016).

28. J. Yang et al., “PanNet: a deep network architecture for pan-sharpening,” in Proc. IEEE Int.
Conf. Comput. Vision, pp. 1753–1761 (2017).

29. W. Yao et al., “Pixel-wise regression using U-Net and its application on pansharpening,”
Neurocomputing 312, 364–371 (2018).

30. N. Dey et al., “Multi-modal image fusion for multispectral super-resolution in microscopy,”
Proc. SPIE 10949, 109490D (2019).

31. J. Cai and B. Huang, “Super-resolution-guided progressive pansharpening based on a deep
convolutional neural network,” IEEE Trans. Geosci. Remote Sens. 59(6), 5206–5220
(2021).

32. W. G. C. Bandara, J. M. J. Valanarasu, and V. M. Patel, “Hyperspectral pansharpening based
on improved deep image prior and residual reconstruction,” IEEE Trans. Geosci. Remote
Sens. 60, 1–16 (2022).

33. M. Halicek et al., “Head and neck cancer detection in digitized whole-slide histology using
convolutional neural networks,” Sci. Rep. 9, 14043 (2019).

34. M. Halicek et al., “Hyperspectral imaging of head and neck squamous cell carcinoma for
cancer margin detection in surgical specimens from 102 patients using deep learning,”
Cancers 11(9), 1367 (2019).

35. E. Rublee et al., “ORB: an efficient alternative to SIFT or SURF,” in Int. Conf. Comput.
Vision, pp. 2564–2571 (2011).

36. L. Ma et al., “Unsupervised super resolution network for hyperspectral histologic imaging,”
Proc. SPIE 12039, 120390P (2022).

37. D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in Int. Conf. Learn.
Represent. (ICLR) (2014).

38. C. Szegedy et al., “Inception-v4, inception-resnet and the impact of residual connections
on learning,” in Thirty-First AAAI conf. Artif. Intell. (2017).

39. K. He et al., “Delving deep into rectifiers: surpassing human-level performance on
ImageNet classification,” in Proc. IEEE International Conference on Computer Vision,
pp. 1026–1034 (2015).

Ma et al.: Unsupervised super-resolution reconstruction of hyperspectral histology images. . .

Journal of Biomedical Optics 056502-20 May 2022 • Vol. 27(5)

https://doi.org/10.1002/wnan.1330
https://doi.org/10.1002/wnan.1330
https://doi.org/10.1364/BOE.10.006516
https://doi.org/10.1117/12.2512328
https://doi.org/10.1364/BOE.10.004568
https://doi.org/10.1117/1.JBO.27.4.046501
https://doi.org/10.1117/12.2612963
https://doi.org/10.1109/TIP.2005.854479
https://doi.org/10.1109/ACCESS.2019.2960828
https://doi.org/10.1016/j.cmpb.2019.105059
https://doi.org/10.1109/MGRS.2015.2440094
https://doi.org/10.1364/AO.58.000850
https://doi.org/10.1109/LGRS.2019.2945424
https://doi.org/10.3390/rs8070594
https://doi.org/10.1109/ICCV.2017.193
https://doi.org/10.1109/ICCV.2017.193
https://doi.org/10.1016/j.neucom.2018.05.103
https://doi.org/10.1117/12.2512598
https://doi.org/10.1109/TGRS.2020.3015878
https://doi.org/10.1109/TGRS.2021.3139292
https://doi.org/10.1109/TGRS.2021.3139292
https://doi.org/10.1038/s41598-019-50313-x
https://doi.org/10.3390/cancers11091367
https://doi.org/10.1117/12.2611889


40. N. Ketkar, Deep Learning with Python: A Hands-on Introduction, Apress, Berkeley,
California (2017).

41. M. D. Zeiler, “Adadelta: an adaptive learning rate method,” https://doi.org/10.48550/arXiv
.1212.5701 (2012).

42. J. W. Boardman, “Spectral angle mapping: a rapid measure of spectral similarity,” AVIRIS.
Delivered by Ingenta (1993).

43. F. A. Kruse et al., “The spectral image processing system (SIPS)—interactive visualization
and analysis of imaging spectrometer data,” Remote Sens. Environ. 44(2–3), 145–163
(1993).

44. Z. Wang et al., “Image quality assessment: from error visibility to structural similarity,”
IEEE Trans. Image Process. 13(4), 600–612 (2004).

45. N. Venkatanath et al., “Blind image quality evaluation using perception based features,” in
Twenty First Natl. Conf. Commun. (NCC), pp. 1–6 (2015).

46. M. Halicek et al., “Conditional generative adversarial network for synthesizing hyperspec-
tral images of breast cancer cells from digitized histology,” Proc. SPIE 11320, 113200U
(2020).

Ling Ma is a graduate research assistant in the Quantitative Bioimaging Laboratory (QBIL) in
the Department of Bioengineering at the University of Texas at Dallas. She received her BS
degree in measuring and controlling technology and instruments from Tianjin University in
2015. Her current research interests include in vivo hyperspectral imaging and hyperspectral
microscopic imaging for head and neck cancer detection. She is a student member of SPIE.

Armand Rathgeb is a research assistant in the Quantitative Bioimaging Laboratory (QBIL) in
the Department of Bioengineering at the Erik Jonsson School of Engineering and Computer
Science at the University of Texas at Dallas.

HasanMubarak is a research assistant in the Quantitative Bioimaging Laboratory (QBIL) in the
Department of Bioengineering at the University of Texas at Dallas.

Minh Tran is a PhD student in the Quantitative Bioimaging Laboratory (QBIL) in the
Department of Bioengineering and the Center for Imaging and Surgical Innovation (CISI) at
the University of Texas at Dallas. His research interests are bioimaging and artificial intelligence.
He is a student member of SPIE.

Baowei Fei is the Cecil H. and Ida Green Chair in Systems Biology Science, professor of
Bioengineering at the University of Texas at Dallas and a professor of Radiology at UT
Southwestern Medical Center. He is the director of the Quantitative BioImaging Laboratory
(www.fei-lab.org) and the director of the Center for Imaging and Surgical Innovation. He is
a fellow of the International Society for Optics and Photonics (SPIE) and the American
Institute for Medical and Biological Engineering (AIMBE).

Ma et al.: Unsupervised super-resolution reconstruction of hyperspectral histology images. . .

Journal of Biomedical Optics 056502-21 May 2022 • Vol. 27(5)

https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.1016/0034-4257(93)90013-N
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1117/12.2549994
www.fei-lab.org
www.fei-lab.org
www.fei-lab.org

