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Abstract

Significance: The Mueller matrix decomposition method is widely used for the analysis of
biological samples. However, its presumed sequential appearance of the basic optical effects
(e.g., dichroism, retardance, and depolarization) limits its accuracy and application.

Aim: An approach is proposed for detecting and classifying human melanoma and non-
melanoma skin cancer lesions based on the characteristics of the Mueller matrix elements and
a random forest (RF) algorithm.

Approach: In the proposal technique, 669 data points corresponding to the 16 elements of
the Mueller matrices obtained from 32 tissue samples with squamous cell carcinoma (SCC),
basal cell carcinoma (BCC), melanoma, and normal features are input into an RF classifier
as predictors.

Results: The results show that the proposed model yields an average precision of 93%.
Furthermore, the classification results show that for biological tissues, the circular polarization
properties (i.e., elements m44, m34, m24, and m14 of the Mueller matrix) dominate the linear
polarization properties (i.e., elements m13, m31, m22, and m41 of the Mueller matrix) in deter-
mining the classification outcome of the trained classifier.

Conclusions: Overall, our study provides a simple, accurate, and cost-effective solution for
developing a technique for classification and diagnosis of human skin cancer.
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1 Introduction

According to the International Agency for Research on Cancer, there were 300,000 new cases of
melanoma and over 1,000,000 new cases of non-melanoma skin cancer in 2018.1,2 Furthermore,
the true number of skin cancer cases may be even higher than this figure due to many factors such
as the registration methodology of skin cancer, the quality of skin cancer data.3 Without early
detection and preventative control, melanoma can quickly develop and become far riskier, e.g.,
from stage I with a five-year survival rate of 97% to stage IV with a five-year survival rate of
just 20% to 10%.3 Therefore, the early detection of skin cancer is essential in improving the
prognosis of skin cancer patients.

*Address all correspondence to Thi-Thu-Hien Pham, ptthien@hcmiu.edu.vn

Journal of Biomedical Optics 075001-1 July 2021 • Vol. 26(7)

https://orcid.org/0000-0001-5150-1890
https://orcid.org/0000-0001-5808-3214
https://doi.org/10.1117/1.JBO.26.7.075001
https://doi.org/10.1117/1.JBO.26.7.075001
https://doi.org/10.1117/1.JBO.26.7.075001
https://doi.org/10.1117/1.JBO.26.7.075001
https://doi.org/10.1117/1.JBO.26.7.075001
https://doi.org/10.1117/1.JBO.26.7.075001
mailto:ptthien@hcmiu.edu.vn
mailto:ptthien@hcmiu.edu.vn
mailto:ptthien@hcmiu.edu.vn


No reliable biomarkers exist for melanoma diagnosis. Consequently, current diagnostic
methods for skin lesions are subjective and imprecise. Typically, a patient must undergo around
36 biopsies to confirm (or discount) melanoma. However, despite this large number of biopsies,
false negative predictions cannot be entirely ruled out.4 Thus, new skin cancer detection methods
with greater accuracy and less invasiveness are urgently required. Among the various optical
imaging technologies available nowadays, optical coherence tomography (OCT)5,6 and polari-
zation-sensitive OCT7 make possible the real-time comprehensive morphological mapping of
skin tissue samples with micrometer resolution by measuring the inherent properties of light
(e.g., the scattering, birefringence, and refractive index properties) as it propagates through the
sample.8 However, while OCT has a greater sensitivity for detecting melanoma than other
techniques, such as reflectance confocal microscopy,9 high-frequency ultrasonography,10 and
multispectral imaging,11 detecting early stage melanoma using OCT still poses a significant
challenge5 due to the great number of different types of non-melanoma skin cancer.12

Many studies have shown that the Stokes–Mueller method, based on polarized light, has
significant potential for replacing current clinical standards for skin cancer detection. Lu and
Chipman13 proposed a Mueller matrix decomposition method for determining the diattenuation,
retardance, and depolarization properties of a sample. Ghosh et al.14 investigated the efficacy of
the Mueller matrix decomposition method in extracting the individual intrinsic polarimetry char-
acteristics of a scattering medium with both linear birefringence (LB) and optical activity. Du
et al.15 used a Mueller matrix imaging technique to construct two-dimensional images of the
polarization parameters (i.e., attenuation, depolarization power, and linear retardance) of human
skin basal cell carcinoma (BCC) and human papillary thyroid carcinoma tissues. Martin et al.16

used the Mueller matrix decomposition techniques proposed by Lu and Chipman13 and
Ossikovski17 to differentiate between healthy and irradiated pig skin samples based on their
measured retardance, diattenuation, and depolarization properties. Pham et al.18–22 employed
a Stokes–Mueller method to examine the polarization properties of skin cancer, liver cancer
tissues, neuroblastoma, collagen-rich tendons, and cartilage. It was shown that the proposed
method yielded nine effective parameters for distinguishing between normal skin tissue and
various skin cancer tissues, including BCC, squamous cell carcinoma (SCC), and malignant
melanoma.

Machine learning provides a powerful tool for performing the objective and precise diagnosis
of cancer through its use of statistics, probabilistic algorithms, and massive computational
power. According to recent studies, machine learning techniques can improve 15% to 20%
of the previous accuracy of cancer detection.23 For example, Codella et al.24 used a convolutional
neural network (CNN) in deep learning combined with image segmentation algorithms to rec-
ognize melanoma in a dataset consisting of 900 training dermoscopic images and 379 test
images. The classification accuracy was found to be 76%. By contrast, the average diagnosis
accuracy of eight expert dermatologists was just 70.5%. Esteva et al.25 used a GoogleNet
Inception v3 CNN architecture and a transfer learning technique to perform the first-level clas-
sification of three class disease partitions (benign, malignant, and non-neoplastic) with an accu-
racy of 72.1% and the second-level classification of the same partitions with an accuracy of
55.4%. Baldwin et al.26 proposed an automated Mueller matrix polarization imaging system
and a classification and regression tree (CART) statistical analysis approach for classifying three
classes of Sinclair swine tissue (normal, benign, and cancerous) and showed that the sensitivity
was as high as 90%. Sigurdsson et al.27 detected five skin tumor lesion types using Raman spec-
tra and a nonlinear neutral network. The experimental results showed that the proposed system
achieved a classification rate of 80.5% for malignant melanomas and 95.8% for BCC. Legesse
et al.28 used a perceptron algorithm to discriminate healthy and tumorous regions in BCC
Stokes–Raman scattering (CARS) based on an analysis of the texture features. It was shown
that the classifier achieved a sensitivity of 88% and a specificity of 91%. Murugan et al.29 used
random forest (RF) and support vector machine (SVM) classifiers techniques for skin cancer
detection. The experimental results showed that the proposed system achieved a classification
rate of 72.2% using RF techniques and 87.81% using SVM+RF. Singh et al.30 detected breast
cancer using RF classifier technique. It was shown that the classifier achieved a sensitivity of
90.56% and a specificity of 86.40%. Based on the fruitful achievement of Mueller matrix in
Refs. 13–22 and machine learning techniques for skin cancer detection in Refs. 24–30,
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furthermore, the RF classifier is adopted for this study because of its advantage for overcoming
the overfitting and suitable for classifying untrained data.31 Notably, the RF has the advantage in
reducing the influence of noisy trees contribution.32 Moreover, the RF allows the ability of inves-
tigation to feature importance,33 which is useful to analyze the impact of optical properties of
tissue on different types of skin pathology. Accordingly, the present study explores the feasibility
for using a machine learning technique to discriminate between normal skin tissue and three
classes of skin cancer based on the 16 elements of the Mueller matrix of a biomedical sample,
in which all of the optical effects may appear simultaneously.

2 Stokes–Mueller Matrix Polarimetry Formalism for Skin Cancer
Classification

The output Stokes vector, SC, has the following form:

EQ-TARGET;temp:intralink-;e001;116;572Sc ¼

2
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where [Msample] is the Mueller matrix of a biomedical sample with depolarization, LB, circular
birefringence (CB), linear dichroism (LD), and circular dichroism (CD) properties, and Sc is the
input Stokes vector.

Assume that the sample is illuminated by four input lights with linear polarization states (i.e.,

Ŝ0° ¼ ½ 1; 1; 0; 0 �T , Ŝ45° ¼ ½ 1; 0; 1; 0 �T , Ŝ90° ¼ ½ 1; −1; 0; 0 �T , and Ŝ135° ¼
½ 1; 0; −1; 0 �T) and two input lights with circular polarization states (i.e., right-handed

ŜRHC ¼ ½ 1; 0; 0; 1 �T and left-handed ŜLHC ¼ ½ 1; 0; 0; −1 �T). The Mueller matrix
elements of the biomedical sample, [Msample], are then obtained as
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3 Skin Cancer Classification Model

3.1 Decision Tree Algorithm

Decision tree algorithms implement classification by splitting the dataset using binary questions
based on the feature vectors.34 In particular, the feature vectors (denoted as X) are taken as tree
nodes in the classification architecture, while the class labels are denoted as Y. A decision rule,
dðtÞ, is then used to map each X to dðXÞ, where dðXÞ represents the class label of the feature
vectors.35 Depending on whether or not the input features (i.e., attributes) satisfy the binary
question, they are divided into two groups (known as branches) of nodes. Thus, by applying
multiple questions to the flow, the decision tree classifies the input dataset into multiple different
class labels.

One of the most well-known decision tree algorithms is the CART algorithm proposed by
Breiman et al.,36 which constructs decision trees by applying a threshold for features that yield
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the best performance of the Gini index or information gain, respectively, depending on the tuned
parameters.37 Notably, the algorithm not only accommodates both numerical and categorical
variables but also handles outliers in the dataset in a robust manner.38 As such, it is ideally suited
to the classification problem considered in the present study, in which the instances in the dataset
[i.e., the Mueller matrix elements describing the optical (depolarization, LB, CB, LD, and CD)
properties of human tissue samples] are numerical and have no missing values, but may contain
outliers.

3.2 Random Forest Algorithm

The RF classification algorithm31 builds multiple individual sub-decision trees as building
blocks for categorization tasks fT1ðXÞ; T2ðXÞ; T3ðXÞ; : : : TnðXÞg.35 Each individual sub-
decision tree utilizes a different method to generate the binary questions used for classification
purposes, and hence the resulting tree structure and organization are unique. Since each
sub-decision tree in the RF architecture performs its own classification procedure, each tree can
be regarded as an individual predictor and votes for the prediction of the input data and the final
classification outcome can then be determined via a polling process. Compared to the traditional
decision tree classification algorithm described above, the RF classifier provides a more effective
reduction of the bias-variance by combining small decision trees with random feature subsets;
thereby preventing overfitting during the training process.39

3.3 Gini Impurity

The Gini index is a statistical measure for quantifying the heterogeneity of a dataset.40

As described above, in binary decision trees, decision rules, dðtÞ, are used to split the learning
set of feature vectors L containing a certain number of feature vectors X. By splitting L into two
sub-sets, namely L1 and L2, such that the data points of each subset conform to a specific rule,
i.e., dðtÞ. Consequently, the impurities of L1 and L2, respectively, are less than that of their
parent, L.41 The impurity is measured by the Gini index, which has the following form:

EQ-TARGET;temp:intralink-;e003;116;386G ¼ 1 −
Xk
i¼1

ðpðcijtÞÞ2; (3)

whereG is the Gini index at node t and pðtÞ is the probability of a given dataset L being assigned
to class ci. The Gini index varies from 0 to 1, where G ¼ 0 represents a complete equality of the
data (i.e., all the data in the subset after splitting belong to a specific class label), whereas G ¼ 1

indicates a complete inequality of the data (i.e., none of the data in the subset after splitting
belong to the same class label).

4 Experimental Setup and Data Acquisition Process

4.1 Experimental Setup

Figure 1 presents a schematic illustration of the experimental setup used in this study. The illu-
mination light was produced by a frequency stable He-Ne laser (HNLS008R, SIOS Co.) with a
center wavelength of 632.8 nm. The light emitted by the laser passed through a quarter-wave
plate (QWP0-63304-4-R10, CVI Co.) and polarizer (GTH5M, Thorlabs Co.) and was then inci-
dent on the sample (i.e., biological tissue mounted on a quartz slice). It is noted that quartz
slices were used to minimize the depolarization effect when light passed through the sample.
Furthermore, the blank quartz slides were measured before performing experiments for calibra-
tion purposes. The quarter-wave plate was used to produce two circular polarization input states
(right-handed and left-handed), while the polarizer was used to produce four linear polarization
input states (0 deg, 45 deg, 90 deg, and 135 deg). For both optical elements, the polarization
states were produced using rotary stages and a controller. The polarized light was passed through
a neutral density filter (NDC-100-2, ONSET Co.) in order to ensure a consistent intensity of the

Luu et al.: Characterization of Mueller matrix elements for classifying human skin. . .

Journal of Biomedical Optics 075001-4 July 2021 • Vol. 26(7)



light incident on the sample. The light emerging from the sample was detected by a commercial
Stokes polarimeter (PAX5710, Thorlabs Co.), where the intensity was sampled at a rate of 33.33
(samples/s) and the output Stokes vector Sc was constructed accordingly.

The experiments considered 32 biomedical skin tissue samples, specifically, 12 BCC sam-
ples, 4 melanoma samples, 4 normal samples, and 12 SCC samples, where each sample was cut
into 4 to 6 slices. For each slice, the measurement process was performed at 4 to 6 different
positions; with the output Mueller matrix calculated for each point. For each data point,
the 16 elements of the Mueller matrix were compiled into a feature vector, X. Data from the
32 samples (i.e., 669 vectors) were split into two parts for training and testing. As shown in
Table 1, the training dataset includes 607 feature vectors, where these vectors belonged to four
different classes, namely BCC (282 vectors), SCC (231), melanoma (52 vectors), and normal
(42 vectors). One sample of each skin tissue type was used for evaluation of the trained model;
thus, the testing dataset includes 62 feature vectors, namely BCC (30 vectors), SCC (23),
melanoma (3 vectors), and normal (6 vectors).

It is noted that due to the difference in the shape of samples, each sample was under a differ-
ent time of slicing and also the difference in measurement of interest position. Hence, the number
of feature vectors belongs to each sample varies. This leads to the difference in the ratio of train-
ing and testing feature vectors for each type of skin tissue.

4.2 Classification Workflow

4.2.1 Data preprocessing

One of the most common problems facing machine learning classifiers is that of imbalanced
datasets, where the data records of the majority class overwhelm those of the other classes.
In such a situation, the training process is unable to learn proper classification rules for the
minority classes, and hence the classification accuracy for these classes is severely impaired.42

As shown in Table 1, the dataset employed in this study suffered this imbalance problem
since the BCC class contained 282 feature vectors, whereas the normal class contained only
42 vectors. Accordingly, the oversampling technique43 was performed to randomly duplicate
instances of the minority classes (SCC, melanoma, and normal skin) based on the original
number of vector features belonging to the BCC majority class (see Table 2).

Table 1 Number of feature vectors of each class label in training and testing datasets.

BCC SCC Melanoma Normal

Number of training feature vectors 282 231 52 42

Number of testing feature vectors 30 23 3 6

Fig. 1 Setup of measurement system.
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4.2.2 Training

Figure 2 presents a flowchart of the 10-fold cross-validation training process performed in this
study. The selection of hyperparameters for the classification predictor was chosen with the help
of the grid search technique. By feeding the ranges of hyperparameters into target predictors, the
mentioned technique tries to fit each of the parameters into predictors to compute the score and
select the best parameter for optimization of classification performance. Specifically, the range of
number of trees and depth of each individual tree were [10, 20, 30. . . 990, 1000] and [2, 3, 4. . .
20], respectively. The RF classifier consisted of 220 sub-decision trees, and the depth of the
model was limited to 14 layers where these choices of parameters were made through exper-
imentation. In addition, the classifier used the Gini impurity index as the splitting criterion. For
each data point, 15 feature vectors were fed into the classifier. [Note that one of the features
(Mueller matrix element m11) was used for normalization purposes, and hence was not used
as a predictor.) Notably, there were no instances of missing data, and thus handling schemes
for missing data were not required. Cross-validation is usually performed using k ¼ 10

folds44 since a larger value of k reduces the size of each fold and thus reduces the difference
in size of the training set and resampling subset, respectively. As a result, the bias, e.g., the
difference between the true value and the expected value of the estimator, is decreased. For the
present training process, 10-fold cross-validation was implemented with 3 times of repetition.
According to Molinaro et al.45 and Kim,46 repeating k-fold cross-validation is beneficial in
improving the precision score of classification models while maintaining a small bias.

5 Results and Discussion

Figure 3 shows the training and validation accuracy results for the 10 folds of the dataset. For the
training set, the classification accuracy is equal to 100% in virtually every fold. By contrast,
for the validation set, the classification accuracy reduces to around 91%. This tendency is
reasonable since the oversampling process increases the number of duplicate data features, and
therefore the trained model produces multiple rules for one instance, and the rules become

Fig. 2 Flowchart showing RF classifier training process with 10-fold cross-validation.

Table 2 Number of feature vectors of each class label in training and testing datasets after
oversampling.

BCC SCC Melanoma Normal

Number of training feature vectors 282 282 282 282

Number of testing feature vectors 30 30 30 30
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specific for a portion of training data. This increases the training accuracy, but decreases the
classification accuracy.

The performance of the trained RF classifier when applied to the test dataset, including 30
BCC, 23 SCC, 3 melanoma, and 6 normal feature vectors, then those of each class equals 30 after
oversampling, was evaluated by a confusion matrix, as shown in Table 3. As shown, the optimal
classification performance was obtained for the melanoma class, with 30 true positive cases, no
false positive case or false negative case. A good classification performance was also obtained
for the normal skin tissue, i.e., 30 true positive cases, no false negative cases, and just 2 false
positive cases. However, for the BCC and SCC classes, the classification performance was
degraded, with 7 false positive outcomes for the BCC class and 9 false negative outcomes for
the SCC class. Interestingly, almost all, i.e., 7/9 of the SCC instances, were misclassified as
BCC. It is noted that when cancerous tumors develop in the tissue, numerous changes in the
collagen components occur, including the deposition of collagen fibrils resulting from an
increased number of fibroblasts, the production of proteolytic enzymes for cancer invasion,
etc.47,48 The change of biological structure that led the classification model significantly distin-
guished between normal tissue and cancerous tissue. Whereas some cases of BCC and SCC
share the same clinical features, such as an ulcer with a rolled border, that may get the estimator
confused.49

The receiver operator characteristic curve is an evaluation metric for binary classification.50

It represents true positive rate (TPR) and false positive rate (FPR) at different thresholds. Thus,
the calculation of the area under the curve (AUC) can be used to evaluate the model with
unbiased estimation. The closer of the AUC score to 1, the better the model is. As shown in
Table 4, the AUC score of melanoma and normal skin tissue was 1. The performance of the
RF model on prediction BCC and SCC is lower; however, it is still a good score with 0.999
and 0.996, respectively. Overall, the mean AUC for all types of skin tissue is 0.999.

Fig. 3 Training accuracy and validation accuracy of 10-fold cross-validation process.

Table 3 Confusion matrix of trained RF classifier when applied to test dataset.

Predicted class

BCC Melanoma Normal SCC

True class BCC 30 0 0 0

Melanoma 0 30 0 0

Normal 0 0 30 0

SCC 7 0 2 21
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Table 5 analyzes the performance of the trained classifier for the four different class labels.
The performance metrics, i.e., the precision, recall, and F1 score are defined as follows:

EQ-TARGET;temp:intralink-;e004;116;482Precision ¼ TP

TPþ FP
; (4)

EQ-TARGET;temp:intralink-;e005;116;428Recall ¼ TP

TPþ FN
; (5)

EQ-TARGET;temp:intralink-;e006;116;395F1score ¼ 2 ×
Precision × Recall

Precisionþ Recall
; (6)

where TP is the true positive, FP is the false positive, and FN is the false negative.
The precision metric evaluates the prediction performance of the model, with a value closer to

1 indicating a better closeness of the predicted outcomes to the true outcomes. As shown, the
classifier attains a precision of 1 for the SCC class. In other words, when supplied with the
feature vectors of SCC, it correctly outputs a class label of normal in almost every case.
Meanwhile, the recall metric evaluates the performance of the trained model for each individual
prediction. In other words, the recall value of 1 for the BCC class indicates that if the trained
model has previously predicted the current feature vectors as not belonging to the BCC class,
then the current input belongs to the three other classes either SCC, normal, or melanoma with a
probability of 100%. Finally, F1 score is the metric that combines precision and recall scores as
harmonic mean. The F1 score takes both precision and recall scores into account, therefore, that
is more general than these two metrics in evaluating models. Also shown in Table 4, the trained
model achieves a good classification performance for the melanoma class (precision ¼ 1;
recall ¼ 1). Moreover, the classifier also achieves a good performance for the normal class
(precision ¼ 0.94; recall ¼ 1). However, as implied in the confusion matrix in Table 3, the clas-
sifier has a poorer performance for the BCC and SCC classes. Overall, the trained classifier
successfully discriminates four classes of skin tissues with a (mean accuracy of 0.93).

Figure 4 presents the distributions and magnitudes of the 15 Mueller matrix elements of the
SCC, BCC, melanoma, and normal skin tissue samples. The vertical and horizontal axes show
the magnitude and distribution of the corresponding Mueller matrix elements, respectively. Note
that, as described earlier, one of the matrix elements (m11) was used for normalization purposes,
and is hence omitted here. It is seen that for each Mueller matrix element, the magnitude is
approximately equal for all four types of tissue sample. However, the distribution varies from
one sample type to another. For example, for element m22, the distributions of the different sam-
ple types are affected by outliers, which result in a significant skew of the distribution. Thus,
element m22 has only a low contribution to the outcome of the classification model, as shown in

Table 4 AUC scores of each class and mean AUC of the proposed method.

BCC SCC Melanoma Normal Mean AUC

0.999 0.996 1.0 1.0 0.999

Table 5 Performance evaluation analysis of trained classification model.

Class label Precision Recall F1 score

BCC 0.81 1.00 0.90

Melanoma 1.00 1.00 1.00

Normal 0.94 1.00 0.97

SCC 1.00 0.70 0.82
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Fig. 5. In other words, although the range of data distribution varies among the four types of
samples, it is difficult to classify the data without relying on advanced algorithms. It is also noted
that the average standard deviation of the Mueller matrix elements m12, m13, m14, m21, m24, and
m34 over 4 to 6 measurement points of the same slice are highest and deviated from 0.03 to 0.1
for four types of sampling. While the average standard deviation of the other elements over 4 to 6
measurement points of the same slice are smaller than 0.01. This is also clearly observed in Fig. 4
when the elements m12, m13, m14, m21, m24, and m34 have wider distributions than the other
Mueller matrix elements.

Figure 5 shows the relative importance of the 15 different elements of the Mueller matrix
within the classification model. Note that the feature importance represents the reduction in the
node Gini impurity weighted by the node probability.37 For each decision tree, the importance
score of feature i on node j, nij, is calculated as

Fig. 4 Magnitude and distribution of Mueller matrix elements for four different types of skin tissues.

Fig. 5 Feature importance ranking of 15 elements of Mueller matrix in (a) descending order;
(b) Mueller matrix form.
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EQ-TARGET;temp:intralink-;e007;116;735nij ¼ wjGj − wjðLÞGjðLÞ − wjðRÞGjðRÞ; (7)

where wj is the proportion of the number of samples reaching node j; wjðLÞ is the child node of
the left split of node j; wjðRÞ is the child node of the right split of node j; and Gj, GjðLÞ, GjðRÞ
are the Gini impurities of node j and its left and right child nodes, respectively.

Thus, the importance of feature i in a specific tree, fi, can be calculated as

EQ-TARGET;temp:intralink-;e008;116;663fi ¼
P

s
j nijP
N
k nik

; (8)

where s is the number of node j splits for feature i; N is the number of nodes; and fi is the
importance of feature i and is normalized to a value between 0 and 1.

Finally, the importance score of feature i in a forest of T estimators, Fi, is given by the
average importance score of feature i over the individual trees, i.e.,

EQ-TARGET;temp:intralink-;e009;116;570Fi ¼
P

Tfi
T

: (9)

As shown in Fig. 5(b) and referring to Eq. (2), elements m24, m34, m44, and m14 in the
Mueller matrix, referring to the left- and right-handed circular polarization states, have high
relative contributions of 9.7%, 8.3%, 7.5%, and 6.0%, respectively, toward the classification
outcome. By contrast, elementsm43,m33,m23, andm13, corresponding to the input linear polari-
zation states of 45 deg and 135 deg, have relatively low contributions of 5.7%, 5.7%, 5.6%, and
5.4%, respectively. Similarly, elements m32, m42, m31, m22, and m41, corresponding to linear
polarization states of 0 deg and 90 deg also have low contributions of 7%, 6.9%, 5.2%,
4.3%, and 4.2%, respectively. Meanwhile, elementsm21 andm12, corresponding to linear polari-
zation states of 0 deg and 90 deg, have high relative contributions of 9.3% and 9.1%, respec-
tively. In other words, the circular polarization elements in the Mueller matrix exert a greater
effect on the classification outcome than the linear polarization elements. This finding is rea-
sonable since skin tissue samples have a high natural scattering effect, which causes a helicity
flip of the circular polarization light while passing through the sample.51 In general, the results
presented above indicate that the proposed technique, based on Stokes–Mueller matrix polar-
imetry and an RF classification algorithm, provides a simple and well-accurate tool for skin
cancer classification and diagnosis applications.

6 Conclusion

This study has proposed a Stokes–Mueller polarimetry method based on an RF classifier con-
sisting of 220 sub-decision binary trees for discriminating between four different types of skin
tissues, namely BCC, melanoma cancer, SCC, and normal, based on the measured values of the
16 elements in the output Mueller matrix. Based on the experimental results obtained for 32 skin
tissue samples, it has been shown that the proposed model achieves an average classification
accuracy of 93% for the four skin tissue types. It has additionally been shown that among all
of the elements in the Mueller matrix, elements m44, m34, m24, and m14, relating to the left- and
right-handed circular polarization states, respectively, have a stronger discriminatory power than
those relating to the linear polarization states. Overall, the results show that the proposed frame-
work has a promising potential for the development of machine learning approaches for auto-
mated cancer tissue screening and diagnosis.
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