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Abstract. Optical chaos generated by perturbing semiconductor lasers has been viewed, over recent
decades, as an excellent entropy source for fast physical random bit generation (RBG) owing to its high
bandwidth and large random fluctuations. However, most optical-chaos-based random bit generators
perform their quantization process in the electrical domain using electrical analog-to-digital converters, so their
real-time rates in a single channel are severely limited at the level of Gb/s due to the electronic bottleneck.
Here, we propose and experimentally demonstrate an all-optical method for RBG where chaotic pulses are
quantized into a physical random bit stream in the all-optical domain by means of a length of highly nonlinear
fiber. In our proof-of-concept experiment, a 10-Gb/s random bit stream is successfully generated on-line using
our method. Note that the single-channel real-time rate is limited only by the chaos bandwidth. Considering that
the Kerr nonlinearity of silica fiber with an ultrafast response of few femtoseconds is exploited for composing
the key part of quantizing laser chaos, this scheme thus may operate potentially at much higher real-time rates
than 100 Gb/s provided that a chaotic entropy source of sufficient bandwidth is available.
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1 Introduction

Physical random bits play crucial roles in cryptographic systems
and information security.'™ Especially in the context of “one-
time-pad” unconditional security, the real-time generation rate
of physical random bits critically determines the secure commu-
nication rate.

Laser chaos has, over recent decades, attracted extensive at-
tention to solve this problem of fast and real-time random bit
generation (RBG) due to its high bandwidth and large random
fluctuations in the past decades.’™® Typically, 1.7-Gb/s real-time
RBG was first reported by Uchida et al. through binary digiti-
zation of the temporal fluctuations of two independent chaotic
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lasers using electrical 1-bit analog-to-digital converters (ADCs)
in 2008.% In 2009, 12.5-Gb/s off-line RBG was demonstrated by
Reidler et al. through a multiple-bit extraction approach, where
the intensity fluctuations of a single chaotic laser were sampled
by a virtual 8-bit ADC with least significant bits retention.’®
Shortly afterward, Kanter et al.” further improved the RBG rate
using off-line high-order derivatives of the digitized chaotic sig-
nals. In parallel, numerous excellent RBG schemes have been
proposed by increasing the chaotic bandwidth or optimizing the
postprocessing methods.*'” Among them, Ugajin et al. typically
reported a 21.1-Gb/s random bit throughput by retaining eight
significant bits of the 12-bit ADC as the multiple parallel out-
puts through a sophisticated field programmable gate array, but
it should be noticed that the real-time rates in each output chan-
nel are still 3.6 Gb/s determined by the ADC." In sum, all the
aforementioned RBG executes the quantization process by
means of electrical ADCs, so the currently reported real-time
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rates in a single channel are severely limited to the level of Gb/s
due to the electronic bottleneck."”

For this reason, we propose a method of RBG with all-optical
quantization, where the optically sampled chaotic pulses can be
digitized into a stream of random bits in real time by means of a
length of highly nonlinear fiber (HNLF) with an optical filter.
Specifically, the chaos is first all sampled into a train of optical
pulses, whose peak power is proportional to the original chaos
signal. Then, the obtained chaotic pulses are amplified and in-
jected into the HNLF to generate a supercontinuum (SC) spec-
trum, whose spectral width depends on the peak power of the
input chaotic pulse. Consequently, these optically sampled cha-
otic pulses can simply be digitized into binary bit sequences by
an optical bandpass filter (BPF) with an appropriate central
wavelength.

In our proof-of-concept experiment, the adopted optical
chaos is generated by heterodyning two external-cavity laser di-
odes (ECLs), so-called white chaos.***' Final results show that
a 10-Gb/s random bit stream in a single channel can be contin-
uously generated using our method. Note that the current real-
time rate is mainly limited by the bandwidth of the chaotic
source. Considering the Kerr nonlinearity of silica fiber with an
ultrafast response of few femtoseconds, our proposed RBG
method should have the potential to operate at the rate on the
order of 100 Gb/s (even Tb/s) provided that a chaotic entropy
source of sufficient bandwidth is available.

2 Experimental Setup and Results

2.1 Experimental Setup

Figure 1 shows the experimental setup, which includes three
main parts: a broadband chaotic entropy source, an optical
sampler consisting of an electro-optic modulator (EOM), and an
optical quantizer containing a length of HNLF with an optical
BPF. As shown in Fig. 1(a), the optical heterodyne technique is
applied to produce the broadband chaos. Two external-cavity
lasers (ECL; ,) with adjacent central wavelengths are coupled
into a 3-dB fiber coupler (FC) to interfere with each other.
Their coupling outputs are injected into a balanced photo-
detector (BPD) to obtain white chaos. The chaotic signal is
then optically sampled through the EOM triggered by a train of
ultralow-jitter clock pulses from a mode-locked laser (MLL).

Further, the sampled chaotic pulses are injected into the HNLF
via an erbium-doped fiber amplifier (EDFA). In the HNLF,
the optically sampled chaotic pulses with different amplitudes
will experience different spectral broadening. The spectral
broadening width is proportional to the amplitude of the
sampled chaotic pulse. Based on this intensity-to-wavelength
mapping, we finally can digitize these SC chaotic pulses into
a stream of random bit sequences using the BPF with an appro-
priate central wavelength. This random bit quantization process
is executed in the all-optical domain and thus eliminates the
electrical bottleneck.

2.2 Experimental Results

Figure 2 characterizes the measured optical white chaos. In the
experiment, the center wavelengths of ECL; and ECL, operate
at 1553.178 and 1553.076 nm, as shown in the inset of Fig. 2(a).
The feedback strengths are tuned to —9.8 dB for ECL; and
—10.6 dB for ECL,, while the associated feedback delays are
7 = 94.1 nsand 7, = 111.9 ns, respectively. Figure 2(a) shows
the RF spectra of the final white chaos (blue line) and the
original chaos from the ECL; and ECL, (red and violet lines),
respectively. It is obvious that the RF spectra of white chaos are
much wider and flatter than that of the ECLs due to the appli-
cation of optical heterodyne. Figure 2(b) shows the autocorre-
lation function (ACF) of the white chaos, while its inset is the
associated ACFs of the ECL, and ECL, outputs. From the inset
of Fig. 2(b), one can observe that the ECL; and ECL, have ob-
vious correlation peaks at their own feedback delays 7, and 7,,
called as the time-delay signatures (TDSs). Such TDSs will in-
troduce some unwanted correlations in final random bits and
thus must be eliminated. That is just the reason why we use
the optical heterodyne process to generate the white chaos.
Because of the nonresonant beatings between the two ECLs
with disproportional feedback lengths, their external mode fre-
quency intervals will also be disproportional. In consequence,
the obtained white chaos has a noise-like RF spectrum and
no TDS can be observed as shown in Fig. 2(b). Meanwhile,
a symmetrical amplitude probability distribution can be ensured
from Figs. 2(c) and 2(d), which is the base to generate unbiased
random bits with no need of additional complex postprocessing.
This symmetry is induced by the conversion of the fast phase
chaos dynamics into intensity variations.
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Fig. 1 Schematic of the proposed RBG with all-optical quantization: (a) optical chaos, (b) optical
sampler, and (c) optical quantizer. DFB, distributed feedback semiconductor laser; PC, polariza-
tion controller; VA, variable optical attenuator; FM, fiber mirror; ISO, optical isolator; 3 dB, 3 dB FC;
BPD, balanced photodiode; MLL, mode-locked laser; EOM, electro-optic modulator; EDFA,
erbium-doped fiber amplifier; HNLF, highly nonlinear fiber; BPF, optical BPF.
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Fig. 2 (a) RF spectra of the white chaos and ECL, , (the inset is the optical spectra of ECL, ,);
(b) ACF of the white chaos (the inset on right upper corner shows ACFs of the ECL, »); (c) temporal
waveforms of the white chaos; (d) amplitude probability distribution of the white chaos.

Figure 3 shows the optical sampling results recorded by a
real-time digital oscilloscope (OSC, Lecroy LabMasterl0-
36Zi, 36 GHz, 80 GS/s) via a 50-GHz photodiode (PD, Finisar
XPDV2150R). In the experiment, the EOM with a 20-GHz
input bandwidth (Photline, MX-LN-20) is biased at a voltage
Vgias = 5.5 V, while the optical clock pulse train generated
from the MLL (Pritel, UOC-05-14G-E) has a timing jitter less
than 50 fs which works at a repetition rate of 10 GHz and a
central wavelength of 1555.2 nm. Comparing the waveform
before and after the optical sampler, it can be found that the
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continuous-time white chaos [Fig. 3(a)] matches very well
with the peaks of the sample chaotic pulses [Fig. 3(b)].
Quantitatively, we calculate the normalized cross-correlation
function (CCF) of the signal before and after the optical sampler
to quantitatively evaluate the performance of the sampling
system. Note, the signal here consists of a sequence of discrete
sampled points and its size is 10° points. It can be clearly
observed from Fig. 3(c) that the cross-correlation coefficient
between the signals measured by the oscilloscope and the pro-
posed method is as high as 0.997. Further calculation shows
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Fig. 3 Schematic optical sampling results. (a) Continuous-time white chaotic waveform to be
sampled; (b) discrete-time chaotic pulses after the optical sampler; (c) normalized CCF of the
signal before and after the optical sampler.
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Fig. 4 (a) Measured optical spectra from three SC pulses with
different powers (45, 50, and 55 mW); (b) measured pulse wave-
form before (red) and after (blue) the threshold/quantization op-
eration.

that our optical sampling system has a high SNR of about
41.6 dB. All these results confirm that such an optical sampler
has a high fidelity.

Figure 4 shows the optical quantizing results. As shown in
Fig. 1(d), the optically sampled chaotic pulses are first amplified
by the EDFA (KEOPSYS, PEFA-SP-C-SM-33-B2020-FA) and
then used to pump a 400-m HNLF to generate the so-called SC
pulse train. The typical parameters of the utilized HNLF are the
nonlinear coefficient of 10 W~! km~!, the chromatic dispersion
slope of 0.017 psnm~2km™!, and the zero-dispersion wave-
length of 1550 nm. Figure 4(a) shows typical optical spectra
from three SC pulses with different powers (45, 50, and
55 mW) measured by an optical spectrum analyzer with a res-
olution of 0.02 nm (Yokogawa, AQ6370C). From it, one can see
clearly that the optical spectrum width is broadened with in-
creasing pulse power. In our experiment, we control the average
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optical power of the sampled SC chaotic pulse stream to be
about 50 mW at the end of the HNLF, whose waveform is
measured by the 36-GHz oscilloscope as shown in the pink line
[Fig. 4(b)]. Then, the BPF (Yenista, XTM-50) on the anti-Stokes
side lobe is used to threshold the generated SC chaotic pulses for
real-time RBG. When the pulse power is higher than 50 mW,
the associated optical spectrum will surpass the wavelength of
1553 nm [Fig. 4(a)]. Therefore, the filtering center of the BPF is
experimentally set at 4p = 1553 nm with a 0.4-nm bandwidth.
In this case, when the SC pulse is larger than the threshold, there
is an output pulse in the end of the BPF. Otherwise, there is no
output. The blue line in Fig. 4(b) shows the quantized output
pulse waveform, which is further coded into the random bit
stream in the stripe at the bottom of Fig. 4(b). When there is a
pulse output, we code it as logical “1.” Otherwise, we code it as
logical “0.” These results demonstrate that a 10-Gb/s random bit
stream has been successfully and continuously generated.

As is well known, a physical random bit sequence should be
unbiased and independent. Figures 5(a) and 5(b) show the stat-
istical bias level and the autocorrelation (AC) coefficients of the
generated 10 Gb/s binary random bit stream, estimated utilizing
the normalized Gaussian distribution estimation N (0, ¢2). It can
be confirmed from Fig. 5 that both the bias and the serial AC
coefficients are below their three-standard-deviations written as
36, = (3N~'/2)/2 and 36, = 3N~!/2. Further, we use state-of-
the-art National Institute of Standards and Technology (NIST
SP800-22) test suite with 15 statistical test items to examine
the obtained random bits.” Each test item is performed using
1000 samples of the 1-Mbit sequence, and the statistical signifi-
cance level is set as @ = 0.01. The test criterion for success is
that each P-value should be larger than 0.0001, and the propor-
tion should be within the range of 0.99 4+ 0.0094392. Figure 6
shows the test results. For tests that return multiple P-values and
proportions, the worst case is given. All the results suggest that
our generated random bits can be regarded to be unbiased and
independent statistically.

3 Discussions

In this section, we discuss the robustness of our RBG.
Specifically, the bias of the center wavelength of the BPF on
the quality of the generated random bits is analyzed. Figure 7
shows the occurrence frequency of “1”” in a random bit sequence
and the number of passed NIST tests as a function of the
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Fig. 5 (a) Bias |e[N]| versus the sample size of the generated 10 Gb/s random bits stream.
The black dotted line in (a) is its three-standard-deviation line, 3¢, = (3N-1/2)/2 where
N=1,2,3,...,16 Mbits. (b) AC coefficient C[K] as a function of the delay bit K for 16 Mbits.
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Fig. 6 NIST test results: P-value (left column) and proportion
(right column). Note, the 15 test items are shown along the hori-
zontal axis.
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Fig. 7 Frequency of “1” in a random bit sequence (red squares)
and the number of passed NIST tests (blue circles) as a function
of the filtering center wavelength 4.

quantization threshold. It is obvious that the frequency of “1”
decreases almost linearly with the increasing filtered center
wavelength. Only the random sequences having a frequency
of “1” in the range from 49.88% to 50.11% can pass all the
NIST tests, where the center wavelengths are allowed in a range
from 1552.2 to 1553.8 nm.

In addition, we want to point out that in the view of the port-
ability, our current proof-of-principle experiment setup is rela-
tively bulky due to the use of HNLF with weak nonlinear
interaction (y = 10 W~'km™!). However, this issue may be
solved by introducing the photonic integrated technology. To
our knowledge, chip-based SCG has been investigated in several
materials, such as silicon photonic nanowires,” chalcogenide
waveguides,” and silicon nitride waveguides.” When these
on-chip waveguides with high nonlinear coefficients are em-
ployed, the size of the SCG system can be greatly improved to
the level of centimeters and the associated power consumption
has the potential to be reduced by nearly 50%.
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4 Conclusions and Outlook

In summary, we have proposed an all-optical approach for quan-
tizing chaotic optical pulses into random bits. This scheme ex-
ecutes all the random bit extraction processes in the all-optical
domain and therefore overcomes the bottleneck of electronic
signal processing experienced by previous RBGs. As a proof-
of-principle demonstration, a 10-Gb/s chaotic optical bit stream
in a single channel is successfully generated using our method.
The current real-time rate of 10 Gb/s is mainly limited by the
bandwidth of the optical chaos used. Considering the ultrafast
response of the HNLF used as the core unit for random bit ex-
traction, our all-optical approach is expected to achieve a much
faster real-time bit rate up to the order of 100 Gb/s if the band-
width of the chaotic entropy source is sufficiently broad and the
pulse generation speed of the used MLL is high enough. For
instance, we notice that very recently a 315-GHz bandwidth
of a chaotic light source has been reported using a particularly
designed broad-area semiconductor laser.'® Combining with
pulse compressing and the optical time-delay multiplexing tech-
nique, the MLL pulse generation speed has the potential to be
enhanced to above 300 GHz.”
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