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Abstract. A new inversion method for diffuse optical tomography is
proposed. This is a multistage algorithm, that uses a signal subspace–
based method to simplify the inverse problem and proposes a guided
iterative inversion process to improve the imaging. First, subspace-
based analysis is used to determine the voxels that definitely belong to
the background and exclude them from further consideration. Then,
the pseudo-inverse technique is applied for reconstruction. In the final
stage, the reconstruction is improved iteratively by finding and ex-
cluding more voxels belonging to background. The method reduces
the ill-posedness of the image reconstruction problem iteratively such
that good imaging results are obtained for multiple heterogeneities
having complicated geometries even in the presence of 3% additive
white noise. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction

iffuse optical tomography �DOT� is an emerging technology
or noninvasive imaging of large human organs. The diffusion
quation, the basis for most DOT reconstruction
lgorithms,1–4 can be analytically modeled as a linear system
nder the Born or Rytov approximation.5–7 Image reconstruc-
ion is often a severely ill-posed problem due to the finite
umber of linearly independent measurements, noise, and of-
en complicated structure of the heterogeneities in the tissue.
econstruction algorithms play a very important role in DOT,
s the image formation processes are nontrivial. For this rea-
on, the reconstruction problem has received the attention of
any researchers. One of the conventional ways is to formu-

ate an optimization problem that calculates the forward prob-
em iteratively and minimizes the residue of the measured
hoton density perturbations. Adaptive mesh refinement algo-
ithms for finite element forward solver8–15 and conjugate gra-
ient methods16–23 are popular in this approach, and many
odified and improved algorithms have been proposed for

ddress all correspondence to: Nanguang Chen, National University of Sin-
apore, Department of Electrical and Computer Engineering, Block E4, Level 5,
oom 45, 4 Engineering Drive 3, Singapore, 117576. Tel: 65-6516-4401; Email:
iecng@nus.edu.sg
ournal of Biomedical Optics 016007-
such approaches. Another approach is to use the linear model
obtained from the Born/Rytov approximation and employ
mathematical methods like pseudo-inverse, regularization, op-
tode calibration, and other linear transformation techniques to
solve the reconstruction problem.24–34 The present work falls
in the latter category.

The proposed method is a multistage reconstruction algo-
rithm that reduces the ill-posedness of the inverse problem
iteratively and thus improves the image quality. It is assumed
that the heterogeneities have only absorptive contrast against
the background tissue. The first stage uses a signal subspace
method to identify the regions that definitely belong to the
background medium. Thus, the region of interest becomes
smaller, and the ill-posedness of the problem reduces. The
second stage performs a truncated singular value decomposi-
tion �SVD�–based pseudo-inverse for the reduced inverse
problem. The third stage uses an important property of the
truncated SVD-based inversion to guess the regions that be-
long to the background tissue and thus shrinks the region of
interest around the scatterers. The second and third stages are
performed iteratively until the region of interest cannot be

1083-3668/2010/15�1�/016007/7/$25.00 © 2010 SPIE
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educed further based on the property of the truncated SVD-
ased inversion.

The advantages of the proposed method are as follows:
1. As the results show, the method works well even for

omplicated geometries, which have multiple heterogeneities
resent in the domain or have boundaries that are not simply
onnected.

2. The method needs far fewer measurements than are
ypically needed by previously reported inverse methods.

3. The method is simple and easy to implement.
4. The method is fast and converges in a few iterations.
Although the proposed method has been presented for the

bsorptive contrast only in order to remain pertinent to the
roposed method, it can be extended to the general case,
here both absorptive and scattering contrasts are present. It

an also be easily adapted to the Rytov model of diffusion
quation.

We first present the mathematical formulation of DOT.
hen, we present the proposed algorithm and results in sub-
equent sections. We present two examples that demonstrate
he applicability of the algorithm for complicated structure of
eterogeneities. The structures chosen are inspired by the ex-
mples presented in Refs. 15–17. We conclude the paper with
iscussion and conclusions.

Diffusion Model
he frequency domain diffusion model for the photon trans-
ort in highly scattering medium can be represented in terms
f the photon density ��r ,�� as follows:3–5

�− i�

c
+ �a�r����r,�� + � · �− ��r� � ��r,��� = q0�r,�� ,

�1�

here � is the modulation frequency of the incident photon
ave; c is the speed of light in the tissue; �a�r�, ��r�
1 / �3��a+�s���, and �s� are, respectively, the absorption co-

fficient, the diffusion coefficient, and the reduced scattering
oefficient of the tissue at a point r; and q0�r ,��=Q��r� is
he representation of the isotropic point source. We will refer
o Q�rs� as the amplitude of the source at rs. We mention that
he photon density ��r ,�� and the source term q0�r ,�� have
he time harmonic term exp�−i�t�, which has been sup-
ressed in the paper and is present implicitly in the physical
ense.

Following Refs. 5 and 7, under the Born’s approximation,
he perturbation in the measured photon density, �scat�rd ,rs�,
t a detector location rd, can be written as:

�scat�rd,rs� =�
�

G�rd,r�O�r�
Q�rs�

�
G�r,rs�d3r . �2�

ere, the diffusion coefficient ��r� is assumed to be constant
n the tissue sample, and the absorption coefficient is split into
wo parts: �a�r�=�a0+��a�r�, where �a0 is the homoge-
eous part of �a�r�, which is equal to the background absorp-
ion coefficient, while ��a�r� is its heterogeneous part, also
eferred to as the contrast at the location r. Further, G�r ,r�� is
he Green’s function corresponding to the problem, � is the
issue domain of interest containing the heterogeneities, and
ournal of Biomedical Optics 016007-
O�r�=−��a�r� /�. The wave number used for defining the
Green’s function is k= ��i�−c�a0� /c��1/2.

3 Proposed Method
We assume that S sources and D detectors are being used for
measurement. Each detector is a linear sensor sensing the
scattered photon density V�rd� at the detector position rd. The
tissue may be discretized into M voxels, and the absorption
coefficient can be assumed to be constant over a voxel, if the
discretization is sufficiently fine.

3.1 Stage 1: Signal Subspace Method
We form a mapping:

V̄ = �� scatQ̄ , �3�

where V̄ is a vector comprising the perturbation in photon

density measured at rd, V�rd� ,d=1 to D, Q̄ is a vector com-

prising the source terms Q�rs� /� ,s=1 to S, and �� scat is a
matrix whose �d ,s�’th element has the value �scat�d ,s�
=�mG�rd ,rm�O�rm�G�rm ,rs���m�, where ��m� is the vol-
ume �area� of the m’th voxel in a problem of 3-D �2-D� ge-
ometry, and rm is the representative location of the m’th
voxel.

The matrix �� scat can be understood as a linear transforma-
tion from the sources to the photon density perturbations mea-

sured at the detectors. Thus, the vector V̄ lies in the range of

�� scat. Using the singular value decomposition �SVD�35 of the

matrix �� scat, �� scat v̄ j =� jū j, we know that the range of �� scat
is spanned by the vectors ū j, � j�0. Here, vectors ū j and v̄ j
are the left and right singular vectors, respectively, corre-
sponding to the j’th singular value � j obtained by SVD. We

form a matrix U� that contains the vectors ū j, � j�0, which

span the range of �� scat and therefore form the space in which

V̄ lies. We specifically mention that during reconstruction,

�� scat is formed by illuminating the domain using one source

�with amplitude Q�rs�=�� at a time �thus, Q̄ has only one
nonzero element, the nonzero element being 1� and measuring

the perturbations V̄. Then, the column in �� scat corresponding

to the active source is given by V̄. Subsequently, the matrix U�

is formed by applying SVD on the matrix �� scat that contains
the actually measured photon density perturbations.

From the definition of �scat�d ,s�, the matrix �� scat can be
written as:

�� scat = G� scatO� G� inc, �4�

where G� scat is a matrix of dimension �D	M� having ele-

ments G�rd ,rm�, O� is a diagonal matrix whose diagonal ele-

ments are ��m�O�rm�, and G� inc is a matrix of dimension
�M 	S� having elements G�rm ,rs�. Equations �3� and �4� can
be combined as follows:

V̄ = G� �O� G� Q̄� . �5�
scat inc

January/February 2010 � Vol. 15�1�2
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For simplicity, we denote the m’th column in G� scat corre-

ponding to the m’th voxel as Ḡ�rm�. Using Eq. �5�, the ma-

rix G� scat can be understood as a linear transformation that
ransforms the photon sources induced at the voxels’ location,
� G� incQ̄, to the photon density perturbations measured at the
etectors. It should be noted that photon sources are induced
nly at the heterogeneous voxels—say, rm

�het�. Thus, physi-

ally, the vector V̄ lies in a D-dimensional vector subspace

hat is spanned by the vectors Ḡ�rm
�het��.

Combining the physical and mathematical perspectives of

he subspace to which V̄ belongs,36 it is evident that every

ector Ḡ�rm
�het�� can be represented as a linear combination of

he vectors in U� :

Ḡ�rm
�het�� = U� ā . �6�

It is expected that for homogeneous voxels ���a=0�, find-

ng such a combination ā of the vectors in U� should not be
ossible. However, there might be some homogeneous voxels,

uch that Ḡ�rm� corresponding to them are numerically linear

ombinations of the vectors Ḡ�rm
�het��. Thus, although they do

ot contribute physically to V̄, they numerically belong to the

ubspace spanned by the Ḡ�rm
�het��. Due to this, despite being

omogeneous, they can be expressed as linear combinations

f vectors in U� . We denote such voxels depicting an ambigu-
us behavior as rm

�amb�, and the remaining voxels as rm
�hom�.

Based on the residue in Eq. �6�, we form an error metric as
ollows:


�rm� = 	Ḡ�rm� − U� �U� +Ḡ�rm��	/	Ḡ�rm�	 , �7�

here the superscript � denotes the least-square-based
seudo-inverse. The value of 
�rm� is small for the voxels

m
�het� and rm

�amb�, and large for the voxels rm
�hom�. By choosing a

roper threshold, say, 
t, we can classify the voxels with
�rm��
t as rm

�rej�, which definitely belong to 
rm
�hom�� and

ave O�rm�=0. The concept of stage 1 is summarized in
able 1.

It should be noted that although this method is seemingly
imilar to the multiple signal classification �MUSIC�
lgorithm,36,37 there are some very important differences.

Table 1 Summary of stage 1.

erial
no. Category

Current
induced

Result for Eq.
�7�

Inference based
on 
�rm�

1 rm
�hom� Zero 
�rm��
t Definitely

homogeneous,
classify as rm

�rej�

2 rm
�amb� Zero 
�rm�

t May be

heterogeneous

3 rm
�het� Nonzero 
�rm�

t May be

heterogeneous
ournal of Biomedical Optics 016007-
First, MUSIC is a method used for qualitative determination
of the location of heterogeneities, while the present method
does not attempt to locate the heterogeneities. It rather at-
tempts to find out the voxels that cannot be confused as het-
erogeneity and thus reduce the region of interest. Second, the
conventional formulation of MUSIC is applicable to point-
like heterogeneities only, while the current method is appli-
cable to extended heterogeneities as well. Third, MUSIC con-

siders the noise space that is orthogonal to U� , while the

current method considers the range U� itself.
The choice of a threshold value 
t determines the severity

of rejection of the voxels in this stage. However, the suitable
threshold changes from problem to problem and setup to
setup. Empirically, we found that if the SNR of the system is
N dB �N=20 log10�SNR��, a threshold value of −20 log�
t�
=N /6 gives good results. It might be argued that this is a very
large value for the least-squares error method applied here.
However, it is safer to take a reasonably large value so that
the heterogeneous voxels may not get rejected while reducing
the ill-posedness of the problem, especially in the presence of
noise.

3.2 Stage 2: Truncated SVD-Based Pseudoinverse
Here, we construct another mapping:

V̄SD = W� Ō . �8�

Now, V̄SD is an �SD�-dimensional vector containing the mea-
surements corresponding to all the pairs of sources and detec-

tors. It is thus a concatenation of all the vectors V̄ formed by

using only one source at a time. Ō contains the elements

O�rm� 
rm
�rej���. The elements of W� are W�i ,m�

=��m�G�rd ,rm�G�rm ,rs�Q�rs� /�, rm� 
rm
�rej��, where i cor-

responds to a measurement pair �s ,d�.
We rewrite the mapping �8� as follows by separating the

real and imaginary parts of V̄ and W� in order to ensure that Ō
obtained by inversion is real-valued:

V̄SD
B = W� BŌ , �9�

where

V̄SD
B = �R�V̄SD�T I�V̄SD�T�T, and W� B = �R�W� �T I�W� �T�T.

Thus, the inversion can be performed as

Ōinv = �W� B�+V̄SD
B ,

where the superscript � now denotes the truncated SVD-
based pseudoinverse.

The relevance of inversion based on this formulation can
be emphasized by considering that in the previous stage, we

used the concept of measured vector V̄ belonging to the range
subspace. Although we significantly reduced the number of
unknowns by doing so, we were unable to distinguish be-
tween the ambiguous voxels and the heterogeneous voxels.
Since this stage uses the actual photon density measurements,
which correspond to particular vectors in the range subspace,
January/February 2010 � Vol. 15�1�3
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nversion based on it should be able to give a better insight
bout the heterogeneity of the voxels not rejected.

At this point, it is important to discuss again the relevance
f stage 1 on the method. It is evident that the reduction of
efinitely homogeneous voxels reduces the number of un-
nowns and thus reduces the ill-posedness of the problem. It
lso has an impact on the computational complexity of stage

. Stage 1 uses Ḡ�rm� and U� to determine and reject the
efinitely homogeneous voxels. The maximum dimensions of

¯ �rm� and U� are both much less than the total number of
oxels in the domain and close to the number of detectors.

urther, since the matrix U� does not change for any voxel, the
seudoinverse needs to be calculated only once in stage 1. In

tage 2, the maximum dimension of W� B is the number of
oxels under consideration—say, M�. Further, stage 2 re-

uires the calculation of SVD of the matrix W� B, which has a
omputational complexity of O�2DM�2�. Evidently, the com-
utational complexity of stage 1 is much less than stage 2. In
ddition, stage 1 rejects some voxels from further consider-
tion and thus reduces the computational load on stage 2.

.3 Stage 3: Iterative Rejection of Ambiguous
Voxels

ince the dimension of Ō is more than the dimension of V̄SD
B ,

q. �9� is an underdetermined linear equation. Thus, there are
nfinite possible solutions to this equation. However, truncated

seudo-inverse of W� B provides a solution among the infinite
ool of solutions that has the following properties:

1. In the M-dimensional space of Ō �i.e., the domain of
� B�, solution vectors lying in the subspace spanned by the

rst few right singular vectors �as many as the rank of W� B�
re considered.

2. Among the solutions lying in the subspace discussed
arlier, the solution with minimum length �or minimum
robenius norm� is chosen as the solution of the equation.

We recall that O�rm�=−��a�rm� /�. If all the heterogene-
ties have similar—say, positive—contrast ���a�rm

�het���, then

he actual vector Ō will have some negative components �for
he heterogeneous voxels� and some zero components �for the
omogeneous voxels�. Since the truncated pseudo-inverse
ill find a solution with minimum length, the solution chosen,

¯ inv, is as close to the origin of the M dimensional space of Ō
s possible. This implies that in comparison to the actual vec-

or Ō, Ōinv is expected to be smooth vector with small nega-
ive and positive values close to zero. Further, the voxels be-
onging to the heterogeneities or near to them will have
egative values for the retrieved Oinv�rm�, and the voxels
way from the heterogeneities are very likely to have positive
alues for the retrieved Oinv�rm�. Consequently, the voxels
hose retrieved values Oinv�rm� are positive are very unlikely

o belong to 
rm
�het��. Thus, we add them to the set of rejected

oxels 
rm
�rej��, and perform the stages 2 and 3 iteratively until

ll the elements of Ōinv are negative.
However, it should be noted that the value of the absorp-

ion coefficient of the background cannot be known a priori
or biological samples, and the value used is the statistical
ournal of Biomedical Optics 016007-
average available from previous research. Thus, the actual
absorption coefficient of the tissue may be slightly larger or
smaller than the value used for reconstruction. Due to this, it
is more reasonable that we do not reject the voxels based on
the negative definiteness of Oinv�rm�, and instead, we allow
some margin on the positive side. Accordingly, we may reject
voxels for which Oinv�rm��c max��Oinv�rm���, where
c� �0,1� and is preferably small. Typically, the value of c
may be chosen to be the relative tolerance level in the esti-
mated statistical average of the absorption coefficient �a of
the background tissue.

4 Numerical Examples
We consider two 2-D examples to illustrate the performance
of the algorithm. In both examples, the background tissue is
of size 3	3 cm and has the parameters �s�=10 cm−1 and
�a0=0.02 cm−1 ��5% �. All the heterogeneities have con-
trast ��a=0.2 cm−1. We have used eight sources and eight
detectors, placed in a regular circular fashion around the do-
main. The radius of this circular arrangement is 2.5 cm. The
measurement setup is shown in Fig. 1�a�. The modulation
frequency of the photon density waves is 400 MHz.

The tissue has been discretized into square pixels of di-
mension 0.04	0.04 cm2 for the forward problem and
0.05	0.05 cm2 for the inverse problem. Different pixel sizes
have been chosen in order to avoid the inverse crime. The
forward problem has been solved using Eq. �8�, and white
Gaussian noise has been added to the calculated photon den-
sity perturbations. The solution of the forward problem is cor-
rupted by adding 3% white Gaussian noise.

Since we assume the background tissue to extend infi-
nitely, we use the homogeneous 2-D Green’s function
G�r ,r��= �i /4�H0

�1��k�r−r���, where H0
�1��x� is the Hankel

function of the first kind and zero order. The values of 
t and
c are chosen to be 20 log�
t�=−5 and 0.05, respectively. All
the figures representing the heterogeneities and the recon-
struction results plot the actual/reconstructed absorptive con-
trast for the complete investigation domain.

4.1 Example 1
The first example consists of three circular heterogeneities
present in the investigation domain �see Fig. 1�b��. These het-
erogeneities are located at �−0.5,−0.6� cm, �−0.6,0.7� cm,
and �0.7,0.3� cm, respectively, and have radius 0.4 cm each.

The plot of 20 log�
�rm�� is plotted in Fig. 1�c�, and the
voxels rejected as definitely homogeneous are shown in black
in Fig. 1�d�. The final reconstruction result is shown in Fig.
1�e�. The result is obtained after 13 iterations. For compari-
son, we provide the reconstruction result when only the trun-
cated SVD-based pseudo-inverse is used for reconstruction in
Fig. 1�f�. It is evident that Fig. 1�f� presents a very blurred
reconstruction and the three heterogeneities are not well-
resolved.

The results presented in Figs. 1�e� and 1�f� assume that the
absorption coefficient of the tissue is known to be exactly
�a0=0.02 cm−1. However, as discussed before, often the ex-
act absorption coefficient of the background tissue is not
known in advance, and the statistical average needs to be used
for calculation. We present two example cases to demonstrate
January/February 2010 � Vol. 15�1�4
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he effectiveness of the algorithm in such cases. In the first
ase, the actual absorptive contrast is 5% more than the sta-
istical average �a0=0.02 cm−1. The result for this case is
btained after 14 iterations and is presented in Fig. 1�g�. In
he second case, the actual absorptive contrast is 5% less than
he statistical average �a0=0.02 cm−1. The result for this case
s obtained after 18 iterations and is presented in Fig. 1�h�.

.2 Example 2
he second example consists of an annular heterogeneity
resent in the investigation domain �see Fig. 2�a��. It is cen-

ig. 1 Example 1: Three circular heterogeneities �background tissue
roperties �statistical estimates�: �s�=10 cm−1 and �a0=0.02 cm−1;
% additive white noise�. �a� The measurement setup, showing the
rrangement of the sources and detectors and the tissue region of
nterest. �b� The tissue region of interest and the distribution of hetero-
eneities. The absorptive contrast for the heterogeneities is ��a
0.2 cm−1. �c� The plot of 20 log 
�rm� used to reject the definitely
omogeneous voxels in stage 1. The threshold used for stage 1 is
0 log 
t=−5. �d� The voxels rejected in stage 1 as definitely homoge-
eous voxels �shown in black�. �e� Multistage reconstruction when the
ackground �a0 is the same as the statistical estimate. �f� Truncated
VD-based reconstruction when the background �a0 is the same as
he statistical estimate. �g� Multistage reconstruction with 5% under-
stimated background �a0. �h� Multistage reconstruction with 5%
verestimated background �a0.
ournal of Biomedical Optics 016007-
tered at �0.1,0.2� cm and has inner radius of 0.7 cm and
outer radius of 1 cm. The center has been chosen such that
there is not symmetry between the source/detector arrange-
ment and the heterogeneity. The plot of 20 log�
�rm�� is
shown in Fig. 2�b�. The reconstruction result is obtained after
12 iterations and is shown in Fig. 2�c�. The reconstruction
result using only the truncated SVD-based pseudo-inverse is
shown in Fig. 2�d�. As seen in Fig. 2�d�, the inner hollow of
the annular tissue is not detected using the truncated SVD-
based pseudo-inverse.

Next, we present results for the cases where the actual
absorption coefficient of the background tissue is different
from the statistical average used for computation. In the first
case, the actual absorptive contrast is 5% more than the sta-
tistical average �a0=0.02 cm−1. The result for this case is
obtained after 14 iterations and is presented in Fig. 2�e�. In the
second case, the actual absorptive contrast is 5% less than the
statistical average �a0=0.02 cm−1. The result for this case is
obtained after 10 iterations and is presented in Fig. 2�f�.

Fig. 2 An annular heterogeneity �background tissue properties �statis-
tical estimates�: �s�=10 cm−1 and �a0=0.02 cm−1; 3% additive white
noise�. �a� The tissue region of interest and the distribution of hetero-
geneities. The absorptive contrast for the heterogeneities is ��a
=0.2 cm−1. �b� The plot of 20 log 
�rm� used to reject the definitely
homogeneous voxels in stage 1. The threshold used for stage 1 is
20 log 
t=−5. �c� Multistage reconstruction when the background �a0
is the same as the statistical estimate. �d� Truncated SVD-based recon-
struction when the background �a0 is the same as the statistical esti-
mate. �e� Multistage reconstruction with 5% underestimated back-
ground �a0. �f� Multistage reconstruction with 5% overestimated
background �a0.
January/February 2010 � Vol. 15�1�5
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Discussion and Conclusion
hile the conventional approach would directly apply some

nversion technique �like truncated SVD-based pseudo-

nverse� to solve Eq. �8� or �9� for Ō, we have reduced the

umber of unknowns in Ō in stage 1 and then iteratively in
tage 3. The role of stage 1 is to provide an initial guess and
ccelerate the algorithm. It does not improve the resolution by
tself, although it reduces the ill-posedness of the subsequent
ormulation. The improvement in resolution and quality of
maging is specifically due to the stage 3. Thus, the quality of
econstruction will not be greatly affected if stage 1 is omit-
ed. However, the algorithm will perform slowly and will
ypically need more iterations to converge. On the other hand,
f stage 3 is omitted, the reconstruction using stage 1 and
tage 2 is only marginally better than performing stage 2
lone.

The rejection of the voxels definitely belonging to the
ackground has given us two advantages. First, we have re-
uced the computational intensity of the problem. Second,
nd more important, we have made the problem of inversion
ore definitive and guided. Effectively, we have reduced the

ll-posedness of the overall inversion problem by reducing the
umber of unknowns iteratively �due to the rejection of vox-
ls�. We have shown the performance of our algorithm in the
resence of multiple heterogeneities and heterogeneities with
omplicated structures that may contain boundaries that are
ot simply connected.

We also note that although the present analysis has been
eveloped for absorptive contrast only and in the premise of
orn approximation, it is easily extensible to the scattering
ontrast and/or Rytov approximation. Further, although the
oncept has been demonstrated for an infinitely extending
ackground tissue, it is directly applicable to finite tissue
oundaries by the use of the appropriate Green’s function
overning the problem scenario.
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