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Abstract. This paper addresses the representation of binary im-
ages using mathematical morphology, a nonlinear theory for image
processing, based on set theory. The new image representation,
called “five-step” skeleton representation, is an extension of the
morphological binary skeleton. It consists of calculating the morpho-
logical digital binary skeleton using squares or crosses and then
reiterating the above procedure for skeleton subsets using lines
(horizontal, vertical, 45° and 135°). The theoretical background of
the new morphological iterative image representation is presented.
Applications and results are illustrated by computer simulations. ©
2007 SPIE and IS&T. �DOI: 10.1117/1.2713739�

1 Introduction
Image representation is a key component in many tasks in
computer vision and image processing. It consists generally
of presenting an image in a form that differs from the origi-
nal one, in which desired characteristics of the image are
emphasized and can be easily accessed.1,10

Mathematical morphology is part of set theory, and it
has a strong geometric orientation. For binary images,
mathematical morphology provides a well-founded theory
for analysis and processing. Therefore, binary morphologi-
cal representations can be developed and analyzed.11–16

Mathematical morphology involves the study of the differ-
ent ways in which a structuring element interacts with a
given set, modifies its shape, and extracts the resultant
set.2–8

The basic operations are erosion and dilation. Based on
these operations, opening and closing operations are de-
fined. The morphological operations have been successfully
used in many applications including object recognition, im-
age enhancement, texture analysis, and industrial
inspection.2,9,17–20

The new morphological binary image representation
presented in this article is the “five-step” skeleton �denoted
as 5SK�, which is a natural extension of the morphological
skeleton. It consists of first calculating the morphological
digital binary skeleton using squares or crosses and then
reiterating the above procedure for skeleton subsets using
lines �horizontal, vertical, 45° and 135°� of growing length.
In five steps, we have the skeleton of the skeleton subsets
of the skeleton subsets, etc. using different structuring ele-
ments �squares or crosses—first step, and then horizontal
lines—Lh, vertical lines—Lv, 45° lines—L45, and 135°
lines—L135, for the next four steps�. Its compression rate is
very high, and the binary images can be perfectly recon-
structed.
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2 Original Morphological Digital Skeleton
As mention, dilation and erosion are the fundamental op-
erators of mathematical morphology. The key process in the
dilation and erosion operators is the local comparison of a
shape, called the structuring element, with the object to be
transformed. The structuring element is a predefined shape,
used for morphological processing of the images. The most
common shapes used as structuring elements �SE� are
squares, crosses, horizontal lines, vertical lines, etc.1–10

The binary digital skeleton is one of the main operators
in mathematical morphology, and it can be calculated en-
tirely using the basic morphological operators.10–20 It has
been proved1–20 that the skeleton subsets S�X ,nB�, of order
n, of a binary digital image X in Z2 can be calculated by
means of binary morphological operations, in the following
way:

S�X,nB� = X � nB − �X � nB� � B , �1�

where B is a structuring element, with nB= �n−1�B � B and
0B=0.

From the collection of subsets S�X ,nB� and known order
n, the original digital binary image shape X can be perfectly
reconstructed by morphological formulas:

X = �
n=0

N

S�X,nB� � nB , �2�

where S�X ,NB��� and S�X ,nB�=� for n�N+1.
Figure 1 shows a binary image and its morphological

skeleton. The skeleton is obtained using a rhomb as the
structuring element. The compression rate for this example
is 27. This means that, for the skeleton, we need 27 times
less information in order to reconstruct the original image.
The reconstruction process needs additional information
about the size of the structuring element for each point of
the skeleton. By adding the information about the structur-
ing element to the skeleton, the resulting image can be
considered as a grayscale image �Fig. 2�.

Fig. 1 The original image �a� and its skeleton �b�.
Fig. 2 The skeleton completed with structuring element information.
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The morphological skeleton is thin, composed of lines
and/or points. The most difficult problem with the skeleton
representation is that it contains many redundant points.
These points are not needed for reconstruction but appear
in the skeleton. Several methods were proposed for reduc-
ing the skeleton’s redundancy, and the use of these methods
reduces the number of redundant points in various
degrees.2,6,8,9,14,17 The image representations obtained from
these methods are called reduced skeletons. The computa-
tional complexity is very high, and the compression rate
grows, although generally not significantly.

3 The “Five-Step” Skeleton
The method proposed in this paper is entirely based on the
digital skeleton representation and represents an iterative
generalization. The main idea is to compute the skeleton
five times. The new morphological binary image represen-
tation presented in this article is the “five-step” skeleton
�denoted as 5SK�, which is a natural extension of the mor-
phological skeleton. In the first step, the skeleton subsets of
the binary image are computed. The structuring element
used for this operation must be a square or an elementary
cross. The skeleton has a large number of redundant points
that reduce the compression rate.

We obtain S�X ,nBB�, with nB=0,1 ,2 ,… ,NB,
S�X ,NBB���, S�X , �NB+1�B�=�, nB�NB+1. We may
then define XB

nB =S�X ,nBB�, for nB=0,1 ,2 ,… ,NB.
Because of these redundant points, the elements of the

skeleton subsets are highly connected. These lines are di-
vided into two categories:

• The first category contains horizontal lines, vertical
lines, lines at 45°, and lines at 135°.

• The second category contains all the other lines. If we
take a closer look at these lines, we notice that they
are actually made of small horizontal and vertical lines
as well as 45° and 135° lines �Fig. 3�.

Since the skeleton is mainly composed of lines, the
structuring elements used for the next four-step new skel-
eton computation will be a horizontal line, a vertical line, a
45° line, and a 135° line. For nB=0,1 ,2 ,… ,NB, we apply
the next four steps.

In the second step, for each skeleton subset obtained
using squares or crosses, each horizontal line �a small one
or a big one� will be replaced by a pixel. That pixel’s in-
tensity will be the length of the line. We just have to apply
the skeleton algorithm using the horizontal line as a struc-
turing element.

For nh
nB =0,1 ,2 ,… ,Nh

nB, we obtain the skeleton subsets
P�nh

nBLh�=S�XB
nB ,nh

nBLh�, with S�XB
nB ,Nh

nBLh��� and
S�XB

nB , �Nh
nB +1�Lh�= � ,n�Nh

nB +1, of the first-order skel-
nB

Fig. 3 Details of the second-category lines for skeleton subsets.
eton subsets XB .
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We may then define

Xh�nB� = XB
nB − �

nB=0

Nh
nB

P�nh
nBLh� � nh

nBLh, �3�

where the � sign is the set difference. The binary image
Xh�nB� contains just vertical lines and 45° and 135° lines.

In the next step, the skeleton decomposition algorithm is
applied for Xh�nB�, using as structuring elements the verti-
cal lines. We obtain skeleton subsets of Xh�nB� defined by
P�nv

nBLv�=S�XB
nB ,nv

nBLv� for nv
nB =0,1 ,2 ,… ,Nv

nB.
As with Eq. �3�, we may now define

Xv�nB� = XB
nB − �

nB=0

Nv
nB

P�nv
nBLv� � nv

nBLv. �4�

The binary image Xv�nB� contains just 45° and 135° lines.
Finally, in the last two steps, we apply a similar algo-

rithm, obtaining P�n45
nBLv� and P�n135

nB Lv�. Many lines �hori-
zontal, vertical, 45° and 135°� of different lengths are re-
placed by points.

4 Conclusions
Usually, the number of points in 5SK is much smaller than
the number of points in the classical skeleton. For Fig. 1,
using the five-step skeleton, the compression rate is 61.
Finally, we have to attach the information about the struc-
turing elements to the points of the 5SK. This information
can be added in a similar way to the morphological skel-
eton method. The method could be applied for grayscale
images. We just have to divide the grayscale images in
binary images. The results are good, with perfect recon-
structions.

The “five-step” skeleton is a new and improved method
for removing the redundant points from the morphological
skeleton of a binary image. Because of these properties, the
five-step skeleton is recommended for image compression
in areas where image quality is essential, including those
where a degradation of the image due to the compression
process is not accepted. The complexity of the method is
not high because the standard skeleton algorithm is fast and
could be applied to specialized processors.

References
1. G. S. Baja and I. Nystrom, “2D grey-level skeleton computation: A

discrete 3D approach,” Proc. 17th Intl. Conf. Patt. Recog. 2, 455–458
�2004�.

2. H. Wang, G. M. Schuster, A. K. Katsaggelos, and T. N. Pappas, “An
optimal shape encoding scheme using skeleton decomposition,” IEEE
Workshop Multimedia Signal Process., pp. 85–88 �2002�.

3. H. Wang, G. M. Schuster, A. K. Katsaggelos, and T. N. Pappas, “An
efficient rate-distortion optimal shape coding approach utilizing a
skeleton-based decomposition,” IEEE Trans. Image Process. 12�10�,
1181–1193 �2003�.

4. M. Ito, “On the properties of morphological skeletons of discrete
binary image using double structuring elements,” IEEE Southwest
Symp. Image Analysis and Interpretation, pp. 26–30 �2006�.

5. J.-S. Park and I.-S. Oh, “Shape decomposition and skeleton extrac-
tion of character patterns,” Proc. 16th Intl. Conf. Patt. Recog. 3,
411–414 �2002�.

6. B. Kegl and A. Krzyzak, “Piecewise linear skeletonization using
principal curves,” IEEE Trans. Pattern Anal. Mach. Intell. 24�1�,
59–74 �2002�.

7. L.-C. Kuo and S.-J. Wang, “A flexible architecture for feature-based
image editing,” Proc. IEEE Intl. Conf. Acoustics, Speech, Signal Pro-

cess. 2, 1177–1180 �2005�.

Jan–Mar 2007/Vol. 16(1)2



J E I L E T T E R S
8. K. Morooka, H. Takagi, and H. Nagahashi, “Active balloon model
based on 3D skeleton extraction by competitive learning,” Proc. 4th
Intl. Conf. 3-D Digital Imaging and Modeling, pp. 87–94 �2003�.

9. E. Namati and J. S. J. Li., “A novel shape descriptor based on empty
morphological skeleton subsets,” Proc. 2004 Intl. Symp. Intelligent
Multimedia, Video, and Speech Process., pp. 446–449 �2004�.

10. P.-C. Liu, F.-C. Wu, W.-C. Ma, R.-H. Liang, and M. Ouhyoung, “Au-
tomatic animation skeleton using repulsive force field,” Proc. 11th
Pacific Conf. Computer Graphics Appl., pp. 409–413 �2003�.

11. J. Sadri, C. Y. Suen, and T. D. Bui, “Automatic segmentation of
unconstrained handwritten numeral strings,” Ninth Intl. Workshop
Frontiers in Handwriting Recog., pp. 317–322 �2004�.

12. S. W. Loke, “Towards data-parallel skeletons for grid computing: An
itinerant mobile agent approach,” Cluster Computing and the Grid,
Proc. 3rd IEEE/ACM Intern. Symp., pp. 651–652 �2003�.

13. R. Strand, “Surface skeletons in grids with non-cubic voxels,” Proc.
17th Intl. Conf. on Pattern Recog. 1, 548–551 �2004�.

14. A. Torsello and E. R. Hancock, “Correcting curvature-density effects
in the Hamilton-Jacobi skeleton,” IEEE Trans. Image Process. 15�4�,

877–891 �2006�.

Journal of Electronic Imaging 010501-
15. D. N. Vizireanu, S. Halunga, and O. Fratu, “A grayscale image inter-
polation method using new morphological skeleton,” Telecomm.
Modern Satellite, Cable and Broadcasting Service, Proc. 6th Intl.
Conf. 2, 519–521 �2003�.

16. W.-P. Choi, K.-M. Lam, and W.-C. Siu, “An efficient algorithm for
the extraction of a Euclidean skeleton,” Proc. IEEE Intl. Conf. Acous-
tics, Speech, and Signal Process. 4, IV3241–IV3244 �2002�.

17. W.-C. Ma, F.-C. Wu, and M. Ouhyoung, “Skeleton extraction of 3D
objects with radial basis functions,” Int. J. Shape Model., 207–215
�2003�.

18. J. Xu, “A generalized discrete morphological skeleton transform with
multiple structuring elements for the extraction of structural shape
components,” IEEE Trans. Image Process. 12�12�, 1677–1686
�2003�.

19. J. Xu, “A generalized morphological skeleton transform and extrac-
tion of structural shape components,” Proc. Intl. Conf. Image Pro-
cess. 1, 325–328 �2003�.

20. J. Xu, “Efficient morphological shape representation with overlap-
ping disk components,” IEEE Trans. Image Process. 10�9�, 1346–

1356 �2001�.

Jan–Mar 2007/Vol. 16(1)3


