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ABSTRACT   

Hyperspectral microscopic imaging (HMI) technology is a non-contact optical diagnostic method, which combines 
hyperspectral imaging (HSI) technology with microscopy to provide both spectral information and image information of 
the samples to be measured. In this paper, basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and malignant 
melanoma (MM) were classified based on synthetic RGB image data from HMI cube by using four classification 
methods extreme learning machine (ELM), support vector machine (SVM), decision tree and random forest (RF). The 
highest classification accuracy of 0.791±0.060 and a KAPPA value of 0.685±0.095 were obtained when color moment, 
gray level co-occurrence matrix (GLCM) and local binary pattern (LBP) were used for image feature extraction, feature 
dimensions were reduced by the PLS, the sample sets were divided by the hold-out method, and the tissues were 
classified by the SVM model.  
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1. INTRODUCTION  
Skin cancer is the most common of all cancers with incidence rates increasing year over year. The diagnosis and 
treatment of skin cancer has become a major public health problem. Various optical imaging techniques have been used 
as auxiliary tools in skin cancer diagnosis with the advantages of non-invasiveness, high resolution and high sensitivity. 
Hyperspectral microscopic imaging (HMI) technology1 combines hyperspectral imaging (HSI) with microscopy to 
provide 3D data cube, i.e. spectral information and image information, to reflect the changes in the physical structure and 
microenvironment of the samples to be measured. In recent years, HMI has been used as a diagnostic method in 
biomedical field for the detection of tissues, cells and microbe etc2-4. At the same time, the combination of HMI and 
machine learning can assist doctors in diagnosis and greatly improve the efficiency and accuracy of the diagnosis, as 
well as having a wide field of application in the future4-6.  

Abdlaty et al.7 investigated the feasibility of using HSI for quantitative assessment of early skin erythema. HSI and color 
imaging data was analyzed using linear discriminant analysis (LDA) to perform classification. The classification results, 
including accuracy and precision, demonstrated that HSI was superior to color imaging in skin erythema assessment. 
Ortega et al.8 collected 517 HMI cubes of pathological slides from 13 glioblastoma patients and automatically detected 
glioblastoma by using a convolutional neural network (CNN). The results showed average sensitivity and specificity 
values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the 
results obtained using RGB images. Leon et al.9 used the HMI system to collect 76 images of pigmented skin lesions 
from 61 patients and classified them into benign and malignant with an automatic recognition and classification 
framework based on the combination of unsupervised algorithm and supervised algorithm. The sensitivity and specificity 
for the differential diagnosis of benign and malignant pigmentary skin lesions were 87.5% and 100%, respectively. Liu et 
al.10 combined HMI with machine learning methods for staging identification of squamous cell carcinoma (SCC) based 
on hyperspectral data and obtained the highest staging accuracy of 0.952±0.014, and a KAPPA value of 0.928±0.022. 

In this paper, HMI data cubes of basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and malignant melanoma 
(MM) were collected by a home-made push-broom HMI system11. Based on the image data and using various 
classification models, the classification of BCC, MM and SCC was realized. 
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2. MATERIALS AND METHODS  
2.1 Experimental Materials 

The skin tissue samples used in our experiments were purchased from Xi'an Alenabio company (sample No: SK801c) 
and ZhongkeGuanghua (Xi'an) Intelligent Biotechnology company (sample No: K683501). In total, there were 34 cases 
of BCC, 63 cases of SCC and 39 cases of MM.   

2.2 HMI System 

The HMI system used in our experiments11 had a wavelength range of 465.5-905.1 nm, with a total of 151 bands and the 
spectral resolution of ~3 nm. The system magnification was 28.15×, the field of view was 400.18 μm×192.47 μm, and 
the actual resolution was in the range of ~1.10-1.38 μm depending on the light wavelength. 

2.3 Classification Methods 

2.3.1 Image feature extraction  

The image information in the HMI data cube can display the physical structure and spatial distribution of the samples to 
be measured. Traditional color image data contains RGB three channels, while the data collected by HMI system 
contains 151 bands. According to the International Commission on Illumination, three primary colors of RGB are red 
light (R) with a wavelength of 700.0nm, green light (G) with a wavelength of 546.1nm and blue light (B) with a 
wavelength of 435.8nm. Therefore, we selected the single-band images of band 74 (wavelength of 700.1 nm), band 23 
(wavelength of 545.3 nm) and band 1 (wavelength of 465.5 nm) for RGB image synthesis.  

In this paper, the color features and texture features were extracted from the synthesized RGB image, respectively, and 
then they were used for skin cancers classification. The color features included color moment and HSV (hue, saturation, 
value) color space. The texture features included local binary pattern (LBP), gray-level co-occurrence matrix (GLCM) 
and histogram of oriented gradient (HOG). 

2.3.2 Dimensionality reduction 

Dimensionality reduction is of great importance for high dimensional data analysis because it can eliminate the 
redundances among data samples and extract useful features at the same time. In this paper, principal component 
analysis (PCA) and partial least squares (PLS) were used to reduce the dimensions of the HMI datasets to improve the 
accuracy of the model and speed up the algorithms.  

2.3.3 Classification model 

In our experiments, skin cancer classification models were established based on four classification methods: extreme 
learning machine (ELM), SVM, decision tree and random forest (RF). 

3. RESULTS  
3.1 Dimensionality reduction 

To remove redundant information and reduce the complexity of calculation, dimensionality reduction for image features 
were implemented. Figure 1 and Figure 2 show the contribution rates of color moment, HSV color space, HOG, GLCM 
and LBP features using PCA and PLS dimensionality reductions, respectively. By comparing the contribution rates of 
each image feature, it could be seen that the PLS outperformed the PCA in higher contribution rates with fewer principal 
components. Therefore, the PLS was selected to reduce dimensions in the experiments. In the subsequent analysis, the 
first three principal components were extracted for color moment, HSV color space and GLCM features, respectively, 
and the first 10 principal components were extracted for HOG and LBP features, respectively. 
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Figure 1. Contribution rates of different image features with PCA dimensionality reduction. (a) color moment; (b) HSV 
color space; (c) HOG; (d) GLCM; (e) LBP. 

 
Figure 2. Contribution rates of different image features with PLS dimensionality reduction, (a) color moment; (b) HSV color 
space; (c) HOG; (d) GLCM; (e) LBP. 

3.2 Combination of Image features 

In order to extract the optimal image features, we tried different combinations of HSV color space, color moment, 
GLCM, LBP and HOG features. Table 1 shows the classification results when PLS was used for dimensionality 
reduction, hold-out method for dataset partition and SVM model for skin cancers classification. It could be seen that, the 
classification accuracies based on each single image feature, from high to low, were as follows: color moment, LBP, 
GLCM, HSV color space and HOG. Since the HOG feature showed the lowest classification accuracy and KAPPA value 
(0.454±0.05, 0.164±0.078), it was discarded as unreliable. From classification results of different combinations of the 
other four image features, the combination of color moment, GLCM and LBP had the highest accuracy of 0.791±0.06 
and KAPPA value of 0.685±0.095. Therefore, the above three features were extracted in the subsequent skin cancer 
classifications with various models. 

Table 1. Classification results of the SVM model based on image features. 

Classification 
model 

Number 
of 

features 

Feature Accuracy KAPPA 

SVM 1 HSV 0.563±0.038 0.337±0.058 
Color moment 0.645±0.044 0.457±0.074 

HOG 0.454±0.050 0.164±0.078 
GLCM 0.630±0.032 0.439±0.049 

LBP 0.635±0.038 0.446±0.059 
2 HSV+ Color moment 0.642±0.044 0.459±0.067 

HSV+GLCM 0.693±0.062 0.535±0.092 
HSV+LBP 0.603±0.038 0.397±0.060 

Color moment +GLCM 0.713±0.069 0.566±0.092 
Color moment +LBP 0.669±0.069 0.500± 0.103 

GLCM+LBP 0.684±0.056 0.523±0.086 
3 HSV+ Color moment +GLCM 0.709±0.056 0.559±0.084 

HSV+ Color moment +LBP 0.694±0.081 0.538±0.098 
Color moment +GLCM+LBP 0.791±0.060 0.685±0.094 

4 HSV+ Color moment 
+GLCM+LBP 0.745±0.062 0.613±0.094 
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3.3 Skin cancer classification 

According to the results in Section 3.1 and Section 3.2, the color moment, GLCM and LBP features were extracted from 
the images, PLS was used to reduce the dimensions and hold-out method was used to divide training and test datasets. 
The skin cancer classification models for BCC, SCC and MM were established based on ELM, SVM, decision tree and 
RF. From the results shown in Table 2, it could be seen that the comprehensive performance of SVM model was the best, 
followed by ELM, RF and decision tree in sequence. Figure 3 shows the skin cancer classification result of SVM model. 
The accuracy of 0.802 and KAPPA value of 0.699 were obtained. 

Table 2. Skin cancer classification results of each model based on the features of Color moment, GLCM and LBP. 

Classification model Accuracy KAPPA 
ELM 0.661± 0.063 0.490±0.095 
SVM 0.791±0.060 0.685±0.095 

Decision tree 0.671± 0.044 0.505±0.068 
RF 0.706± 0.056 0.553±0.085 

 
Figure 3. Skin cancer classification result of SVM model based on the features of Color moment, GLCM and LBP. The 
“o” and “*” represented the true values and predicted values, respectively. 

4. CONCLUSION 
In this paper, we performed skin cancer classification by using HMI image data and machine learning. In the 
classification of BCC, SCC and MM, different image features or their combinations were extracted from the synthetic 
RGB image data in HMI cube; the different features were dimensionally reduced with PCA and PLS; the training set and 
test set were divided using the hold-out method; and the skin cancer classification models (ELM, SVM, decision tree and 
RF) were established. 

From the experimental results, it could be seen: PLS was better than PCA and used to reduce dimensions; the 
combination of color moment, GLCM and LBP features was extracted as image features for its superiority over other 
features/combinations; and the SVM model obtained the highest classification accuracy and KAPPA value (0.791±0.06, 
0.685±0.095). In the further work, more tissue samples will be used to test and optimize the model performance. We 
believe that the combination of HMI and machine learning will be beneficial to doctors in skin cancer diagnosis with 
high efficiency and accuracy and have extensive applications in biomedical field in the future.  
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