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ABSTRACT

In interventional radiology, 3D reconstruction of devices such as needles would increase the precision of proce-
dures. Doing so with CBCT is time-consuming and increases the X-ray dose. Needles being sparse, a compressed-
sensing reconstruction approach seems viable. We thus investigate the interest of directional total variation as
an adequate prior for anisotropic devices. We introduce a decomposition method that allows several a priori di-
rections to be considered at once as well as excludes the anatomical background that is not sparse. The capacity
of the method is illustrated on simulations of limited-angle acquisitions. It is shown to allow good reconstruction
of the needles from a small angular coverage, even if the anatomical background cannot be recovered.
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1. INTRODUCTION

Flat-panel based C-arm systems provide real-time 2D imaging to guide the navigation of therapeutic devices
during minimally invasive vascular or percutaneous procedures. In the following, we shall focus on interventions
that make use of metallic needles, such as vertebroplasty, radiofrequency ablations, or biopsies. Cone-beam
computed tomography (CBCT) is available through the rotation of the C-arm around the patient. It allows the
3D reconstruction of highly attenuating metallic devices together with the patient background anatomy. In the
guidance phase of the procedure, the patient is positioned to optimize the real-time visualization of the device
and its trajectory. At any time, CBCT scans could be performed to precisely assess the position of the device
according to the planned trajectory. But such repeated acquisitions increase the X-ray dose received by the
patient. Furthermore, the patient may need to be moved to another position to avoid collisions during the 200°
rotation required by tomography. Rotating over a smaller angular coverage would reduce the number of times
changing the position of the patient is needed, and would reduce the number of projections, and the amount
of X-ray dose. Model-based iterative reconstruction methods (MBIR) have proven useful to reconstruct soft
tissues from a reduced number of projections over a full tomographic angular coverage. In Ref.,1 a least-squares
criterion regularized with total variation (TV) was used to remove the undersampling streaks of dense objects
over the less dense soft tissues. However, TV regularization is isotropic: in 2D, it penalizes the ℓ1 norm of
the image partial derivatives along the vertical and horizontal directions equally. TV is not able to recover
the edges along directions not sampled by the limited angular coverage. Only edges and details tangent to the
projection directions are recovered.2 For piecewise constant geometrical objects, successful results have been
obtained with the anisotropic total variation (ATV). ATV assigns different weights to the vertical and horizontal
partial derivatives of the image. This strategy allows for considering the angular range as an additional prior
information.3 Since the non convex ℓ0 pseudo-norm is the most direct measure of sparsity of an object, ℓ1-
reweighting strategies and heuristics have been investigated to incorporate the idea of an independence on the
magnitude of the ℓ0-norm into the ATV approach. But, due to non-convexity, it is not clear that the resulting
optimization methods converge to a global minimum.3–5 Recently, ATV constrained formulations (instead of
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regularization-based ones) allowed for the reconstruction of complex patterns from limited angle acquisitions.6

The anisotropic regularizer proposed in Ref.7 is particularly suited to thin objects like needles because it
emphasizes one specific direction. In the following, we call it directional total variation (DTV). With DTV,
the gradient norm is computed along one selected direction that is not necessarily aligned with the pixel grid.
Applications on denoising and reconstructing images of fiber materials have been successful.8 Additionally, DTV
with a spatially varying direction and strength,9–11 that includes higher order derivatives8,12 has been proposed
to extend the applicability of DTV, for instance to vessels and fingerprints. In this work, we consider the
simple geometric shape of needles that is very sparse and can be reconstructed from a limited-angle acquisition.
However, we here allow more directions than one and superimpose them over an anatomical background that
is not assumed sparse. We propose to adopt an image decomposition approach that applies DTV over multiple
directions for the needles and TV to approximate the background. Decomposition was first proposed for texture-
geometry decomposition13 and has also been applied to CT imaging to decompose the reconstruction into three
components of object, subsampling artifacts and noise.14

In Section 2, we review the DTV regularization for incorporating directional information and the decomposition
method to selectively apply separate directional constraints on separate components as well as to exclude the
anatomical background. Numerical experiments are then provided and discussed in Section 3 to illustrate the
potential of the proposed method.

2. METHOD

2.1 Scanning model

Data collected in X-ray tomographic imaging can be modeled by the following discrete linear system

y = Hx+ b (1)

where H ∈ RM×N is the discretized model of forward projection,15 x ∈ RN is the unknown attenuation image,
y ∈ RM represents the log-transform of the data measured by the detector and b ∈ RM is an additive noise
term.
In a limited angle setting, (1) is a severely underdetermined system of linear equations. The lack of data must
be compensated by a priori knowledge that constrains the problem by limiting the space of feasible solutions.
To estimate x, we consider the sum of a least-squares data fidelity term and a convex regularizer g embedding
this prior information, in particular sparsity and direction:

minimize
x∈RN

1

2
∥y −Hx∥2D + g(x). (2)

Matrix D stands for the ramp filter which provides faster convergence through an approximate inversion.1,16,17

We now discuss the choices for g.

2.2 Directional total variation (DTV)

DTV enforces the prior that the object is piecewise constant and follows one main direction. For an image
x ∈ RN , its DTV can be defined as DTVΩ(x) =

∑N
n=1 ∥(∇Ωx)n∥1 = ∥ΛRθ(∇x)∥1,1 where ∇Ω ∈ R2×N contains

two directional derivatives at pixel n, ∆θ
nx and ∆

θ+π/2
n x, parameterized by direction angle θ ∈ [0°, 180°[, and a

so-called stretching factor s ∈]0, 1] for anisotropy, Ω = {θ, s}, i.e.

(∇Ωx)n =

(
∆θ

nx

s∆
θ+π/2
n x

)
= ΛRθ

(
∆h

nx
∆v

nx

)
=

(
1 0
0 s

) (
cos θ sin θ
− sin θ cos θ

) (
∆h

nx
∆v

nx

)
, (3)

with ∆h
n ∈ RN , ∆v

n ∈ RN , respectively, the horizontal and vertical discrete gradient operators at location n.
These quantities can be obtained by applying a forward finite difference scheme with zero boundary condition.
Given that a set of needles makes a very sparse image, we add an ℓ1 penalty so that g(x) = gΩ(x) = ρDTVΩ(x)+
α∥x∥1, (α, ρ) ∈]0,+∞[2 in (2).
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2.3 Image decomposition

With a non-sparse background, the lack of data cannot be compensated and the problem does not have a
sparse solution. Decomposing x into a linear combination of several components aims to restore sparsity in all
components that can then be recovered from the limited data. A component is thus defined by its specific sparsity
prior. To direct the interfering background into a single component, a different sparse approximation is used.
Then instead of estimating the sum directly, we solve the minimization problem for each of these components
simultaneously.
Here we decompose x into the anatomical background component xB penalized with TV and I ∈ N directional
components xΩi

penalized with DTV of direction θi ∈ [0°, 180°[ and stretching parameter si ∈ ]0,+∞[ such that

x = xB +

I∑
i=1

xΩi
(4)

where Ωi = {θi, si}, i ∈ {1, . . . , I}.
Altogether, we must solve the following convex problem:

minimize
xB,(xΩi

)Ii=1∈RN

1

2
∥y −H(xB +

I∑
i=1

xΩi)∥2D +

I∑
i=1

gΩi(xΩi) + gTV(xB).

where gTV(xB) = β∥∇xB∥1,2, β ∈]0,+∞[.
Note that each directional component xΩi

can actually capture a needle or a group of needles of about the same
direction.

2.4 Optimization algorithm

To minimize Problem (5), we reformulate it. Let z =
[
x⊤
B x⊤

Ω1
. . . x⊤

ΩI

]⊤ ∈ R(I+1)N . Let H̃ = ΠH and

D̃ = ΠD where Π: M 7→
[
M⊤ . . . M⊤]⊤ ∈ R((I+1)L)×L. We then write:

minimize
z∈R(I+1)N

1

2
∥y − H̃z∥2

D̃
+ h(z), (5)

with h : z 7→
∑I

i gΩi
(xΩi

) + gTV(xB).
The cost function in Equation (5) is convex but non-smooth. In this context, FISTA algorithm18 is attractive
due to its simplicity and low-memory requirements. It relies on the use of proximal operators. Let us recall that
the proximity operator of h at x is defined as proxh(x) = argmin

z∈RN

(
h(z) + 1

2∥x− z∥2
)
.

Let a be a positive real number such that a > 2. The k-th iteration of FISTA applied to Problem (5) reads:
βk = k/(k + 1 + a)
z̃k = zk + βk(z

k − zk−1)

zk+1 = proxτh(z̃
k − τH̃⊤D̃(Hz̃k − y))

(6)

which includes a momentum step to accelerate the convergence. Thanks to the separability in each component
of z, we derive an update rule for each map:

βk = k/(k + 1 + a)

x̃k
B = xk

B + βk(x
k
B − xk−1

B )
For i ∈ {1, . . . , I}:
x̃k
Ωi

= xk
Ωi

+ βk(x
k
Ωi

− xk−1
Ωi

)

xk = x̃k
B +

∑I
i x̃

k
i

xk+1
B = proxτgTV

(x̃k
B − τH⊤D(Hxk − y))

For i ∈ {1, . . . , I}:
xk+1
Ωi

= proxτgΩi
(x̃k

Ωi
− τH⊤D(Hxk − y))

(7)
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The convergence of Algorithm 7 is guaranteed for 0 < τ ⩽ 1/|||H̃⊤D̃H̃||| = 1/|||(I + 1)H⊤DH||| where ||| · |||
denotes the spectral norm of the input matrix.
The proximity operators of x 7→ τgTV(x) and x 7→ τgΩi

(x) do not have a closed form, hence they are both
approximated by using inner iterations of the dual forward-backward (DFB) algorithm19 with warm-restart. In
particular, for DTV, x̂ = proxτgΩi

(x̃) is estimated using the following sub-iteration:{
xn = x̃−∇⊤

Ωu
n

un+1 = proj∥·∥∞,∞⩽τρ(un + γ∇Ωx
n)

(8)

where γ < 2/|||∇Ω|||2.

3. EXPERIMENTS

3.1 Simulations

We carry out simulations in parallel geometry using two numerical phantoms on a 256 × 256 grid. Hounsfield
units (HU) are shifted such that air has value 0 HU and water is 1000 HU. Phantom (A) is purely geometric
and represents a set of needles of intensity 3500 HU covering 8 directions (5°, 27.5°, 50°, 72.5°, 95°, 107.5°, 130°,
152.5°) as shown in Figure 1 (angles start at twelve o’clock and grow clockwise). Phantom (B) is the sum of an
axial CT slice of an abdomen (see Figure 1) with a subset of needles of varying intensity (3000-5000 HU).
A needle is within the scanning arc if the projection data contain its so-called bull’s eye view i.e., the view
orthogonal to its axis. We computed simulated data of these phantoms over a circular arc of amplitude ν = 66°
from angle θmin = 29° to angle θmax = 95° (indicated by the arrows in Figure 1) so that the projection data
contains the bull’s eye view of three needles. Noise term b was i.i.d. Gaussian of mean 0 and standard deviation
50. The angular sampling was uniform with a step of 2°. Reconstruction with TV regularization was taken as
a baseline. FBP reconstruction followed by a thresholding of the intensity was added to the comparison. We
performed 100 iterations of DFB and 5000 iterations of FISTA.
First, we analyze the performance of our decomposition method (5) for the reconstruction of a subset of the
needles of Phantom (A) thanks to four DTV of direction {5°, 27.5°, 72.5°, 107.5°} (i.e., I = 4). Then we show
the applicability of the method to the more complex case of a background and needles of different intensities
by reconstructing Phantom (B). This time, a set of I = 3 directions is used: {27.5°, 72.5°, 107.5°}. In all these
simulations, the needles have the same size, so we use the same stretching parameter s = 0.001. Needles with
the same intensity have the same regularization parameters ρ and α. TV and DTV parameters are thresholds
that are homogeneous to HU intensity values of the image.

Figure 1. Reference images. From left to right: Phantom (A) with needles of intensity 3500 HU, Image with needles of
growing intensity from 3000 HU up to 5000 HU, Anatomical background [1800-2200 HU].

3.2 Background-free needles

Figure 2 shows the reconstructions of Phantom (A) with FBP, TV (β = 50) and DTV (ρ = 50, α = 1). First,
we see that with FBP, only partial reconstruction of the three needles within the scanning arc is achieved.
Figure 3 displays the four reconstructed directional components. Both DTV and TV regularization lead to
similar reconstructions for the three needles in the scanning arc. For the two needles of direction close to θmin,
TV yielded a partial recovery only, whereas DTV fully recovered 12 out of 16 needles, because their directions
were sufficiently close to the imposed a priori directions. The four remaining missing needles show that there is
no recovery without a priori directional information.
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Figure 2. Reconstructed images for ν = 66°. From left to right: FBP, TV, DTV.

Figure 3. Directional components obtained with DTV model on Phantom (A). Top: from left to right, θ1 = 107.5°,
θ2 = 72.5°. Bottom: from left to right, θ3 = 27.5°, θ4 = 5°.

3.3 Needles with background

Figure 5 shows the reconstruction of the needles of Phantom (B) with FBP, TV and DTV (sum of all needle
maps). First, as expected, the anatomical background cannot be recovered with a sparse prior in this limited
angle settings. The needles reconstructed with FBP are distorted and the intensity values are not recovered. With
TV, only the three needles within the scanning arc remains after thresholding whereas five needles are recovered
with DTV. Figure 4 shows that the decomposition method coupled with directional information separate the
three sets of needles from the background map.

Figure 4. Reconstructed needles maps obtained with DTV model on Phantom (B). From left to right: xΩ1 (θ1 = 107.5°),
xΩ2 (θ2 = 27.5°), xΩ3 (θ3 = 72.5°).
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Figure 5. Reconstruction of needles of Phantom (B) in the presence of a background for ν = 66°. Left: needles with
background. Right: needles map. From top to bottom: FBP, TV, DTV.

4. DISCUSSION AND CONCLUSION

The potential of DTV for reconstructing geometrical objects from limited data acquisition is confirmed in our
results where needles are recovered even when their bull’s eye view is not sampled. A decomposition method
was developed to benefit from this capacity with multiple a priori directions and in presence of an anatomical
background that cannot be recovered by total variation priors. The proposed approach provides the equivalent of
a background subtraction which thus allows DTV to enhance each needle along its a priori known direction and
recover them from small scanning arcs. This approach is promising for increasing the precision of interventional
radiology procedures through limited-angle acquisition. Our study is however limited to the interference due to
the background, as it is based on nearly perfect data. Data corruption due to physical effects and stronger noise,
in particular metallic artifacts, is another source of interference that may limit the capacity of sparse priors and
must be dealt with before clinical application.
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