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ABSTRACT

Low-dose CT reconstructions suffer from severe noise and artifacts. Many methods have been proposed to increase
the ratio between image quality and radiation dose through incorporating various priors. By learning priors in
labelled data-set, neural network methods have achieved great success for this purpose. In CT applications,
however, paired training data-sets are rarely available or difficult to obtain. Recently, unsupervised learning has
attracted a lot of attention. Along this line, Noise2Inverse, an unsupervised neural network architecture, has
shown the possibility of applying unsupervised learning for low-dose CT reconstructions. When the training
data-sets (unlabelled) are not large enough or the training is insufficient, however, Noise2Inverse might perform
not well. Another important issue is that network methods might suffer from intrinsic instability. In this regard,
we propose to hybrid neural networks, especially the Noise2Inverse architecture, with traditional optimization
models such that hand-crafted priors come into play as a remedy. Numerical experiments show that the proposed
architecture improves Noise2Inverse in terms of both quality measures PSNR and SSIM, especially in the case
of inadequate training.
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1. INTRODUCTION

To avoid exposing patients to more X-ray radiation, it makes sense to reduce the X-ray dose. However, compared
with conventional CT, low-dose CT usually introduce serious noise and artifacts. In recent years, low-dose CT
(LDCT) reconstruction has been a major challenge in medical CT applications. In general, LDCT reconstruction
methods can be roughly divided into three categories. The first category is the filtering method, which directly
performs filtering and smoothing on the projection data or the noisy reconstructions. Popular methods include
NLM1 and BM3D,2 which explore the structural similarity prior within a single image. The defect of these
methods is that it can not distinguish well image structures and artifacts. The second category is the model-
based optimization approach. By combining image priors into the objective function, noise and artifacts are
removed in the reconstruction process. However, hand-crafted priors are often not accurate enough and might
introduce negative effects like blurring . In addition, the optimization model usually need iterative solvers which
are very time-consuming. The third category is deep learning methods like U-Net3 and DnCNN.4 Based on
the powerful fitting ability of neural networks, priors or patterns concealed in ‘big data’ could be extracted and
utilized. Neural networks have demonstrated to be superior to traditional methods if adequate labelled training
data are available. However, for CT applications, high quality training data are usually difficult to acquire.

Unsupervised learning methods for image denoising gain popularity in recent years. The X2Y series algorithms
have attracted much attention. The Noise2noise5 method explains the MSE loss in Bayesian framework by which
noisy images are allowed to be used as reference images, when certain independence conditions are satisfied. Later
on, by introducing the idea of blind spot, Noise2Self6 and Noise2Void7 were proposed which ruled out the need
for independent multiple snapshots of the same scene. It has been demonstrated that these unsupervised methods
could achieve competitive denoising results compared to the supervised ones.

Based on the idea of Noise2Void, Noise2Inverse was proposed in8 for CT image reconstruction. Basically, it
consists of two procedures. The firslt one is to prepare the training data-sets. The projection data are divided
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into non-overlapping groups which are then used to reconstruct noisy images of the same ‘scene’ (object). Since
the projections are independent of each other, the noise in these images should follow the same distribution and
be independent of each other. The second procedure is to train a denoising convolutional neural network (CNN)
with the constructed training data in the first procedure. Noise2Inverse has shown promising results in LDCT
denoising.

In practice, the training data sets might be quite limited available, such that under-fitting or over-fitting
occurs. Another important issue is the stability of neural networks. It has been demonstrated that neural
networks could suffer from intrinsic instability issue.9 In our experiments, when the training data sets were
relatively small or insufficient training were performed, i.e. the number of training epochs was set to be relatively
small, the effectiveness of Noise2Inverse would be compromised.

To further improve the quality of LDCT reconstructions, we propose to combine the convolutional neural
networks (CNN) with traditional optimization models. So, the proposed hybrid neural network (Hybrid NN)
architecture consists of two blocks: the denoising CNN block and a training-parameter free optimization-based
denoising block. Especially, in this paper, the second block is mapped from the primal-dual10 algorithm for
total-variation (TV) denoising, which encodes the piecewise-constant prior of the ideal image. Since the hybrid
neural network builds in hand-crafted priors, its stability should have been improved.

The main contributions of this paper are two-fold.

• A hybrid neural network that blends neural networks and traditional optimization models is proposed. The
hybrid model could leverage both the advantages of the prior concealed in data (through neural network
learning) and hand-crafted priors (through explicit regularization).

• A special blending mechanism is devised which allows manually adjusting the “weights” of the neural
network block and the optimization block, such that the designed architecture could better fit the size of
the training datasets.

The remainder of this paper is organized as follows. The hybrid neural network is introduced and described
in Sec. 2. In Sec. 3, experiments are carried out to validate the proposed hybrid neural network. We conclude
the paper in Sec. 4.

2. METHOD

As stated before, the proposed hybrid NN consists of two blocks: CNN denoiser and optimization-based denoiser.
To leverage the power of unsupervised learning, we borrow the idea of Noise2Inverse to prepare the training data-
sets. This is illustrated in Fig. 1. The backbone of the proposed architecture, i.e. the hybrid NN, is illustrated
in Fig. 2

2.1 Noise2Inverse for LDCT

The key idea of the Noise2Inverse method is that it partitions the projection data into non-overlapping groups of
equal size, each of them are then reconstructed into noisy images. Since there are no explict correlations between
the projection data groups, the reconstructed images could be thought of being independent observations, so the
assumption for unsupervised training is satisfied. With training data-sets prepared, conventional convolutional
neural networks like U-Net3 and DCNN9 could be utilized to achieve denoising.

2.2 LDCT noise simulation

The noise is mainly divided into two parts: statistical photon noise and electronic noise, and the Poisson-Gaussian
mixture model is generally used to model the noise distribution:

N ∼ Possion (N0 exp(−y)) +Gaussian
(
0, σ2

e

)
Here, N0 means the photon number, y means the project data, σe

2 means the variance of electronic noise;
Poisson(∗) means the Poisson distribution, Gaussian(∗) means the Gaussian distribution.
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2.3 Traditional optimization model

Let o denote the output of the first block. In the forward pass of the proposed hybrid NN, o is fed to the second
block, i.e. an optimization model for further processing. Let A denote the desired ouput of the optimization
model, then by adding TV regularizer and non-negative constraint, the optimizaiton model can be written as

A = arg min
A≥0

{
1

2
‖o−A‖22 + λ‖∇A‖1

}
. (1)

A popular algorithm for solving the above model is the primal-dual Chambolle-Pock method. Given A0 = 0,
ξt = 0: 

ξt+1 = ξt + τλ∇At
ηt+1 = PB

(
ξt+1

)
At+1 =

At+τ(o+λdiv(ηt+1))
1+τ

At+1 = max
(
0, At+1

)
where t is the iteration number, τ is the time step, and λ is the regularization parameter which controls the
denoising strength. PB is an element-wise projection operator onto l2 Ball:

PB(y) =

{
y, if ‖y‖2 ≤ 1
y
‖y‖2 , if ‖y‖2 > 1

.

When performing backpropagation, one needs to calculate the gradients regarding to the variables At. Deep
learing framwroks like Pytorch provide tools for automotic gradients calculation. However, in our tests, automatic
calculations were rather slow. So, we use the python package cupy to wrap up cuda kernels to serve our need.
The required gradients can be derived as below.

Let ot+1 = ot = · · · o1, then we have

dAt+1 = R
(

1

1 + τ
+
τ2λ2

1 + τ
divMt+1∇

)
dAt

+R τλ

1 + τ
divMt+1dξt +R τ

1 + τ
dot

dξt+1 = dξt + τλ∇dAt
dot+1 = dot

(2)

where, R denotes the derivative for the non-negative constraint, div is the divergence operatation, and Mt+1

represents the derivative of the projection operator PB in the (t+ 1)th iteration. The matrix form reads dAt+1

dξt+1

dot+1

 = Vt+1

 dAt
dξt
dot

 (3)

with

Vt+1 = N

 1
1+τ + τ2λ2

1+τ divMt+1∇ τλ
1+τ divMt+1

τ
1+τ

τλ∇ 1 0
0 0 1

 ,

where

N =

 R 1
1

 .
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Let L denote the loss function, then

dL = Tr

[(
∂L

∂o

)T
do

]
= Tr

[(
∂L

∂At+1

)T
dAt+1

]

= Tr




∂L

∂At+1

0
0


T

Vt+1

 dAt
dξt
dot




= Tr




∂L

∂At+1

0
0


T

Vt+1 · Vt · · · V2

 R
τ

1 + τ
0
1

 do


where, Tr(Q) computes the trace of matrix Q. Finally, the required gradient can be extracted as

∂L

∂o
=

 R
τ

1 + τ
0
1


T

V T2 · · · V Tt · V Tt+1


∂L

∂At+1

0
0

 .

Please note that, regularized CNN10 is a semantic segmentation NN that emphasizes the effectiveness of
explicitly adding TV regularization to the activation functions. The proposed hybrid NN is a fusion of the
functionality of CNN and the optimization model, so, it could not only be employed for denoising, but also for
other image processing applications. In fact, the neural network implicitly encodes priors into the network output
as an initial value for the traditional optimization model layer to iterate to the desired output by incorporating the
explicit priors, thus realizing the deep integration of data-driven and model-driven. The flow chart of proposed
method is shown in Fig.1. Furthermore, traditional optimization model could be added to anywhere in the CNN
networks, whenever the results of NN fail to meet expectations.

noisy sinogram

target
Hybrid NN

𝒜

ℱℱ

𝒮

output

𝒮

ℱ

𝒜 Average

Split

FBP

ℱℱ

input

Figure 1. The flow chart of hybrid NN for LDCT. The input noisy sinogram is split into four groups. Then, FBP is
applied to reconstruct 4 noisy images from which the training data-sets are constructed.

2.4 Loss function

Clearly, their exists an interaction between the two designed blocks, and the hyper-parameters, e.g. the number
of primal-dual iterations, the depth of the CNN block, the weighting parameter λ, etc. would affect the net-
works’ performance. Particularly, the two blocks actually run for the same goal, i.e. act as denoisers, the good
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Figure 2. Illustration of hybrid NN.

performance of the second block, i.e. the pridual-dual algorithm, might inhibit the performance of the CNN
block. To combat such a negative effect, we add a skip connection from the CNN block to the final output of the
network, which requires that the CNN block should preserve the average gray values of its input images. This is
achieved by adding an additional term to the loss function:

lossagv = ‖Ḡinput − ḠCNNoutput
‖2

where Ḡ(I) means the average gray value of image I. The final loss function is

losstotal = MSE(target, output) + α · lossagv,

where MSE means the mean squared error loss, and α is a positive scalar parameter.

3. EXPERIMENTS AND RESULTS

3.1 Datasets and settings

To verify the effectiveness of the proposed hybrid NN, a real clinical dataset was used, which was for ”LUNA
(LUng Nodule Analysis) 16−ISBI 2016 Challenge” (https://luna16.grand-challenge.org/download/). The
dataset contains 1308 thoracic volumes from 1010 people, including 244,527 image slices size of 512 × 512. We
randomly selected 7 patients, 2270 slices, from which 200 slices were randomly chosen as the training dataset
and 10 slices as the testing dataset. The projection data are acquired with a virtual CT system equipt with
a parallel beam source and a linear detector consisting of 720 cells. The projection data are acquired for 360
projection views uniformly distributed in the angular range [0, π]. To simulate low-dose radiation, Poisson noise
with incident intensity I0 is added to the raw data as follows

pnoisy = −ln
(
I0 × e−p

I0

)
, (4)

where p and pnoisy denote the noise-free and noisy sinogram data, respectively. In our tests, we set I0 = 3× 104.
As Fig.1 shows, we split the sinogram into four non-overlapping groups in the way that each group consists of
projection angles uniformly distributed in [0, π].

The proposed hybrid NN is implemented with the PyTorch framework. All the experiments are executed on
a a single graphic processing NVIDIA card RTX 2080Ti with 11GB video memory. The gradient ∂L

∂o is computed
by cuda kernels wraped by cupy https://github.com/cupy/cupy.

3.2 Hyperparameters selection

For the proposed hybrid NN, the hyperparameters include the number of layers of the CNN, the number of primal-
dual iterations, the scalar parameters τ , λ for the optimization layer and α for the loss function. Considering
the convergence requirement of the primal-dual iterations, We set τ = 1

2λ . In our tests, the CNN has 12 layers,
and α is set in a trial and error manner.
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3.3 The effect of the explicit prior on the performance of CNN

To verify whether the second block, i.e. the explicit regularization has an influence on the performance of the
CNN block, the following experiments were carried out: training the hybrid NN with increasing number of the
primal-dual iterations t =10, 30 and 50, then testing the first block, i.e. CNN along with the learned weights.
The results shown in Fig.3 indicate that, with increasing t, the performance of the CNN block becomes poorer
and poorer. This concides with our intuition. By increasing t, the performance of the optimization model (second
block) is improved, so the importance of the CNN block gets weaken.

As Section 2.4 has stated, to preserve the performance of the CNN block, the contrast-preserving loss lossagv
is added to the loss function. The experimental results shown in Fig.4 suggest that, to some extent, the lossagv
is indeed helpful to get back the performance of the CNN block.

(a)t = 10 (b)t = 30 (c)t = 50

Figure 3. Testing results of the CNN block, with iteration number t = 10, 30, 50 for the primal-dual algorithm, respectively.

(a)Reference (b)without lossagv (c)with lossagv

Figure 4. Results without and with lossagv, t = 50. The upper right corors show the zoomed-ins for the red-framed
regions.

3.4 Comparison with the Noise2Inverse model

To verify the superiority of the proposed hybrid NN, experiments against the Noise2Inverse model are performed.
For both methods, the training runs for 150 epochs. Even though there are many perspectives for comparison,
in this experiment, we check how the two methods behave against noise change. Two tests with different noise
levels, i.e. I0 = 3 × 104 and I0 = 1 × 104 are performed, and the results are shown in Fig.5. For the low level
noise case (I0 = 3 × 104), the two methods achieve similar quality. As Fig.5 (b) and (c) show there are little
visual difference. The quantitavie PSNR indices are 32.522 and 33.820, and the SSIM values are 0.735 and 0.799,

Proc. of SPIE Vol. 12304  1230421-6



respectively, which might weakly indicate the advantages of the proposed hybrid NN. When checking the results
with higher noise level (I0 = 1 × 104), however, the advantages of the proposed hybrid NN become aparent.
As shown in Fig.5(e) and (f), there are remaining noise with the result of Noise2Inverse, while hybrid NN still
achieve high quality denoising, similar to the low level noise case.

(a)FBP, I0 = 3× 104 (b)Noise2Inverse (c)Hybrid NN

(d)FBP, I0 = 1× 104 (e)Noise2Inverse (f)Hybrid NN

Figure 5. Comparison with Noise2Inverse. The two rows show the results with noise levels corresponding to I0 = 3× 104

and I0 = 1 × 104, respectively.

4. CONCLUSION

Deep learning based methods achieve state-of-the-art results for low-dose CT reconstructions. The required
training data-sets, however, might not be available for real applications. Another important issue is that neural
networks usually suffer from intrinsic instability. In this paper, we propose a hybrid NN aiming to leverage the
power of both learning based methods and conventional optimization based methods. By adding an average
contrast preserving loss, the two blocks, i.e. CNN and optimization algorithm, could work in harmony such that
the hybrid NN performs better than any of them alone.

Even though the hybrid NN in this paper consists of a CNN block and a TV denoising algorithm, the basic
idea actually allows for any possible combinations of a neural network architecture and a optimization model.
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