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ABSTRACT 

Deep learning has achieved great success in many medical imaging tasks without explicit solutions. In this work, learn-
ing method was applied to dual-energy cone-beam CT imaging. We proposed a Residual W-shape Network (ResWnet). 
ResWnet consists of three modules: scatter correction module 𝒮, material decomposition module ℳ, decomposition de-
noising module 𝒟. Both 𝒮 and 𝒟 use ResUnet architecture, and this lightweight model fuses multi-level features, achiev-
ing satisfied performance with a small number of parameters. 𝒮 acts on dual-energy attenuation projections to reduce the 
scatter contaminations, and 𝒟 acts on material composition projections to suppress the noise. ℳ links the modules 𝒮 and 
𝒟, and is used for domain transform from attenuation projections to material projections. This process could be approxi-
mated by polynomials with pre-calibrated parameters, that is, ℳ is a known operator in proposed network with no train-
able parameters. This helps to reduce model parameters and improve the performance with small training dataset. Using 
public head CT dataset, we simulated dual-energy cone-beam CT projections and material projections. Proposed 
ResWnet was trained, validated and tested on this simulated dataset, verifying its effectiveness in projection-domain 
scatter correction and low-noise decomposition.  
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1. INTRODUCTION  
Conventional CT measures the spatial distribution of x-ray linear attenuation coefficient (LAC) [1]. Dual-energy CT 
(DECT) [2], which scans object with two different x-ray spectrums, extends the measurement to the energy dimension, 
and the quantitative information provided by DECT facilitates various new applications, including but not limited to 
electron density/stopping power calculation [3], synthesis of monochromatic images [4], virtual-non-enhanced images 
[5]. After several decades development, DECT has become a powerful tool in clinical diagnosis [6]. Another widely 
used CT is cone-beam CT (CBCT) [7]. Taking advantages of high spatial resolution, large volume coverage and open 
structure, CBCT provides flexible image guidance in image-guided radiotherapy [8] and image-guided intervention [9], 
and the flexible geometry is also well suitable for some dedicated clinical tasks, such as breast CT, extremity CT and 
dental CT [10]. 

Recently, some groups investigated the feasibility of dual-energy cone-beam CT [11-13] that combines the advantages 
of DECT and CBCT. Our group implemented a rotation filter [14] configuration to acquired dual-energy data within sin-
gle rotation. We further proposed a joint bilateral filtering-based algorithm to suppress the image streaks and amplified 
decomposition noise [15]. However, photon scatter, a major issue in CBCT imaging [16], was not taken into considera-
tion in our previous research. The scatter contamination could severely degrade the imaging accuracy, hampering quanti-
tative dual-energy imaging. Moreover, according to the dual-energy imaging theory [17], image-domain decomposition 
cannot provide accurate material composition, as well as cannot eliminate beam-hardening effects. Polynomial fitting-
based projection-domain decomposition [18] tackles this issue but it is sensitive to projection noise [19].  

This work aims to perform projection-domain scatter correction and material decomposition. To this end, we designed 
a Residual W-shape Network (ResWnet), which consists of two cascade ResUnets. In order to reduce the model parame-
ters and achieve satisfied performance using small training dataset, a known decomposition operator was used to link the 
two ResUnet. 
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2. METHODOLOGY 
2.1 Dual-Energy Cone-Beam Projection Model 

The polyenergetic forward model for dual-energy cone-beam projections is written as: 

𝒑!/# = 𝑰!/#$𝜔!/#(𝐸) exp ,−$𝝁(𝒙, 𝐸)d𝑙3 d𝐸 (1) 

where 𝑙/ℎ means physical quantities under low/high incident x-ray spectrum, 𝒑 represents transmission photons, 𝜔 rep-
resents spectrum, 𝝁 stands for LAC. Due to low scanning dose and large volume coverage, CBCT projections suffer high 
noise level (𝒏!/#) and severe scatter contamination (𝒔!/#). Consequently, the actual measurements are modeled as:	

𝒑!/#$% = 𝒑!/# + 𝒏!/# + 𝒔!/# (2)	

The superscript	𝑛, 𝑠 represent noise and scatter, respectively. After log normalization, the line integrals with and with 
scatter and noise are: 

𝒒!/# = − log ,$𝜔! #⁄ (𝐸) exp ,−$𝝁(𝒙, 𝐸)d𝑙3d𝐸3 (3) 

𝒒!/#$% = − log A$𝜔! #⁄ (𝐸) exp,−$𝝁(𝒙, 𝐸)d𝑙3 d𝐸 +
𝒏! #⁄ + 𝒔! #⁄

𝑰! #⁄
B (4) 

2.2 Projection-Domain Material Decomposition 

According to the dual-energy CT theory [17], the LAC could be decomposed as: 
𝝁(𝒙, 𝐸) = 𝝆'(𝒙)𝜙'(𝐸) + 𝝆((𝒙)𝜙((𝐸) (5) 

𝜙!/# is energy-dependent basis function, which could be interpreted as mass attenuation coefficient of two basis materi-
als, then 𝝆!/# is the density of the basis material correspondingly. Plug Eq. (5) into Eq. (3), we obtain: 

𝒒! #⁄ = − log,$𝜔! #⁄ (𝐸) exp(−𝜙'(𝐸)𝒒' −𝜙((𝐸)𝒒() d𝐸3 (6) 

where 𝒒' = ∫𝝆'(𝒙)𝑑𝑙, 𝒒( = ∫𝝆((𝒙)𝑑𝑙. Given incident spectrum 𝜔$ %⁄  and two basis functions 𝜙!/#, the material decom-
position is an inverse problem which recovers 𝒒'/( from 𝒒!/#. Since no explicit expression for this inversion, A com-
monly used analytical decomposition method is polynomial approximation [18]: 

𝒒' = J 𝛼),+
,

),+-.

𝒒!)𝒒#
+ , 𝒒( = J 𝛽),+

𝑵

),+-.

𝒒!)𝒒#
+ (7) 

where 𝛼',), 𝛽',) are pre-calibrated coefficients using calibration phantom. Although this method could achieve high accu-
racy via increasing the polynomial order 𝑁, previous research revealed that this decomposition is sensitive to projection 
noise [19]. 
 
2.3 Residual W-shape Network 

Figure 1 presents the ResWnet Architecture, which consists of scatter correction module, material decomposition mod-
ule and decomposition denoising module. For simplicity, projections represent log-normalized projections hereafter. 

Scatter Correction Module (𝒮: 𝒒!/#$% ↦ 𝒒!/#) 
Scatter correction module aims to remove the noise and scatter signal in projections. In this work, scatter correction 

module 𝒮 employs a Residual U-shape network (ResUnet) [20]. The paired 𝒒!$%, 𝒒#$% are concatenated as two-channel in-
put, which then passes six encoder blocks and five decoder blocks successively. To avoid gradient vanishing and explod-
ing [21] in very deep networks, each encoder and decoder block adopts residual architecture [22] with a shortcut connec-
tion from input to output. Considering that 𝒒!/#$%  and 𝒒!/# share the same structure with only numerical difference, a global 
shortcut connection is applied to directly add raw projections to the output projections. Different from the conventional 
Unet, the last two encoder blocks in 𝒮 keep the same number of features to reduce model parameters without compro-
mising the performance.  

Material Decomposition Module (ℳ: 𝒒𝑙/ℎ ↦ 𝒒1/2) 
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Material decomposition module ℳ aims to recover the material composition projections  𝒒'/( from the dual-energy 
projections 𝒒!/#. As discussed in Sec.Ⅱ.B, this inversion could be approximated by polynomials functions, and the pa-
rameters  𝛼),+, 𝛽),+ could be determined by pre-calibration. Thus, there is no need to train a sub network for decomposi-
tion. In proposed network, ℳ acts as depicted in Eqs. (7). 𝑁 was set to 4 and there is no trainable parameter in this mod-
ule. 

Decomposition Denoising Module (𝒟:𝒒'/(% ↦ 𝒒'/() 
Since the module 𝒮 cannot reduce the noise level to zero and the polynomial-based decomposition is sensitive to 

noise, the output of ℳ would be noisy. Decomposition denoising module 𝒟 was used for further suppress the noise. 
Same as the scatter correction module, 𝒟 also employs the ResUnet architecture 

2.4 Data Generation and Network Training 

To obtain the training, validation and testing datasets, we first download 22 head CT scans from public dataset in  
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageid=39879146. These CT images were decom-
posed into four tissues: fat, muscle, 200mg/cc bone and 800mg/cc bone using multi thresholds segmentation. We per-
formed polyenergetic forward projection of each volume using two spectrums generated by Spektr [23]. These are the 
label projections 𝒒!/# for scatter correction. The input projections 𝒒!/#$%  were then obtained via adding scatter and noise 
signals generated by Monte Carlo simulation. Muscle and 800mg/cc bone were selected as basis materials in this work, 
and fat and 200mg/cc bone were decomposed onto these two basis. The label projections of material decomposition 𝒒'/( 
were generated by forward projecting the muscle and 800mg/cc composition images. Each head produced 100 projec-
tions, and the projection angles equally distributed between 0 and 2𝜋. 

During the model training, network 𝒮 were firstly optimized by: 

𝒮∗ = argmin
𝒮

w'X𝒮Y𝒒! #⁄
$% Z − 𝒒! #⁄ X' +w( [ℳ]𝒮Y𝒒! #⁄

$% Z^ −ℳY𝒒! #⁄ Z['
#(8) 

The second term was added because we hope 𝒮 could not only reduce the scatter signal, but also produce a projection 
noise distribution that minimizes the decomposition noise. In this work, w', w( were set to 0.9 and 0.1, respectively. Us-
ing the trained network 𝒮∗, the network 𝒟 was finally trained by:  

𝒟∗ = argmin
𝒟

[𝒟,ℳ]𝒮∗Y𝒒! #⁄
$% Z^3 − 𝒒' (⁄ [

'
(9)  

Parameters of both 𝒟 and 𝒮 were optimized by Adam optimizer with an initial learning rate of 0.0004 which decay 
8% after each epoch. Batch size was set to 4 and training stopped after 100 epochs.  

Figure 1. ResWnet architecture. Gray, blue and yellow boxes represent scatter correction, material decomposition, decomposition 
denoising module, respectively.  
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3. RESULTS 
Corrected projections and decomposed material projections are obtained after the simulated cone-beam projections pass 
the first and the second ResUnet, respectively. Tomographic images are reconstructed via conventional  FDK algorithm 
[24]. 

Figure 1 displays the dual-energy CT images. As in the left column, scatter contamination leads to obvious shading 
artifacts on soft tissue. The bone tissue, although clearly visualized, has a numerical error more than 10%. Proposed net-
work successfully removes the image shading, with preservation of small bones and details in intracranial soft tissues. 
On both soft tissues and bone tissues, proposed network reduced the error to less than 0.5%.  

Figure 2 displays the material composition images. As discussed above, polynomial-fitting based decomposition in the 
left column suffers terrible noise, especially on the soft tissue images. Without significantly compromising the spatial 
resolution, proposed network suppresses the noise of bone composition and muscle composition images by 32.7% and 
65.6%, respectively. Subtle details around nasal cavity are faithfully recovered by proposed method as well.  

4. CONCLUSION AND DISCUSSION 
In this work, we proposed a ResWnet for dual-energy cone-beam CT imaging. Three modules were designed for scatter 
correction, material decomposition and decomposition denoising, respectively. To reduce the model complexity and op-
timize the performance using small training dataset, both two trainable modules perform transform between the same 
domain, and the domain transform from attenuation projection to material composition projection is achieved by a 
known operator, i.e., polynomial-based decomposition.  Simulation study preliminarily demonstrated the performance of 
proposed methods on scatter correction and low-noise decomposition. 

Furthermore, some details lost in the material images, especially on the soft tissue images, sharp bone edges were also 
blurred to some extent.   More complex model is needed to improve the performance. However, current study only used 
2000 projections for training and validation, which is not capable of training more complex models. More cone beam 
projections will be simulated in the next step. Another issue is that current simulated projections only account for the 
primary signal, photon scatter and noise., and other factors such as off focus and detector glare are not considered. More 
accurate forward projector is needed to simulate real projections, then trained model could be applied to physical meas-
urements acquired in the real system. 
 

Figure 2. Dual-energy CT images. Top and bottom rows are low-
energy and high-energy CT images, respectively. Mean values of 
two boxed areas are listed below each image. Display window: 
[0.15,0.25]cm-1  

Figure 3. Material composition images. Top and bottom rows are 
bone and muscle images, respectively. Std values of two boxed ar-
eas are listed below each image. Display window: bone: [0,0.8], 
muscle: [0.6 1.2] 
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