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ABSTRACT 
 

The transfer paths analysis (TPA) is a useful tool to solve noise and vibration problems, since it helps in 
the study of sources and propagation paths, allowing proposing efficient modifications to minimize 
vibration in the regions of interest even at early stages in the process of build physical payloads 
prototypes. In classical TPA, the operational forces are characteristic of the complete system, active 
subsystem more passive subsystem, this implies that, with each modification in one of the subsystems, it 
is necessary to redo all tests for the correct determination of noise or vibration at the points of interest of 
the object under test, constituting one of the obstacles to the widespread use of classical TPA in the 
product development process. For this reason, in recent years, interest in the development of faster and 
simpler techniques for analyzing energy transfer paths has been renewed, aiming to bypass the 
operational limitations of classical TPA. In this scenario, the set of methods called component-based TPA 
stands out, which is a set of methods that characterizes the excitation of vibration or a noise source 
through a set of equivalent forces or speeds inherent only to the active subsystem. In this way, the 
responses, at points of interest located in the passive subsystem, can be calculated using these forces and 
the FRF of the complete system. The main methods of this class of TPA are the blocked force, free-
velocity, hybrid interface and in situ. This work presents a review of component-based TPA methods and 
proposes the use of these methods in the process of determining equivalent forces in spatial payloads of 
the active subsystem that, combined with the dynamics of the passive subsystem, allows to predict 
vibration at points of interest located in the passive subsystem, without having to analyze the complete 
system.  

Keywords: TPA, Modular Platform, Payload Structure, Environmental Testing 

 
1 INTRODUCTION  

In the last decades there has been an increasing demand for the reduction of time and the cost of the 
development of new products in the space area. This growth in demand increased with the “New Space” 
philosophy that incorporates new ideas for business models, use of state-of-the-art technologies, additive 
manufacturing, modularization as well as the willingness to take on higher risks [1]. In the design phase 
of an optical payload, the requirements and environmental tests in which the instrument will be checked 
from the qualification model to the flight model are defined, after the optical instrument is validated, it is 
assembled and integrated in a modular platform that will be submitted to new tests such as vibration tests 
with lower intensities. In this context, this work seeks to encourage the use of the transfer path analysis 
(TPA) tools to validate some types of tests such as vibration. The first publications on studies of Transfer 
Path Analysis were motivated by confidential security demands in the military sector. In the 1950s and 
1960s, many publications dealt with topics such as the reduction of noise and vibration transmission from 
ship and submarine engines, through dynamic absorbers and decoupling mechanisms to minimize the 
vibro-acoustic transmission between the interfaces of the ships, and make them more stealthy. With the 
rapid development of airplanes and spacecraft, in the same period, the concepts of TPA began to be used 
to study problems of fatigue and stability (flutter) due to active vibrations or induced by aerodynamic 
loads in aircraft. In the last decades, TPA started to be associated with noise, vibration and harshness 
(NVH) engineering, mainly in the automotive industry, driven by the increasing expectations of 
customers regarding acoustic and vibratory comfort [2]. The approach is particularly suitable for complex 
problems, as it allows multiple input and multiple output (MIMO) systems to be divided into discrete 
excitations and transfer paths, providing excellent vehicle diagnostic information [3]. In the classic TPA 
model, the system is divided into three parts which consists of the active source, transfer path and 
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receiver. The first is the source of vibration, which can be acoustic or structural, called the active 
subsystem, the second is the propagation paths of the vibro-acoustic energy, for example, fixation 
interfaces and the last part is the receiver, passive subsystem, which is the target of vibro-acoustic energy 
which in this work is indicated as the optical payload, as shown in figure 1. 

 

 
Figure 1. Vibration attenuation, isolation and damping. [4] 

 

With the use of transfer path analysis it is possible to identify which propagation path contributes more to 
the energy received from an active system in certain frequency ranges, so it is possible to act directly in 
the path of greater energy transmission, either by using insulators, increased rigidity, mass, among other 
methods. 

In figure 2 below it is possible to observe the classes of TPA and the test flows. 

 

 
 

Figure 2. TPA Classes and flows [2] 
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TPA Classic methods and those based on TPA transmissibility are used to identify transfer paths in 
existing projects; component-based TPA methods are valuable in the development stages of the project 
when the final product or prototype has not yet been released. 

In the component-based TPA method, the excitations of the vibration sources are characteristics inherent 
only in this subsystem, that is, these forces are independent of the dynamic characteristics of the passive 
system. Thus, this work proposes the use of TPA methods based on components to optimize the 
development of new products in the space area. 

A modular platform has several equipment that generates active vibrations in the satellite structure and 
can be used as examples of TPA applications based on components, as can be seen in figure 3. It is 
possible to identify the energy sources that generate micro vibrations in the satellite payload during its 
period in orbit. The reaction wheels, for example, can make the images of an optical payload blurry, thus 
damaging the quality of the images captured by the instrument detectors. 

 

 
Figure 3. Potential classification of micro-vibration disturbance sources [4]. 
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2 THEORY OF COMPONENT BASED TPA 
 

Component based TPA is a relatively new TPA technique that allows to characterize a source component 
independently from the receiver structure by a set of blocked forces and to predict its behavior when 
coupled to different receivers, allowing for a virtual assembly [7]. 

The system modeling will be performed via the admittance matrices of the assembled system, using the 
dynamic substructuring approach. The calculation sequence was based on the studies by Seijs et al. [5] [6] 
and Almiron et al. [8]. 

Figure 4 below shows the assembly AB representing a multi-mission platform and its payload. The active 
component of the system will be the reaction wheels, which for simplicity of analysis will be represented 
by only one source of active excitation. The energy transfer paths, for simplification, will be represented 
by a dot, and the passive energy receiver will be represented by an element of an optical payload as a 
mirror for example. 

The transfer function between the force f1 of the reaction wheels at position u1 and the mirrors at position 
u3, can be represented by Equation 1 below: 

 

(ݓ)ଷݑ                                                       =  ଷܻଵ஺஻(ݓ) ଵ݂(ݓ)                                                     (1) 
 
Where  Y31AB(w) represents the frequency response function of the admittance measured in the assembly 
AB, the frequency will be omitted from the equations for simplicity of notation. 

 
Figure 4. System TPA mounted (4a) and decoupled (4b) 

  

In figure 4b we can represent the transfer function of the system by the FRFs and the system equations 
increased by the forces of unknown interfaces g2 for the active and passive subsystem. As the system is 
only excited at node 1 then: 

 

                                                             ൦ݑଵݑଶ஺ݑଶ஻ݑଷ൪ = ൦ ଵܻଵ஺ଶܻଵ஺00
ଵܻଶ஺ଶܻଶ஺00

00ܻଶଶ஻ଷܻଶ஻
00ܻଶଷ஻ଷܻଷ஻ ൪ ൦

ଵ݂݃ଶ஺݃ଶ஻0 ൪                                                       (2) 
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The displacements in the interfaces are the same, as seen in Equation 3, and the interface forces have the 
same magnitude with exchanged signals to maintain the balance of the system, according to Equation 4. 
  
ଶ஺ݑ                                                                           =  ଶ஻                                                                         (3)ݑ 
 

ߣ                                                                 = ݃ଶ஺ =  −݃ଶ஻                                                                     (4) 
 

Multiplying the second and third lines of Equation 2 and equalizing them, Equation 5 is obtained below: 
 

                                                           ଶܻଵ஺ ଵ݂ +  ଶܻଶ஺ ݃ଶ஺ =  ଶܻଶ஻ ݃ଶ஻                                                            (5) 
 

Replacing Equation 4 in Equation 5 and rearranging the terms in Equations 6 and 7, the results are 
obtained: 
 

                                                          ( ଶܻଶ஺ + ଶܻଶ஻ ߣ( =  − ଶܻଵ஺ ଵ݂                                                              (6) 
 

ߣ                                                         = −( ଶܻଶ஺ + ଶܻଶ஻ )ିଵ ଶܻଵ஺ ଵ݂                                                             (7) 
 

Substituting Equation 1 in Equation 8, is obtained the Equation 9 which represents the global FRF by 
coupling the subsystems admittances.  

 
ଷݑ                                                   = − ଷܻଶ஻ ߣ = [ ଷܻଶ஻ ( ଶܻଶ஺ +  ଶܻଶ஻ )ିଵ ଶܻଵ஺ ] ଵ݂                                             (8) 

 
                                                           ଷܻଵ஺஻ = ଷܻଶ஻ ( ଶܻଶ஺ +  ଶܻଶ஻ )ିଵ ଶܻଵ஺                                                        (9) 

 
 

2.1 Response at passive side 
 
Similar to performed by Equation 1 that relates the source of operational excitation f1 to the response on 
the side of the receiver u3, now looking for an external force equal to ଶ݂௘௤  that produces the same 
response (Figure 5a).  

 
ଷݑ                                                    = ଷܻଶ஺஻ ଶ݂௘௤ = [ ଷܻଶ஻ ( ଶܻଶ஺ + ଶܻଶ஻ )ିଵ ଶܻଶ஺ ] ଶ݂௘௤                                       (10) 

 
                                                                      ଶ݂௘௤ = ( ଶܻଶ஺ )ିଵ ଶܻଵ஺ ଵ݂                                                         (11) 

 

 
Figure 5. System TPA assembled with equivalent force (5a) and uncoupled in rigid union (5b)  
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2.2 Forces from test bench measurements 
 

To characterize the excitations of the operational source of the active part, the subsystem is mounted on a 
test bench (TB) in an extremely rigid manner and with interface connections similar to those found in the 
platform, as shown in figure 5b. Thus, the following system of equations can be established for the 
general case [5][6]. 

 

                                                             ቎ ଶ்஻቏ݑଶ஺ݑଵ஺ݑ = ቎ ଵܻଵ஺ଶܻଵ஺0 ଵܻଶ஺ଶܻଶ஺0 00ଶܻଶ்஻቏ ቎ ଵ݂݃ଶ஺݃ଶ்஻቏                                                         (12) 

 
Considering the balance of forces, that ݃ଶ஺ =  −݃ଶ்஻ and that the system is rigidly coupled, ݑଶ஺ =  ଶ஻, andݑ 
considering the operational forces measured with load cells, ݃ଶ∗, and the operational displacements 
measured with accelerometers, ݑଶ∗ . Thus, from Equation 12 are obtained the Equations 13 and 14. 
                                                          ݃ଶ∗ = ( ଶܻଶ஺ + ଶܻଶ்஻)ିଵ ଶܻଵ஺ ଵ݂                                                             (13) 

 
∗ଶݑ                                                  = ଶ஺ݑ = ܫ] − ଶܻଶ஺ ( ଶܻଶ஺ + ଶܻଶ்஻)ିଵ] ଶܻଵ஺ ଵ݂                                              (14) 

 

2.3 Blocked interface force 
 
The blocked force method considers the interface coupling to be extremely rigid, so the value of ଶܻଶ்஻and 
the displacement ݑଶ∗   are null, so the equivalent force at the interface is given by Equation 17 which in 
practice are the measurements of load cells. The blocked force method is useful for calculations at low 
frequencies ranges.  

 
                                                                   ݃ଶ∗ = −( ଶܻଶ஺ )ିଵ ଶܻଵ஺ ଵ݂                                                           (15) 

 
∗ଶݑ                                                                                = 0                                                                    (16) 

 
                                                                            ଶ݂௘௤ = −݃ଶ∗                                                                 (17) 

 

2.4 Free velocity 
 

Another TPA method derived from Equations 13 and 14 is the free velocity method, in which the active 
subsystem is in a free-free condition, that is, forces at interfaces are null according to Equation 18, so the 
equivalent force is given by Equation 20. This method is useful for high frequencies. 

 

                                                                               ݃ଶ∗ = 0                                                                    (18) 
 

∗ଶݑ                                                                              = ଶܻଵ஺ ଵ݂                                                                (19) 
 

                                                                        ଶ݂௘௤ = ( ଶܻଶ஺ )ିଵݑଶ∗                                                            (20) 
 

2.5 Hybrid Interface 
 
Based on the TPA advantages and disadvantages of the blocked force and free velocity methods, the 
concept of hybrid interface TPA emerges that covers the qualities of the two methods for a wide 
frequency range, as explained in Equations 21.  
                                                                            ଶ݂௘௤ =   −݃ଶ∗ + ( ଶܻଶ஺ )ିଵݑଶ∗                                                            (21) 
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2.6 In-situ 
 

In the in situ method, the active and passive subsystems do not need to be separated in any of the stages 
of the analysis. The responses at the receivers and indicator points are measured in the operational 
condition and the FRF measured with the active component turned off, mounted to the passive system and 
excited externally, for example, via impact hammer or shaker, the equations that determine the In-situ 
method can be observed in the Eq. 22 and Eq. 23. 

                                                               ଶ݂௘௤ = ( ଶܻଶ்஻)ିଵݑଶ∗ + ( ଶܻଶ஺ )ିଵݑଶ∗                                               (22) 
 

                                                                       ଶ݂௘௤ = ( ଶܻଶ஺்஻)ିଵݑଶ∗                                                           (23) 
 

3 CONCLUSION 
 
The use of modern tools in the area of vibrations is an important step towards simplifying qualification 
tests, especially in space equipment under the new space approach. This paper proposed a summary 
review of the TPA methods based on components that can be of great value in the development of a new 
product, mainly in hybrid projects where part of the data is obtained experimentally and the other part by 
finite element simulations (FEM). 
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