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The scintillator which converts X-rays into visible light is the most important component in an indirect X-ray 
detector and has the greatest influence on the detector’s imaging properties. It is very challenging to fabricate 
scintillators with high quality, high resolution, high conversion rate, and radiation tolerance as required at synchrotron 
facilities7. High of X-ray flux for a long period can damage the micro-structure of a scintillator and degrade its quality as 
can be seen in Fig. 2. These visible defects (dark and bright blobs in Fig. 2(a,b)) and invisible defects, which can only be 
revealed by analysing the linear response of the detector, cause ring artifacts in reconstructed images8 which is the most 
pervasive type of artifacts in tomographic imaging. 

 
Figure 2. Degradation of a scintillator during an experiment: (a) At the beginning; (b) After few days of use. 

In parallel-beam micro-tomography, scintillators are mainly unstructured types to achieve high resolution9. To 
improve time resolution, a scintillator needs to be thick enough to maximize the light yield. As a result, the background 
caused by scattered visible photons10 alters the linear response of the detecting system which affects the quality of any 
result of data processing methods that rely on this linearity. Although it is a known problem, very few efforts have been 
made to tackle it 11. Figure 3 shows a flat field image where a half field of view is blocked. As can be seen in Fig. 3(b), 
there is light yield inside the area supposed to be fully obscured. 

 
Figure 3. Flat field image with a half field of view blocked: (a) Under 0.05s of exposure time; (b) Under 0.5s of exposure time. 

All of the above problems of the detector give rise to different types of artifacts in reconstructed images which 
hamper the data analysis. Solving these problems using hardware approaches may be expensive or technically 
impossible. In this report, we present our digital approaches to tackle each such problem. Most of data were collected at 
the I12-JEEP beamline, Diamond Light Source using the settings of 53keV monochromatic X-ray, 1800 projections, 3.2 
µm pixel size, and 1000 mm sample-detector distance. Complete detail of the detecting system can be found in Ref. [1]. 
Data were processed using I12 in-house python codes12-13. The filtered-back projection (FBP) method14-15 was used for 
reconstruction. 

2. CORRECTION OF RADIAL LENS DISTORTION 
2.1 Problems 

As the influence of the distortion gets stronger with increasing radial distance from the optical axis, i.e towards the 
borders of an image, the related artifacts get stronger there, too5. Figure 4 shows a reconstructed image affected by this 
type of problem. As can be seen the streak artifacts are stronger in Fig. 4(c) (near the image border) compared to Fig. 
4(b) (at the image center). This is typical of the distortion problem. It helps to distinguish this type of artifacts from 
streak artifacts caused by other problems such as misalignment or wrong center of rotation12. 
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Step 1:  Sort the values of the 1D array in ascending order. 
Step 2:  Apply a linear fit to values around the middle of the sorted array, i.e. half of the array size, respect to the 

array indexes. 
Step 3:  Calculate the upper threshold (TU) and the lower threshold (TL) using the following formula 

If (F0-I0)/(F1-F0)>R, 
( )0 1 0 / 2LT F F F R= − − ×            (7) 

If (I1-F1)/(F1-F0)>R, 
( )1 1 0 / 2UT F F F R= + − ×            (8) 

where I0 and I1 are the minimum and maximum value of the sorted array; F0 and F1 are the fitted value at 
the first and last index of the array; and R is a user-controlled value. 

Step 4: Binarize the array by replacing all values between TL and TU with 0 and others with 1. 

R can be understood as a signal-to-noise ratio which controls the sensitivity of the algorithm. A smaller R is more 
sensitive to detect the stripes. A reasonable choice of R is around 3.0. This algorithm can be used as a binarization 
method. This is convenient for users because one does not need to know the absolute values of the array.  

 
Figure 20. Demonstration of the detection algorithm. (a) Normalized 1D array, i.e. non-uniform background is corrected. (b) 
Sorted array and fitted array using the middle part of the sorted array. 

3.3.3 Combination of techniques for tackling all types of stripe artifacts 

From the equalization-based techniques and the SFTS algorithm, we can derive various algorithms for removing 
different types of stripe artifacts. 

Removal of large stripes 

 Large stripes (Fig. 21(a)) may come from partially defective regions (Fig. 10(b)) or the adjacent areas of the 
damaged scintillator which receive extra scattered light, i.e. the so-called halo effect (Fig. 9(a)). To detect them using the 
SFTS algorithm from the sinogram, the pre-processing steps are: 

1- Sort intensities in each column of the sinogram (Fig. 21(b)). 
2- Apply the strong median filter along each row to remove stripes (Fig. 21(c)). 
3- Average along the columns of the sorted sinogram where some percentage of pixels at the top and bottom 

are dropped. This simple technique helps to reduce the possibility of wrongly detecting stripes caused by 
high-frequency edges of the sinogram (Fig. 21(a)). It also can be used to improve other ring removal 
methods.  

4- Do the same for the smoothed sinogram. 
5- Divide the result of step 3 to the result of step 4 to get the normalized 1D array. 
6- Use the SFTS algorithm to get the locations of the stripes. 

Then large stripes are removed by: 
1- Normalize each row of the sinogram using the result of the step 5 in the pre-processing algorithms (Fig. 

22(b)). This step helps to correct the non-uniform background around the large stripes (Fig. 22(a)). 
2- Apply the sorting-based algorithm with the strong filter to remove large stripes. 
3- Replace intensities in the stripes of the normalized sinogram with the one of the result of step 2 (Fig. 22(c)). 
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