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Abstract. We describe a method for detecting crossing pedestrians and, in general, any object
that is moving perpendicular to the driving direction of the vehicle. This is achieved by combin-
ing video snapshots from multiple cameras that are placed in a linear configuration and from
multiple time instances. We demonstrate that the proposed array configuration imposes tight
constraints on the expected disparity of static objects in a certain image region for a given
camera pair. These regions are distinct for different camera pairs. In that manner, static regions
can generally be distinguished from moving targets throughout the entire field of view when
analyzing enough pairs, requiring only straightforward image processing techniques. On a self-
captured dataset with crossing pedestrians, our proposed method reaches an F1 detection score
of 83.66% and a mean average precision (MAP) of 84.79% on an overlap test when used stand-
alone, being processed at 59 frames per second without GPU acceleration. When combining it
with the Yolo V4 object detector in cooperative fusion, the proposed method boosts the maximal
F1 scores of this detector on this same dataset from 87.86% to 92.68% and the MAP from
90.85% to 94.30%. Furthermore, combining it with the lower power Yolo-Tiny V4 detector
in the same way yields F1 and MAP increases from 68.57% to 81.16% and 72.32% to
85.25%, respectively. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
International License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.62.3.031210]
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1 Introduction

Crossing pedestrians pose a potential risk for any vehicle, notably in dense, urban environments.
Automatically detecting these people quickly and robustly and thereby avoiding collisions is
paramount for autonomous driving assistance systems (ADAS) and the further development
of autonomous vehicles. Broadly, there are two ways to detect moving pedestrians with a camera
setup. The first is to detect pedestrians in each single camera frame separately. This is an object
class-oriented approach, i.e., distinguishing image regions corresponding to the “pedestrian”
class from other object classes. The second approach is to compare multiple frames, taken
at different time instances. Local changes between these frames often correspond to moving
targets. These changes are thus relevant features for motion segmentation. In this paper, we
describe a novel and very efficient method to tackle this specific motion segmentation problem,
and we demonstrate that fusing both ways yields significant performance benefits over using
a single detector.

For a video sequence that is produced by a static camera, motion segmentation (also called
foreground-background segmentation) is a relatively easy challenge. Because the background
typically remains static as well, a motion segmentation algorithm can build a detailed back-
ground model for each individual pixel or each pixel group by observing a relatively short
sequence of video frames. By incorporating more sophisticated statistical techniques, motion
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segmentation algorithms can also handle small amounts of camera jitter, changing illumination,
and continuous changes in the background such as flowing water or waving tree leaves.

Motion segmentation from a moving camera remains a challenging problem, however.
Objects that are stationary with respect to the scene do appear to be moving in the video sequence
and at different rates depending on the distance. This phenomenon is called parallax. To build
a useful background model, the parallax due to the camera motion has to be compensated for.
Accurate parallax compensation requires information about the camera’s motion and the scene
structure, which has to be inferred from the video frames at an impractically high computational
cost (similar to high accuracy depth from stereo) or acquired directly through nontrivial fusion
with additional sensors (e.g., lidar). Strategies for simplified approximate motion compensation
exist, but even small inaccuracies in the compensation quickly degrade the background model,
resulting in many inaccurate moving object detections.

Although the traditional motion segmentation methods can also be applied to dynamic cam-
eras, the results are not satisfactory. Acceptable results have only been obtained when (i) the
camera moves very slowly and (ii) the motion of the camera is restricted to pan or tilt while
its projection center remains fixed, e.g., on the PTZ sequences of the ChangeDetection.NET
2014 dataset.1 Although we can compensate relatively easy for pan/tilt, it is much more difficult
to compensate for the disparity caused by parallax because the inherent dependency on object
depth typically causes a wide variety of observed disparities within a given scene. Clearly, com-
pensating for the disparity due to parallax will be much easier when the disparity is small for
the entire field of view, i.e., on the order of a few pixels.

Alternatively, over the last few years, deep learning-based approaches have proven their
potential to vastly outperform classical techniques in many fields of computer vision, with
object-of-interest detection and classification being notable examples. Modern neural network-
based detectors are dominating the leader-boards on well-known benchmarks such as KITTI2 or
NUSCENES.3 However, researchers have realized that a state-of-the-art performance on public
datasets does not directly translate to a well-generalizable solution, e.g., in the case of pedestrian
detection.4 There is significant potential for over-fitting, which can be problematic in scenarios
with, e.g., lighting/scenic differences or partial occlusion.

Our proposed solution is fundamentally different from existing methods. Instead of applying
sophisticated models to compensate for the parallax due to ego motion, we propose arranging
and combining the cameras in such a way that the parallax becomes small and manageable in
well-defined subregions of the image. The key to our solution is the combination of image pairs
from both different time instances as well as different physical cameras, which are placed in a
(linear) array configuration, to obtain these subregions. Figure 1 shows a high-level overview of
our proposed setup.

Fig. 1 Proposed camera array setup, example with three cameras. The cameras are placed in
a linear configuration on a moving vehicle. Multiple virtual camera pairs can be generated w.r.t.
a chosen reference camera (gray) by selecting different cameras at different time instances.
r is the frame rate in frames per second.
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With this setup, the effect of parallax is easier to compensate for, regardless of which specific
motion segmentation method is used. Because the parallax from motion is reduced, motion
compensated background models become much more robust and facilitate a better distinction
between static and dynamic feature points using epipolar and structural constraints. In fact,
because the parallax is small, a simple motion segmentation method with very limited motion
compensation is already valuable, requiring less processing power and/or cheaper hardware cam-
eras than existing solutions. Regular (RGB) cameras are both ubiquitous and generally cheaper
than other sensors such as lidar scanners and short-wave infrared or long-wave infrared thermal
cameras. Moreover, in its most basic form with one stereo camera pair, the necessary recording
hardware is already present in many modern vehicles. However, we note that this does not
exclude the proposed low parallax method being efficiently combined with more computation-
ally demanding systems in which the additional hardware and/or processing cost is not a
limitation.

In this paper, we specifically demonstrate a novel approach for detecting moving objects
from a moving vehicle with an array of cameras. We further develop, extend, and validate the
ideas coined by Veelaert et al.5 The main contributions of this paper are as follows:

i. We present a theoretical framework for obtaining regions of low disparity between camera
pairs, given a known camera configuration, the vehicle speed, and (potentially) the distance
to the closest object in front of the vehicle.

ii. We demonstrate a very efficient algorithm for detecting moving objects that can be imple-
mented with only simple vector/matrix type calculations, such as pixel shifts, absolute
differences, summation, and thresholding.

iii. We experimentally verify the performance of our techniques on a self-recorded dataset, and
we demonstrate the potential as both a stand-alone detector and in cooperative fusion with a
state-of-the-art neural network-based pedestrian detector, Yolo V4.6 The stand-alone detec-
tor is shown to outperform a lightweight version of Yolo (coined Yolo-Tiny) on a bounding
box overlap test, while still running entirely on an 11th generation Intel i7 CPU at 59 frames
per second. There was no GPU acceleration for the camera array detector. The fused method
is demonstrated to boost the detection scores of the Yolo V4 and Yolo-Tiny V4 significantly.

The paper is structured as follows. In Sec. 2, we present a brief overview of techniques in the
literature that attempt to estimate moving objects, mostly focusing on non-static cameras. Next,
in Sec. 3, we describe our main idea: how to exploit a multicamera configuration to obtain these
regions of low disparity. This insight leads to our proposed motion detection algorithm, which is
described in Sec. 4. In Sec. 5, the method is thoroughly tested on a traffic sequence that was
recorded in an urban environment. We conclude the paper and discuss future prospects and
remaining challenges in Sec. 6.

2 Related Work

The goal of vision-based motion segmentation (also called foreground/background segmenta-
tion) is to find the silhouettes of all moving objects in a video sequence. A comprehensive survey
of the traditional and recent methods for motion segmentation can be found in the survey of
Bouwmans.7 Below, we provide a more limited overview, highlighting the most relevant tech-
niques within the scope of this paper.

2.1 Motion Segmentation with Stationary Cameras

The simplest way to detect motion is to subtract two consecutive image frames. The reasoning
behind this method is that, because the color of background pixels will typically not change, only
foreground pixels will have a large value in the difference image. This naive approach rarely is
sufficient because of illumination changes, camera noise, camera jitter, and changes in the back-
ground. The statistical mixture of Gaussians (MoG) method was one of the first methods that
could handle small periodic changes in the background, such as waving trees and flags, flowing
water, or smoke plumes.8 This method models the color of each pixel as a mixture of Gaussian
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distributions. Static background regions correspond to a small number of narrow Gaussian com-
ponents, whereas foreground pixels are less predictable and correspond to wider Gaussian dis-
tributions. Extensive overviews of recent versions of MOG and related statistical background
models can be found in the survey of Bouwmans et al.9

Another improvement came in the form of adaptive background maintenance. The basic idea
is to update the model more rapidly and to raise the detection threshold automatically in dynamic
regions.10,11 These regions are typically characterized by a larger deviation between the input and
the background model or from the detection of “blinky” or isolated foreground pixels. The afore-
mentioned strategies can also be successfully applied to PTZ cameras; the background model
can be accurately transformed during camera rotation with a specific form of the homography
matrix.12 However, when the camera also physically moves to another location during the record-
ing time, additional strategies are needed, as is discussed below.

2.2 Motion Segmentation with Moving Cameras

The main approaches for vision-based motion segmentation from a moving camera can be
classified into three distinct categories. All approaches described in this section assume that the
images are acquired by a monocular system, i.e., one moving camera.

2.2.1 Foreground/background segmentation with compensation for
generic motion

These methods analyze the optical flow between consecutive image frames to derive the optical
flow of the background specifically. To avoid contamination of the background model, several
schemes, such as two-step optical flow analysis13 and using a dual mode single Gaussian
model,14,15 have been proposed. The advantage of these methods is that the camera motion may
be arbitrary. An important disadvantage is that the background model will still be contaminated
in complex environments. When the moving objects occupy a large part of the images or when
the camera motion is rapid relative to the frame rate, accurate feature correspondences for
fine-grained flow analysis become difficult to obtain.

2.2.2 Motion clustering

These methods track features across video frames and attempt to cluster them into different
motion patterns, with the dominant pattern assumed to represent background motion (i.e., due
to the motion of the camera itself) and any minority patterns to represent moving objects within
the scene. Some methods apply high-level clustering techniques (e.g., spectral clustering) to find
groups of features that may belong to the same moving object. Multibody structure-from-motion
(MBSfM) techniques assume that all moving objects are rigid and group trajectories according to
how well they match the motion of a rigid body.16 Because MBSfM assumes rigidity, moving
pedestrians and cyclists cannot be reliably detected.

2.2.3 Geometric constraint-based methods

These methods are based on the observation that the motion of each feature point that belongs to
the background has to satisfy an epipolar constraint. Specifically, points in the image corre-
sponding to static objects always appear to move on a well-defined line, defined by the point
itself and another specific point, the epipole, that is determined by geometric properties. Any
feature point that does not satisfy the epipolar constraint must therefore be part of a moving
object. Unfortunately, the epipolar constraint by itself cannot detect all moving objects. An
important degenerative case is for objects moving parallel to the vehicle from which the record-
ing is made, e.g., when the recording vehicle is following another vehicle. In that case, the
motion of any feature point on the vehicle ahead will also lie on an epipolar line. To cope with
such degenerative cases, additional constraints have been added: flow vector bounds,17–19 modi-
fied structure consistency,20 or algebraic three-view constraints. Another important drawback of
these methods is their vast computation time. We note that in the proposed method we use similar
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geometric constraints; however, we are able to avoid many costly operations in a multi-camera
setup. This idea is further fleshed out from Sec. 3 onward.

2.3 Moving Object Detection Without Motion Segmentation

By far the most popular approach in recent years, which avoids geometric reasoning and works
for non-rigid objects, is detection-by-recognition, typically using neural networks. In this case,
certain types of objects (pedestrians, bicycles, and cars) are first detected and then tracked while
they move. Notable examples of modern, state-of-the-art object detectors are Faster RCNN,21

Yolo V4,22 Scaled Yolo V4,23 and EfficientDet.24

In spite of its popularity, this approach has several disadvantages. Only a limited class of
known objects can be detected, i.e., those that have been “learned” by the system. Similarly,
the fact that these networks are trained from examples means that they are vulnerable to
errors related to occlusion, poor illumination conditions, difficult weather, etc. if these cases
are under-represented in the training dataset. Furthermore, high-performing networks typically
require high-end GPU or TPU support for (close to) real-time applications and/or have nontrivial
memory requirements. Hence low-power solutions were developed (e.g., Yolo-Tiny25 and
Multibox SSD26), but the achieved detection performance of these networks is significantly
inferior to the full-grown detectors. Furthermore, tracking an object only becomes reliable
when the tracking is done over several frames, which is highly undesirable for fast detection in
autonomous driving applications. Finally, learning the object models requires large datasets and,
as mentioned previously in the introduction, the models have poor carryover to circumstances
outside those of the dataset on which they were trained. This degrades detection performance,
e.g. in strongly different lighting conditions or when objects are only partially visible.

In conclusion, there is currently no optimal solution for detecting moving objects from a
moving platform that satisfies all of the requirements for satisfactory application in autonomous
driving. There is still room for improvement, notably on the more challenging scenarios. In this
paper, we propose an efficient method that tackles many of the current limitations of the state-of-
the-art listed above, specifically for detecting crossing objects such as pedestrians.

3 Main Idea

Our key idea is to use a linear array of cameras, collect several image frames while the vehicle
moves, and combine certain regions across image frames such that the disparity between the
regions is minimal. By reducing the amount of disparity, many of the common difficulties of
motion segmentation from a moving vehicle disappear. In this section, we demonstrate how
careful geometric analysis leads to these conclusions, building from an example of a single
camera pair.

3.1 Disparity of a Single Camera Pair

Disparity is the measurable effect of parallax that occurs between two images. When static
objects are observed from different viewpoints, they typically appear at different locations
on the image plane. The exact observed locations depend both on the orientation and position
of the cameras and on the object depth w.r.t. the cameras. To be able to discriminate between
stationary and non-stationary objects, we have to determine the disparity of stationary objects as
accurately as possible. In this section, we present a detailed analysis of the disparity for cameras
on a moving platform.

We use the basic pinhole model for each camera, and for convenience we assume that all
cameras have the same focal length f. We compute the disparity for an arbitrary pair of camera
positions. We also assume that the viewing directions are parallel to each other, i.e., the cameras
are translated but not rotated relative to each other. Note that, with camera calibration (Sec. 4.1),
a nonparallel orientation could be detected and the videos could be rectified if necessary.

Let X ¼ ðX; Y; ZÞ be a point in 3D space. When two snapshots are taken from two different
camera positions of the same scene, the projection of X on the two image planes will generally
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not be at the same position. Due to parallax, there will be an offset, or disparity, between the two
projections of X. Figure 2 shows a schematic top view of the situation.

Let x 0 denote the image of X as seen by the camera with projection center CS ¼ ðXS; YS; ZSÞ
and x denote its image in the reference camera, which is positioned at the origin CR ¼ ð0;0; 0Þ.
As shown in Fig. 1, we assume that the reference camera is in front of the other camera; therefore
ZS < 0. A straightforward calculation shows that, for a static object at ðX; Y; ZÞ, the disparity is

EQ-TARGET;temp:intralink-;e001;116;487ðΔstat;x;Δstat;yÞ ¼ ðx − x 0; y − y 0Þ ¼ −
f

Z − ZS

�
X
ZS

Z
− XS; Y

ZS

Z
− YS

�
: (1)

The disparity is zero when XZS ¼ XSZ and YZS ¼ YSZ. Both equalities hold when X lies on
the baseline of the two cameras. A closer analysis of Eq. (1) reveals the following:

i. The disparity is zero for any point on the common line of sight, that is, any point of the form
ðX; Y; ZÞ ¼ ðkXs; kYS; kZsÞ, provided k ≠ 0;1.

ii. The x-component of the disparity is independent of any of the y-coordinates, and vice versa.
iii. The components of the disparity vector are linear functions of X and Y when Z is fixed.
iv. The disparity of the more distant static objects is smaller than the disparity of the closer

objects, when considering a given line of sight.

Equation (1) gives the disparity between the two image points for a static object at location
ðX; Y; ZÞ. We can also express the disparity as a function of the location of the projection of
ðX; Y; ZÞ onto one of the image planes and the depth Z of the object. Let

EQ-TARGET;temp:intralink-;e002;116;288x ¼ ðx; yÞ ¼ f
Z
ðX; YÞ; (2)

denote the projection of ðX; Y; ZÞ onto the image plane of the reference camera. Replacing X by
xZ∕f and Y by yZ∕f in Eq. (1), we obtain

EQ-TARGET;temp:intralink-;e003;116;223ðΔstat;x;Δstat;yÞ ¼
−ZS

Z − ZS

�
x − f

XS

ZS
; y − f

YS

ZS

�
; (3)

or equivalently

EQ-TARGET;temp:intralink-;e004;116;166ðΔstat;x;Δstat;yÞ ¼
−ZS

Z − ZS
ðx − ex; y − eyÞ; (4)

where

EQ-TARGET;temp:intralink-;e005;116;111ðex; eyÞ ¼
�
f
XS

ZS
; f

YS

ZS

�
; (5)

Fig. 2 Top view schematic overview of a single camera pair observing a point X ¼ ðX;Y ; Z Þ,
where both cameras are aligned. The second camera is displaced by ðXS; YS; ZSÞ w.r.t. the first
camera. The black solid lines represent the image planes. The epipoles are found on the inter-
section of baseline (i.e., the line joining the camera centers) with the respective image planes.
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represents the epipole in the image plane of the reference camera defined by the common line of
sight of CR and CS.

We now assume that the displacement of the second camera during a time interval Δt arises
from the ego-motion of the vehicle. We also assume that the principal axes of both cameras are
parallel to the driving directions. Hence, for a vehicle driving in a straight line at a constant speed
v, cameras with frame rate r, and difference in frame index Δk,

EQ-TARGET;temp:intralink-;e006;116;663ZS ¼ −vΔt ¼ −v
Δk
r
: (6)

An inspection of Eqs. (4)–(6) leads to key insights about the observed disparity. Specifically,
the disparity at image point ðx; yÞ is
i. proportional to the vehicle speed,
ii. inversely proportional to the depth of the object with respect to the non-reference camera,

i.e., Z − ZS,
iii. proportional to the difference vector between the projected point ðx; yÞ and the epipole

ðex; eyÞ.
We note that the individual components in the disparity vector ðΔstat;x;Δstat;yÞ are indepen-

dent, given the other parameters. Therefore, the disparity can be treated separately for x and y.
Thus, for notational compactness and clarity and without loss of generality, we focus on the
disparity along the x dimension in the remainder of this section. The behavior of the y-coordinate
is analogous.

Except for the depth, all of the variables in Eqs. (4)–(6) are obtained in a straightforward
manner during setup (XS), after camera calibration (f), or directly at runtime (v, x; y, and Δt).
Hence, to determine the disparity in the camera pair for a stationary point, only the object depth Z
is not directly available. This is discussed in the next paragraph. We also demonstrate that, with
an array of cameras, selecting appropriate camera pairs actually partially avoids the need for
accurate depth information to estimate the disparity.

3.2 Determination of Object Depth

In this section, we identify potential sources for obtaining object depth. In the following sections,
we then demonstrate that even low-accuracy depth information can already impose tight bounds
on the expected disparity for static objects.

Object depth cannot be observed directly from RGB cameras. There are three main
approaches to extracting this information with additional processing. The first approach is to
indirectly infer the depth from image context, e.g., with a neural network architecture.27

This approach has the drawback that, to obtain accurate depth estimates, the scene context needs
to be semantically rich enough in all scenarios, which cannot always be guaranteed.

The second approach is to calculate the depth from stereo within a multicamera setup. In the
“classical” approach, images from a camera pair selected from an array of cameras, but taken at
the same time (as opposed to the proposed system in this paper), are compared. The disparity in
a camera pair is inversely proportional to the depth, and therefore, a depth estimate can be
directly inferred from the camera parameters and image feature matching. This has the main
drawback that there is a trade-off between depth accuracy and the computational complexity
of finding correspondences. In particular, for nearby objects, the search window in the matching
step can be very large. However, if the correspondence is accurately found, the depth estimate
itself can be very accurate for nearby objects, but much less so for objects that are further
away. More global stereo depth estimation methods partially mitigate these issues, e.g., by
enforcing additional smoothness constraints, but at the cost of larger processing and/or memory
demands.28,29

A final approach is to use separate depth sensors, such as ultrasonic sensors, radar, or lidar
systems. From these options, lidar is generally the most suitable choice regarding accuracy in
both range and azimuth spatial dimensions, although the spatial resolution in commercially
available systems is low compared with modern RGB camera resolutions. Therefore, additional
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upscaling operations are required when both accurate and dense characteristics (i.e., a depth
value for every corresponding camera pixel) are necessary.30

Fast, low-complexity techniques are naturally preferred for real-time processing. Therefore,
it is beneficial to be able to cope with approximate but faster-to-obtain depth information.
A notable example is an implicit depth map that only comprises the distance to the closest object
in front of the vehicle, i.e., a free zone in front of the camera. It is sufficient to select the minimal
distance from detected objects above the ground plane (e.g., in lidar or radar reflections). This
avoids the need for dense upsampling.

Another valuable alternative is to manually set the free zone equal to the braking distance of
the vehicle. This coincides with the detection of pedestrians before it is too late. Therefore, such a
setting has high potential for avoiding collisions with vulnerable road users. Note that objects
(also static ones) that are within the braking distance could potentially cause false positive detec-
tions in this manner; however, these objects should have been detected earlier to avoid potential
collisions. Therefore, we consider these cases to be less relevant within the specific scope of this
paper, albeit still paramount for autonomous driving in general.

A sensitivity analysis for Eq. (4) reveals that, for a camera pair in our array setup,

EQ-TARGET;temp:intralink-;e007;116;544

dΔstat;x

dZ
¼ ZS

ðZ − ZSÞ2
ðx − exÞ: (7)

The sensitivity to errors for the object depth is inversely proportional to the square of
its actual value (with respect to the second camera). Therefore, the closest object is the most
relevant, and obtaining this information is more impactful to the disparity estimate compared
with the depth values for other objects in the scene.

Furthermore, the sensitivity is also proportional to ðx − exÞ, i.e., the distance from the epi-
pole. Hence, a system that is tailored to operate with image regions close to these epipoles has
very little depth sensitivity: a large uncertainty on the depth measurement only results in a low
uncertainty about the expected disparity. Thus, for image patches close to the epipole, even crude
depth approximations (e.g., one free zone with a constant depth for every time instance) yield
accurate estimations of the expected, i.e., very small, disparity.

3.3 Regions of Limited Disparity for Static Objects

The disparity always gets smaller when an object is further away from the cameras. As discussed
in Sec. 3.2, we assume that there is a free zone with a depth d in front of the vehicle in the
reference camera. Hence, for a certain camera pair, the distance along the depth (Z) direction
between the second camera and the object is at least d. Therefore, jΔstat;xj will always be smaller
than or equal to the maximal disparity Δmax;x, defined as

EQ-TARGET;temp:intralink-;e008;116;280Δmax;x ¼
−ZS

d − Zs
jx − exj: (8)

Furthermore, we observe that the sign of the components of the disparity vector only depends
on the location w.r.t. the epipole, i.e., points to the right of the epipole will always have a positive
x-component for the disparity, and vice versa. Hence, objects that are observed at an image point
x 0 in one camera will appear within a well-defined vertical strip Sx in the reference camera,
defined as

EQ-TARGET;temp:intralink-;e009;116;176Sx ¼ fx∶0 ≤ sgnðx − exÞðx − x 0Þ ≤ Δmax;xg: (9)

Similarly, we define Sy as the set of vertically bounded possible image point locations, lim-
ited by the maximal disparity at a given vertical distance w.r.t. the epipole. Thus, the image of
a static object in the first camera at x will appear in the reference camera within a rectangle
S ¼ Sx ∩ Sy, defined by the intersection of two infinite strips.

The bounds in Eq. (9) allow us to define regions of limited disparity in the image plane of
the reference camera that only depend on the position of the image point relative to the epipole.
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The limits will only hold for objects that do not lie in the free zone. Examples of regions of
limited disparity in a realistic setup are shown in Fig. 3.

So far, we demonstrated that the closer the image points lie to an epipole, the smaller and less
sensitive to object depth the observed disparity for static objects is. Hence, in the region sur-
rounding this epipole, the observed disparity is very predictable, and consequently, it is relatively
easy to find matches for static objects. Ideally, the epipoles and the aforementioned regions
around them are spread out across the image. This can be obtained by considering multiple
image pairs, e.g., by choosing one frame from one of the cameras as the reference frame at
a given time instance and then creating multiple the image pairs by combining this reference
frame with multiple frames from all cameras. Specifically, in a video recording with multiple
cameras on a moving platform, comparing frames from different cameras (different baseline Xs)
and from different time intervals (different forward moved distance jZsj ¼ vΔt) leads to different
locations of the epipoles. This observation naturally leads to the first key idea behind our
approach: the combination of different frames and cameras on a moving platform leads to very
efficient disparity analysis.

The elements that are essential to applying this idea in (semi-)autonomous setups are as
follows:

i. The topology of the camera array can be optimized to minimize the disparity caused by
the parallax at prescribed regions in the image.

ii. For each point in the scene, there is always at least one pair of cameras for which the dis-
parity is minimal. The selection of this pair does not depend on the distance between the
cameras and the object, but only on the location of this point with respect to the epipoles.

iii. There is a simple method for automatically choosing image regions across time and across
cameras that yields minimum disparity. More specifically, it is possible to construct a dis-
crete 2D map such that we can determine the most appropriate camera pair for each pixel by
a simple look-up operation.

3.4 Disparity of Moving Objects

In the previous paragraphs of Sec. 3, we derived formal expressions for the disparity in a single
camera pair. We implicitly assumed that the point ðX; Y; ZÞ does not physically move during the
capturing of both images. For moving targets in the scene, the disparity observed in the cameras
is actually a superposition of the effects from ego-motion of the cameras and the motion of the
target itself. If we can distinguish these effects in the cameras, it is possible to detect moving

Fig. 3 Examples of regions of limited disparity for two image pairs, with the same reference image.
Sparse optical flow31 was calculated for illustrative purposes. The vehicle was driving at 2.6 m/s.
Top row: reference image from central camera; middle row: image captured from one of the side
cameras’ Δk frames before the reference image; bottom row: maximal disparity (#pixels) for static
objects at a minimal depth of 4 m, clipped at a maximum of 10 pixels of disparity. The epipoles are
situated in the middle of the concentric squares. Note that the optical flow vectors for static objects
are always small for static objects that are further away from the camera or with projections that are
close to the epipoles. Note that for larger Δk , the epipoles are located closer to the center. (a) Left
camera background, Δk ¼ 16 frames; (b) right camera background, Δk ¼ 25 frames.
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objects. Specifically, any observed disparity outside the bounds in Eq. (9) must be caused by
a moving object.

Although the analysis can be repeated in a more general setting, to demonstrate the validity of
our approach, here we focus on one specific, important scenario in which the moving target is
moving parallel to the image plane or, equivalently, perpendicular to the driving direction. For
example, this occurs when a pedestrian is crossing the road and crossing the path of an oncoming
vehicle in the process (cfr. Car to vulnerable road user scenarios in Euro NCAP tests32).

Let X0 ¼ ðX0; Y; ZÞ be the original location of the target in 3D space. After moving parallel
to the image plane for some time, the target reaches a new location denoted by X1 ¼ ðX1; Y; ZÞ.
From the pinhole camera model, the image point displacement w.r.t. the reference camera, only
considering the target’s motion, is expressed as

EQ-TARGET;temp:intralink-;e010;116;604ðΔvirt;x;Δvirt;yÞ ¼
f
Z
ðX1 − X0; 0Þ ¼

f
Z

�
vt
Δk
r

; 0

�
; (10)

where vt is the transversal speed of the target and Δvirt;x ¼ x − x 00 the resulting disparity com-
ponent from its motion, i.e., its apparent motion to x from a virtual location in image x 00. The
disparity component from the ego-motion is again expressed with Eq. (4) by substituting x for x 00

and adding Δvirt;x. Hence, the total observed disparity of the moving target along the horizontal
direction is

EQ-TARGET;temp:intralink-;e011;116;498Δdyn;x ¼
−ZS

Z − ZS

�
x − ex −

f
Z
vt
Δk
r

�
þ f

Z
vt
Δk
r

; (11)

EQ-TARGET;temp:intralink-;e012;116;441¼ −ZS

Z − ZS

�
x − ex þ f

vt
v

�
; (12)

where Eq. (6) is used for simplification. We observe that the disparity for a crossing object thus
depends on the ratio of its transversal speed vt and the vehicle speed v.

Similar to the bounds for static objects, established in Eq. (9), we can also establish bounds
on the disparity that will occur for targets moving at a certain minimal speed. This leads to
another important observation that is key for the application of motion detection: for a given
location in the image, if one can establish a certain minimal free zone with depth d in front
of the camera, it is possible to distinguish targets such as pedestrians that are moving transversely
faster than a certain minimal speed. Moving objects can therefore be distinguished from static
objects by analyzing image correspondences. If the observed disparity is outside the bounds set
in Eq. (9), it must be due to a moving object.

Assume that the moving object (e.g., pedestrian) is crossing the path of the vehicle from left
to right, i.e. with a positive transversal speed vt > 0, as shown in Fig. 4. Specifically, this cross-
ing target can be detected in two distinct cases, depending on whether or not the object is moving
away from or toward the epipole.

3.4.1 Object moves toward epipole

When an object appears to be moving toward the epipole in the image, instead of away from it, it
cannot be static. According to Eq. (4), for a static object at the left side the epipole, i.e., x < ex,
the disparity Δstat;x should always be negative. However, if the pedestrian’s speed is sufficiently
large, Δdyn;x will be positive if the pedestrian moves from left to right. This is demonstrated for
the left person in Fig. 4. Specifically, from Eq. (11), the disparity Δdyn;x is larger than 0 when the
transversal speed exceeds a certain value, i.e.

EQ-TARGET;temp:intralink-;e013;116;138vt > −v
x − ex
f

; (13)

for x ≤ ex. Thus, the minimal crossing speed that is necessary for detection is proportional to the
vehicle speed, scaled by the normalized image distance to the epipole. The minus sign indicates
motion toward the epipole because ðx − exÞ ≤ 0. We note that no defined free zone in front of
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the camera is required to detect these moving objects because d does not appear in the expres-
sion. Hence, if no depth information is available, one can theoretically still detect moving objects
by carefully selecting image pairs, such that the epipoles are located in the direction of the object
motion, i.e., ex > x, for objects moving from left to right, and vice versa.

3.4.2 Object moves away from epipole faster than any potential static object

The maximal disparity, given a free zone with depth d is expressed with Eq. (8). An object that
appears to be moving faster in the image than the maximal disparity of a stationary object, that is
when Δdyn;x > Δmax;x, must be travelling at a minimal transversal speed away from the epipolar
line. This is demonstrated in Fig. 4 for the right pedestrian. Specifically, the minimal transversal
speed that is necessary to be detected is

EQ-TARGET;temp:intralink-;e014;116;125vt > v
x − ex
f

Z − d
d − Zs

; (14)

for x > ex. The minimal crossing speed is thus again proportional to the vehicle speed and the
normalized distance to the epipole. However, it is now also scaled w.r.t. a ratio determined by the

Fig. 4 Example of two pedestrians crossing the street from left to right, with transversal speeds
vt;1 and vt;2. The image pair under consideration comprises the current input frame from the refer-
ence (central) camera and an older frame in the buffer (Δk ¼ 50) from the right camera. This image
pair generates a specific epipole (orange). The first pedestrian moves toward the epipole in the
video sequences, while the second pedestrian moves away from the epipole. (a) Top view sche-
matic of the described situation; (b) older buffer input from right camera; (c) current input from
the reference camera.
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object depth and the free zone depth. Objects can be detected at lower speeds either when they
are closer to the border of the free zone or when the free zone depth is larger. The first case is
related to the fact that it is the apparent velocity that is important, which is higher for close
pedestrians. The second case is related to the property that a larger free zone allows us to put
a tighter constraint on the maximal disparity.

3.5 Combining Different Camera Pairs

We assume that there is a buffer of snapshots that were each captured at a given frame rate by one
of the cameras. The proposed setup is capable of detecting crossing objects in a region in front
of the vehicle. For any given point on the ground plane, the lowest speed at which a crossing
object can theoretically be detected is the minimum value of vt in Eqs. (13) and (14) for all
camera pairs that are considered. Let a snapshot in the buffer be indexed by i. If we always
consider the same reference camera for convenience as in Fig. 1, the epipole from the reference
camera with snapshot i is denoted ei ¼ ðeix; eiyÞ. The lowest speed at which the pedestrian can be
detected is thus

EQ-TARGET;temp:intralink-;e015;116;541vmin;t ¼ min
i

(
−v x−eix

f for x ≤ ex

v x−eix
f

Z−d
d−Zi

s
otherwise:

(15)

Because d is typically much larger than jZi
sj ¼ vΔti and the other parameters in Eq. (15) are

constant for all camera pairs, the selection of i mainly depends on x − eix. Therefore, in our
proposed method, the appropriate camera pair is determined by a Voronoi tessellation w.r.t. the
epipoles, that is, an image point in the reference camera x is always compared with the image
with index i in the buffer, for which the corresponding epipole ei is closest to x. This is elab-
orated further in Sec. 4.2.

Figure 5 demonstrates an example of the minimal transversal speeds for a three-camera setup
with a free zone of 5 m in front of the vehicle. Objects that are crossing more slowly than these
minimal speeds can be confused with static objects, depending on their location in the scene.
Note that the coverage obtained from the central camera alone is smaller than for the cameras on
the sides because all epipoles lie at x ¼ 0. Furthermore, one can observe that the coverage for
detecting a crossing object is not fully symmetric for left and right, even if the baselines between
the left and central cameras are the same as between the central and right cameras. However, if
the object were crossing from right to left instead (vt < 0), the coverage would be inverted about
the depth axis. Finally, as can be observed from Eqs. (13) and (14), on the epipoles x ¼ ex,
moving objects with any non-zero transversal speed can be detected, which agrees with our
earlier discussion of the disparity from static objects. We note that, because only the transversal
component of the pedestrian’s speed (perpendicular to the vehicle trajectory) is taken into
account in our analysis, the proposed method is potentially less sensitive for pedestrians that
do not cross the trajectory perpendicular to the driving direction.

In the next section, we discuss how these bounds can be practically implemented to obtain
a very efficient detector for crossing objects.

4 Efficient Crossing Object Detection

Finding image correspondences typically comes at a high processing cost. Instead, when using
the disparity constraints discussed in Secs. 3.3 and 3.4, and selecting appropriate image pairs for
every image region, detecting moving objects essentially boils down to checking pixel corre-
spondences in a very small image patch, located around the previous image location. This
approach vastly limits the search area in our proposed approach, thus sharply reducing the
required computational cost in the process. Furthermore, this approach avoids the computation
of explicit image features. This makes our approach suitable for applications with a strong need
for real-time processing, critical for, e.g., obstacle avoidance in traffic scenarios.
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In this section, we describe our proposed method to detect moving objects. First, we explain
which initial calibration and preprocessing steps are required. Then we translate the theory
described previously to a practical approach for constructing a so-called background image by
combining multiple frames from multiple cameras. Next, we demonstrate how the comparison of
this background image with the current input from a reference camera allows us to distinguish
moving and static objects in a very fast manner, with a background subtraction-based approach.
Finally, we demonstrate the further potential of our proposed approach further by exploring
straightforward fusion with camera-based object detectors.

4.1 Calibration and Preprocessing

Assuming that all cameras are pointing in the same direction as the speed vector of the vehicle,
the following parameters fully determine the disparity bounds for static objects at runtime:

i. The horizontal distance between the reference camera and the second camera on the
vehicle Xs

ii. The vehicle velocity v
iii. The frame rate r
iv. The focal length f
v. The horizontal image position with respect to the epipole ðx − exÞ
vi. The free zone depth d

Fig. 5 Top view visualization: pedestrians can be detected in a region front of a vehicle, depending
on their minimal crossing speed. A pedestrian is assumed to cross the path of the vehicle from left
to right. All potential camera pairs, from different time instances, from the given camera with
respect to the current time of the reference (central) camera are considered. In this example, three
cameras were placed on a line, with 20 cm between the camera centers. The vehicle is driving at a
constant speed of 30 km∕h. The frame rate in this example is 119.88 frames per second, and
the free zone is set at 5 m. The white region is outside the field of view of the central camera.
The pedestrian speed in the graph was clipped at 2 m∕s, meaning that in practice they would
need to be travelling unrealistically fast to be detected in the yellow regions. (a) Left camera/central
camera pairs; (b) central camera/central camera pairs; (c) right camera/central camera pairs;
(d) all cameras/central camera pairs.
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The focal length can be inferred from intrinsic camera calibration.33 It can be shown from
sensitivity analysis that, in our setup, an error of 3.8% or lower on the focal length amounts to
an error below 1 pixel length on the estimation of the disparity. In our experiments, the errors on
the focal length were below this boundary.

The baseline can be physically measured with a tape measure during the platform setup.
Alternatively, it can be inferred from solving perspective-n-point for each camera pair w.r.t.
known calibration objects.34 Note that this technique can also be used to detect non-parallel
orientations of the cameras.

The minimal object depth can in principle be inferred from any of the sensors mentioned in
Sec. 3.2. However, as mentioned, we argue that accurate depth information is not necessary in
many cases. Therefore, we make use of the free zone, which was discussed in the same section,
and set it to the maximal value of the estimated braking distance and the closest object in the
scene. Finally, if the vehicle speed, baseline, frame rate, and focal length are known, the image
position w.r.t. the epipole can be directly measured from the image.

Note that so far we assumed that the vehicle perfectly drives in a straight line and that there is
no camera rotation w.r.t. the scene or jitter between frames. In practice, this naturally will occur
in most scenarios, even on (mostly) straight road sections, depending on the local traffic situation
(e.g., speed bumps, slight road bends, or steering movements). It is entirely possible to extend the
disparity analysis to these more complex scenarios. In this paper, we limit the application to
scenarios in which these occurrences cause only minor deviations from a straight line, which
can be solved by video stabilization techniques.35

4.2 Background Image Composition

The goal is to detect moving objects, which can be achieved by analyzing the disparity w.r.t. the
bounds set in Eq. (9). From a computational point of view, this is easiest to perform when
the same types of image operations are executed on the entire image, enabling efficient array
computation. In this section we explain how keeping a buffer of a certain number of past frames
and selecting appropriate image patches from this buffer at runtime leads to a very efficient
implementation.

Frames that are captured from different cameras/time instances w.r.t. a certain reference
frame cause the epipoles to be located at different locations in the image, as can be observed
from Eq. (5). Therefore, we propose keeping a buffer of the last M frames for all cameras into
memory. Image patches around the epipoles are used for creating a background image at every
time instance. Every frame can thus be reused multiple times for different frame intervals Δk
until it is removed from the buffer. Frames that were captured more recently (smaller Δk) or
frames from cameras with a larger baseline (larger Xs) w.r.t. the reference camera will result
in the epipoles lying further from the image center. Therefore, increasing the buffer size will
only increase the epipole density near the center of the reference frame. Furthermore, the epi-
poles determined by successive frames lie closer together the farther back in time the correspond-
ing frames were captured. Hence, as long as a large enough region in front of the vehicle is
covered (see Sec. 3.5), adding more frames to the buffer is no longer worth the linearly increas-
ing memory requirements. An example of the epipole density for a given buffer size is dem-
onstrated in Fig. 6.

The epipoles serve as the input points for a Voronoi tessellation in the image plane. In the
resulting partitioning, the image plane is thus divided into subregions, with every subregion
comprising all points that are closest to a certain epipole. Hence, each subregion corresponds
to a point set for which the disparity for static objects is small when analyzing the image pair
corresponding to that epipole. Therefore, in our approach, at each new captured frame, we con-
struct a single background image tiling a plane with the same dimensions as the input. Each tile
corresponds to the points in the respective subregion in the reference buffer. The background
image lends itself to efficient array processing, which is exploited in our change detection-based
detection mechanism, explained in the following subsection. Note that using a single back-
ground image essentially amounts to a frame differencing approach of background subtraction.
Thus, there are drawbacks regarding ghosting and moving background objects. A more elabo-
rate, e.g., statistical, background model could theoretically be devised. This option is not
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explored in this paper, but the effects of these drawbacks and how they can be mitigated in an
alternative fashion are discussed further.

4.3 Change Detection by Background Subtraction

Full disparity analysis for motion detection requires explicitly finding correspondences between
the background and the input images for all pixels, calculating the disparity vectors, and finally
checking the obtained vectors w.r.t. to the (typically narrow) bounds from Eq. (9). This could be
obtained by analyzing, e.g., matched feature correspondences or optical flow vectors. However,
the problem can be simplified even further because the exact disparity vector does not need to be
known to decide whether or not a pixel corresponds to a moving object. One only needs to know
whether it is within the aforementioned bounds.

Therefore, we reformulated the disparity analysis step as a pure change detection problem:
given some model of the scene, changes are detected when there is no local correspondence
between the current input and the model. Formally, let us denote the greyscale input image
as I and the background model, in this case, a single image that was obtained as described in
Sec. 4.2, as R. A pixel at image point x is classified as follows:

EQ-TARGET;temp:intralink-;e016;116;231CðxÞ ¼
�
0 if ∃ x 0 ∈ S∶jIðxÞ − Rðx 0Þj < T
1 otherwise;

; (16)

where S is the region around x, defined by the static object disparity bounds as described in
Sec. 3.3, and T is a constant change detection threshold. Note that we assumed that odometry
and stabilization are robust and accurate enough to fully compensate for non-linear vehicle
motion. However, when this assumption does not hold, the disparities in the image could fall
outside the calculated bounds, potentially impairing detection performance. This effect could be
mitigated with a transformation of the input images w.r.t. the rotation of the vehicle, e.g., by
warping the input images according to additional data from, e.g., visual odometry or inertial
measurement unit measurements. The algorithmic performance will however be sensitive to the
accuracy of this data and will require (potentially nontrivial) additional processing steps. We
consider handling significant non-linear vehicle motion to be outside the scope of this paper.

Fig. 6 Example of the epipole density for a vehicle moving at 2.8 m∕s, with a buffer of 40 frames,
captured at 119.88 frames per second for three cameras with a baseline of 20 cm. The epipoles
are denoted on the current input (central) image with colored crosses. Cyan, green, and yellow
epipoles originate from pairwise comparison between the input image and earlier snapshots from
the right, central, and left cameras, respectively. Note that all epipoles for the central camera over-
lap in the center of the image. The innermost epipoles from the left and right cameras originate
from the oldest frames in the buffer, i.e., for Δt ¼ 40∕119.88 s. (a) Input image with superimposed
epipoles; (b) Voronoi tessellation of the image plane w.r.t. to the epipoles.
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Therefore, to cope with small nonlinear vehicle motions, we extend S along both image
axes to both sides of the region. S is specifically extended more along the vertical direction
(three pixels) than along the horizontal direction (one pixel) because we observed that vertical
oscillations were more pronounced in our recordings, even after stabilization.

From a computational perspective, the only operations needed to perform this detection step
are absolute differencing, thresholding, and index shifts, which can all be executed very fast in
modern processing devices due to the high potential for parallelism. All pixels in the input image
can essentially be processed in the same manner because the bounds are small and similar for the
entire image. One can very efficiently perform these operations using matrix/array processing,
e.g., on multithreaded CPU or GPU cores.

On the flipside, the very low complexity of the previously described solution, sets two
notable limitations to the expected performance as a detector.

i. Selecting an appropriate threshold T is highly dependent on the appearance of the environ-
ment and the moving targets. When the targets have a locally similar appearance to the
background (e.g., dark colored clothes compared with a black car), a low threshold is desir-
able. Conversely, the effects of illumination variance, image noise, reflections, etc. could be
partially mitigated by a high threshold.

ii. So far, we implicitly used the terms “changes” and “moving objects” interchangeably.
However, changes actually occur in a bidirectional fashion: a moving target covers a new
region of the image, but the region where the target was previously is now uncovered, and
the background also changes by becoming visible. This phenomenon is called ghosting.

These potential issues are undesirable for applications in (semi-)autonomous driving. A more
optimal solution should combine the strengths of our proposed detector with those of other
techniques. Therefore, in the next subsection, we investigate the potential to overcome the final
limitations by fusing our proposed camera array-based detector with a neural network-based
pedestrian detector, and in Sec. 5 the performances of these different approaches (camera array
only, neural network only, and fusion of both) are compared.

4.4 Extension: Cooperative Fusion with a Pedestrian Detector

As mentioned in the introduction, current single-frame object (pedestrian) detectors have a few
notable downsides, such as poor generalization to unseen scenarios. However, being nontime-
and nongeometry-based solutions, they do not suffer from ghosting or potentially insufficient
image stabilization, unlike the stand-alone proposed method. Furthermore, if the training set
was versatile enough, they should also (mostly) be capable of handling variations in observed
intensity differences between the background and the person. Therefore, there is potential in
overcoming the aforementioned limitations by combining both approaches.

As an example, we consider the Yolo V4 object detector.22 This is a dense prediction archi-
tecture, meaning that it attempts to find a label for every pixel in a given input image. The archi-
tecture uses CSPDarknetNet-5336 as the backbone network for feature extraction. Furthermore,
SPP37 was used to increase the receptive field and PANet38 for backbone parameter aggregation.
The so-called “head network” of Yolo V4 is described extensively by Redmon and Farhadi.6

The resulting dense predictions are matched with candidate bounding boxes and, as a final step,
only the most likely detections (i.e., all candidate detections with a detection score Sd above a
user-specified fixed threshold Td) are kept. Yolo-Tiny25 was developed with a similar design,
only with much fewer layers and weights in the network.

The choice of the detection threshold poses challenges similar to the proposed method; how-
ever, the nature of the errors is different. Mostly, partial occlusion and similarities between object
classes are the main causes for misclassification, which amount to missed or falsely detected
pedestrians in the envisioned (semi-)autonomous driving applications.

We propose a straightforward cooperative fusion mechanism to combine the strengths of our
camera array-based crossing pedestrian detector and the Yolo V4 and Yolo-Tiny V4 object detec-
tor. Essentially, Yolo’s binary threshold is converted to a ternary threshold, and the camera array
is used for making a decision when the detection score is neither high nor low. Specifically, we
keep the network structure of Yolo V4/Yolo-Tiny V4, but only consider the detected objects in
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the “person” class and replace the single detection threshold with a low threshold Td;l and a high
threshold Td;h. Let us denote a Yolo candidate detection bounding box Yd with detection score
Rd. We consider three distinct scenarios.

i. Rd ≤ Td;l This is a candidate box with a very low detection score. We thus assume that there
is a very low probability that there is a person present and omit the candidate from the final
set of detections.

ii. Rd ≥ Td;h This is a candidate box with a very high detection score and thus very likely to
coincide with an actual person that is present in the scene. Therefore, this candidate is kept
in the final set of detections. We expect only a low number of false positives to be introduced
in this manner.

iii. Td;l < Rd < Td;h These bounding boxes have a medium detection score, signaling no clear
preference to either keep or discard it as a detection. Therefore, this range benefits the most
from additional information: if there is detection in our camera array-based detection mask
C that is (partially) overlapping with this candidate, then it is more likely that there is
a crossing person. Hence, for this region, we keep the candidate if there is at least 1 pixel
at image point x ∈ Yd that is classified as motion, i.e., CðxÞ ¼ 1. Otherwise, Yd is discarded.

To conclude this section, we note that the proposed fusion mechanism does not fully take the
probabilistic nature of C into account. Because Yolo’s detection score cannot be directly related
to absolute differences in intensity, a more intricate, Bayesian approach requires further analysis.
Exploring this any further is beyond the scope of this paper. Our main goal concerning the pro-
posed fusion method in this paper, is to demonstrate the potential for combining the camera array
with a state-of-the-art neural network-based object detector, even within a straightforward fusion
framework.

5 Experimental Results

In this section, we evaluate the performance of our crossing object detection algorithm both as
a stand-alone detector and fused with Yolo V4/Yolo-Tiny V4, as described in the previous
sections.

5.1 Dataset

We captured a dataset in a city center, with three cameras facing toward the driving direction,
mounted on an electric cargo bicycle. The videos were recorded at 119.88 frames per second
with 3 GoPro Hero 7 cameras, at a baseline of 0.200 m between left/middle and middle/right.
Additionally, the recording setup comprised a radar, used for determining the ego-velocity with
the CFAR algorithm,39 and a lidar, which is used for depth estimation. The dataset consists of
21 sequences that were each recorded on a straight road section. In every sequence, one or two
people are crossing the road, either individually or together.

All sequences were stabilized with the OpenCV stabilization library, which is based on the
work of Grundmann et al.35

5.2 Evaluation

In total, 33,126 frames were semiautomatically annotated for evaluation. SSD26 and DSST40

were used to respectively generate and track candidate bounding boxes. These bounding boxes
were reinitialized at regular intervals, i.e., every 30 frames, to mitigate tracking drift. Finally,
manual corrections for false, missing, or offset detections were performed on these candidate
bounding boxes. The lidar was used to discard image regions closer than the braking distance
(estimated at 4 m) from evaluation.

All non-crossing pedestrians and other moving road users, such as cyclists and cars, are
considered to be “do not care” regions and thus do not contribute to the overall detection scores.
Therefore, the results should be interpreted only as an indication of the performance for spe-
cifically detecting crossing objects, not as a general road user detector. Visual examples are
shown in Fig. 7.
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For the proposed, stand-alone camera array method, the binary output was postprocessed to
be able to compare it qualitatively and quantitatively with the bounding boxes from the neural
networks: nearby foreground blobs in C are joined and evaluated as a single detected object by
the bounding box around them. Consecutively, all resulting bounding boxes that were too small
(i.e., smaller than 16 pixels high or 6 pixels wide) were discarded.

A test sample is considered to be a true positive when there is overlap between the candidate
bounding box from the detector and an annotated bounding box. Analysis of the total number of
true positives, combined with the number of false positives and negatives for different parameter
settings, yields the precision-recall curves in Fig. 8(a). We also repeated the experiment for a
minimal intersection-over-union (IOU) for the overlap between the ground truth and the detec-
tions. This experiment also takes the quality of the bounding boxes into account. These resulting
precision recall-curves are shown in Fig. 8(b). For both experiments, we calculated the highest
obtained F1 score and mean average precision (MAP). These metrics can be found in Table 1.

Fig. 7 Examples of processed results from the dataset for different methods. (a) Ground truth,
green boxes contain positive samples, yellow boxes are do not care regions; (b) camera array,
binary change detection mask C; (c) camera array, bounding boxes from change detection mask;
(d) Yolo V422 boxes with Td ¼ 0.25; (e) Camera array + Yolo V4 fusion result, green boxes are
detections above Td;h ¼ 0.7, cyan boxes are detections between Td;l ¼ 0.1 and Td;h ¼ 0.7.

Fig. 8 Precision-recall on the self-recorded dataset. The performance of the proposed method
(camera array) is compared with Yolo-Tiny and V4 Yolo V4,22 stand-alone and in cooperative
fusion, for multiple parameter configurations. (a) Overlap test; (b) minimal IOU = 0.25.

Allebosch et al.: Efficient detection of crossing pedestrians from a moving vehicle with an array of cameras

Optical Engineering 031210-18 March 2023 • Vol. 62(3)



The fused camera array + Yolo V4 detector obtains the highest detection scores on our dataset
for both experiments. Specifically, this method obtained a maximal F1 score of 92.68% and an
MAP of 94.30%, which is notably higher than the maximal scores for stand-alone Yolo V4. The
fused camera array + Yolo-Tiny V4 method similarly has a significantly better performance than
stand-alone Yolo-Tiny V4, in this case with even larger differences. The absolute scores are still
lower than for the fusion with the full Yolo V4 network. The proposed camera array method,
when used as a stand-alone detector, does not obtain the scores from stand-alone Yolo V4, but
still outperforms Yolo-tiny V4 by a significant margin in the overlap test. However, for an IOU of
0.25, the camera array as a stand-alone method has worse performance than the other methods
under investigation.

5.3 Discussion

Notably, the overlap test demonstrates that the proposed camera array method is able to obtain a
high recall even, compared with Yolo V4. This can be attributed to a fundamental benefit of the
proposed method compared with object detectors: motion can already be detected from a very
small patch of moving pixels, whereas a significant portion of the object needs to be clearly
visible for an accurate detection through a neural network. In other words, the proposed method
is less sensitive to partial occlusion. This is valuable for the envisioned application as it makes
early detection of crossing pedestrians more likely.

Conversely, Yolo-Tiny V4 and Yolo V4 obtain a higher maximal precision, causing fewer
false detections. Therefore, applications that require a very low false alarm rate benefit more
from using these detectors compared with the stand-alone camera array-based framework.
The limitations for stand-alone usage are more clearly visible in the experiment with a minimal
IOU of 0.25. Because the bounding boxes are obtained in a crude manner, the delineation is very
sensitive to camouflage (e.g., parts of the pedestrian with similar colors as the background) and
ghosting. Therefore, the quality of the bounding boxes themselves is lower.

However, it is clear from the results that the camera array has great potential in boosting the
detections by acting as a tie-breaker for the more uncertain cases (medium confidence levels) in
other object detectors. Combining neural network object detectors such as Yolo and the camera
array as described in Sec. 4.4 yields a “best of both worlds” on this dataset. In essence, using the
camera array detections as a secondary decision mechanism, one obtains both high precision of
using the neural network with a high detection threshold and high recall of using it with a low
detection threshold. The strengths of combining multiple approaches are shown in the examples
in Fig. 7.

Based on these findings, we conclude that the proposed method is useful in practice, both
when the amount of available processing power is limited as a stand-alone detector, to further
boost the performance of an already high-performing object detector, and in combination with a

Table 1 Detection results on the self-recorded dataset. MAP and the highest obtained F 1 score
(F 1;max) are given for all methods. The experiment was conducted as an overlap test (overlap with
ground truth counts as true positive detection) and as a minimal IOU test, in which the minimal IOU
was 0.25. Note that the IOU test places stricter constraints on the quality of the bounding boxes,
hence the overall lower results.

Method

Overlap IOU = 0.25

MAP F 1;max MAP F 1;max

Camera array 0.8479 0.8366 0.4614 0.6406

Yolo-Tiny V422 0.7232 0.6857 0.6600 0.6443

Camera array + Yolo-Tiny V4 fusion 0.8525 0.8116 0.7366 0.7290

Yolo V422 0.9084 0.8786 0.8650 0.8518

Camera array + Yolo V4 fusion 0.9430 0.9268 0.8866 0.8802
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lower-power object detector. We conclude the discussion by acknowledging a few limitations of
our current dataset and validation, suggesting follow-up research and development related to
our proposed method could be valuable.

• The main speed of the bicycle in our dataset was limited to 25 km∕h or below. Because the
minimal speed (that is necessary for a pedestrian to be detected) is proportional to the
vehicle ego-speed [see Eqs. (13) and (14)], the proposed method is less suitable for higher
vehicle speed scenarios. Future research could comprise finding the threshold (car) speed
at which the proposed method is no longer able to provide relevant feedback or further
improving the performance in these scenarios. However, we argue that our proposed
method is mainly useful in urban scenarios with a high number of pedestrians, in which
the speed limits are low (30 km∕h in many cities, e.g.). On highways, for example, the car
speeds are much higher, but there are also in principle significantly fewer pedestrians that
could appear.

• The dataset only comprised a maximum of two people crossing at the same time. Our
proposed method should still be applicable to more people being present in the scene.
The standalone proposed method essentially works on a pixel level, not on an object level.
However, when combined with an object detector and when there are more people present
in the scene, there is generally a higher chance of partial (dynamic) occlusion, and the
overall detection scores might be lower in those cases.

• We focused on detecting crossing pedestrians specifically in our dataset. In principle, any
type of (crossing) moving object can be detected with our method. However, the fused
method depends on an additional object detector. Hence, if the object detector is not prop-
erly trained for detecting, e.g., small children or other road users (such as nonhumans), the
fused architecture will also likely miss it.

• There was no noticeable motion in the background, except for other road users who were
labeled as “do not care.” If a background object is moving, the proposed standalone
method will typically generate a false positive detection. This could be handled by a more
complex background maintenance mechanism, e.g., from one of the methods that were
mentioned in Sec. 2. However, this effect can also mostly be mitigated in the cooperative
fusion method, by only selecting appropriate object classes for detection.

6 Conclusions and Future Work

We described a method for detecting crossing pedestrians and other road users with a linear array
of cameras on a moving vehicle. We have shown how this setup can be exploited to extract
multiple virtual camera pairs that are optimal for distinguishing true motion (perpendicular
to the driving direction) from disparity caused by the ego-motion of the vehicle. We first dem-
onstrated how this setup enforces geometric constraints on the disparity of objects in the scene.
When combining multiple virtual camera pairs, a detector using these constraints can cover a
significant portion of the driving area in front of the vehicle. We have also demonstrated a low
processing power, practical implementation of these ideas for detecting crossing targets, based
on straightforward, very fast operations such as frame differencing, thresholding, and image
shifts. The current (reference) image only needs to be compared with a single background image,
composed of well-chosen snapshots from different cameras and different time instances, up to a
certain, albeit low, maximal disparity. The performance of the proposed method on our self-cap-
tured dataset is superior to the low power Yolo-Tiny V4 object detector on a ground truth overlap
test, while still obtaining 59 frames per second without GPU acceleration. Furthermore, this
paper demonstrates that, combining the proposed method with the Yolo V4 object detector, the
proposed method boosts its F1 score and MAP on this dataset significantly, from 87.86% to
92.68% and from 90.85% to 94.30%, respectively. When accurate bounding boxes are required,
the camera array as a stand-alone network shows more limitations in our experiments, but it is
still clearly valuable for boosting the detection scores of Yolo V4 and Yolo-Tiny V4.

A few limitations of the current incarnation can be resolved in future work. In addition to
further general improvements on the desired detection rate, a few other notable remaining
challenges are ghost removal; dealing with camouflage, illumination and specular reflection
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invariance; and the extension to non-flat or curved road segments. Ghost removal and camou-
flage could theoretically be handled internally in the motion segmentation part by building a
background model from multiple samples per pixel instead of just one. Illumination invariance
could be obtained, e.g., by switching from intensity-based to edge-based processing.41 Finally,
with additional, accurate 3D odometry, it is possible to transform the background (or equiva-
lently, the reference input) at runtime. However, all of these mentioned approaches require non-
trivial steps to be added to the processing pipeline. Further research will determine the next steps
in the further development and expansion of these ideas.
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