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Abstract. This paper presents a fast and robust human tracking method to
use in a moving long-wave infrared thermal camera under poor illumina-
tion with the existence of shadows and cluttered backgrounds. To improve
the human tracking performance while minimizing the computation time,
this study proposes an online learning of classifiers based on particle filters
and combination of a local intensity distribution (LID) with oriented center-
symmetric local binary patterns (OCS-LBP). Specifically, we design a real-
time random forest (RF), which is the ensemble of decision trees for
confidence estimation, and confidences of the RF are converted into a like-
lihood function of the target state. First, the target model is selected by the
user and particles are sampled. Then, RFs are generated using the pos-
itive and negative examples with LID and OCS-LBP features by online
learning. The learned RF classifiers are used to detect the most likely
target position in the subsequent frame in the next stage. Then, the
RFs are learned again by means of fast retraining with the tracked object
and background appearance in the new frame. The proposed algorithm is
successfully applied to various thermal videos as tests and its tracking
performance is better than those of other methods. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduc-
tion of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.OE.52.11.113105]
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1 Introduction
Human tracking is an essential work for human gesture
recognition, surveillance applications, augmented reality,
and human–computer interfaces. Therefore, the tracking of
humans in videos has received considerable attention in the
computer vision field, and many successful human tracking
approaches have been proposed in recent years.

Human tracking researches can be divided into two catego-
ries according to the sensors. Electro-optical (EO) sensors
such as charge-coupled devices (CCDs) are the most widely
used cameras for human detection and tracking. Human
tracking based on the input images captured by RGB-EO
sensors has already been producing reliable performance
using color information when the illumination is constant
and the target image quality is good.1 However, much of the
human tracking research based on EO sensors is not appli-
cable to certain tasks in dark indoor and outdoor environments
because of the changeable illumination, existence of shadows,
and cluttered backgrounds. In contrast to EO sensors, thermal
sensors allow the robust tracking of a human body in outdoor
environments during day or night, regardless of poor illumi-
nation conditions and the body posture.

In general, thermal sensors can detect relative differences
in the amounts of thermal energy emitted or reflected from
different parts of a human body in a scene.2 That is, the tem-
perature of the background is largely different from that of
the human being. Moreover, the price of a thermal camera
has fallen significantly with the development of infrared
technology, and thermal cameras have been used in many
industrial, civil, and military fields.3,4 However, there are

still many problems to solve for reliable human tracking
with thermal sensors.

• Nonhuman target objects such as buildings, cars, ani-
mals, and light poles having intensities similar to those
of humans.4

• Persons overlapping while crossing paths.5

• Low signal-to-noise ratios and white-black or hot-cold
polarity changes.6

• Halos appearing around very hot or cold objects.6

• Differences in temperature intensity between humans
and backgrounds depending on weather and season.

Other important disadvantages of many successful
tracking methods are the assumptions that the background
is static, the target appearance is fixed, the image quality is
good, and the illumination is constant.7 However, in practice,
the appearances of humans and the lighting conditions are
changing constantly. Further, the background is not static,
especially in the case of a camera that is installed in a mobile
platform.

In our work, we use a long-wave infrared (LWIR) thermal
camera instead of EO sensors to track humans, particularly at
night and in outdoor environments, under the assumption that
the camera is freely oriented for a mobile platform application.

1.1 Related Work

Object tracking has been studied widely in the field of video
surveillance. In tracking approach, there are two types of
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object tracking: multiple target tracking and single target
tracking. In this paper, we focus on single target tracking.
The purpose of our research is to automatically track the
object’s bounding box in every frame by using a given
bounding box provided by the user including the object
of interest in a first frame.

In the current research, object tracking can be classified
as follows.

First, deterministic methods8 typically track an object by
performing an iterative search for the local maxima of a sim-
ilarity cost function of the template image and the current
image. Jurie and Dhome9 employed the color distribution,
with a metric derived from the Bhattacharyya coefficient
as the similarity measure, and used the mean-shift procedure
to perform the optimization. The mean-shift algorithm10 is
a popular algorithm for deterministic methods.

Second, the statistical methods solve tracking problems
by taking the uncertainties of the measurements and
model into account during object state estimation.11 The stat-
istical correspondence methods use the state space approach
to model object properties such as position, velocity, and
acceleration. Kalman filters12 are used to estimate the
state of a linear system when the state is assumed to have
a Gaussian distribution. One limitation of the Kalman filters
is the assumption that the state variables are normally distrib-
uted. Thus, the Kalman filters will give poor estimates of
state variables that do not follow a Gaussian distribution.
This limitation can be overcome by using particle filters,13

also known as condensation algorithms or sequential
Monte Carlo methods, which are efficient statistical methods
to estimate target states. Most recent studies7,8,14–16 have
attempted to apply particle filters to the tracking systems
so that dependable object tracking results can be achieved.
Yang et al.8 proposed hierarchical particle filters for tracking
fast multiple objects by using integral images for efficiently
computing the color features and edge orientation histo-
grams. The observation likelihood based on multiple features
is computed in a coarse-to-fine manner. Deguchi et al.14

employed the mean-shift algorithm to track the target and
incorporate the particle filters into the mean-shift result in
order to cope with a temporal occlusion of the target and
reduce the computational cost of the particle filters. Khan
et al.15 also employed particle filters and mean shift jointly
to reduce computational cost and detect occluded objects by
estimating the dynamic appearances of objects with online
learning of a reference object. Sidibe et al.16 presented an
object tracking method based on the integration of visual
saliency information into the particle filter framework to
improve the performance of particle filters against occlusion
and large illumination variations.

For online learning, Klein et al.7 proposed a visual object
tracking method using a strong classifier that comprises
an ensemble of Haar-like center-surround features. This
classifier is learned from a single positive training example
with AdaBoost and quickly updated for new object and
background appearances with every frame. Saffari et al.17

and Shi et al.18 proposed the online random forest (RF)
for the object tracking by continuous self-training of an
appearance model while avoiding wrong updates that may
cause drifting.

The first challenge in object tracking is to build an obser-
vation model. The color histogram is a well-known feature

for object tracking because it is robust against noise and
partial occlusion. However, it becomes ineffective in the pre-
sence of illumination changes or when the background and
the target have similar colors.16 A combination of color and
edge features is also used for mutual complements.8,13

The second challenge in object tracking is to design an
estimation of the likelihood (distance) between the target
object and candidate regions. Several types of distances,
such as histogram intersection or Euclidean distance, are
used to compute the similarity between feature distributions.8

The most popular method to estimate likelihood is using the
Bhattacharyya coefficient as a similarity measure.14,16

The third challenge in object tracking is to recognize and
track objects in images taken by a moving camera, such as
one mounted on a robot or a vehicle, because this is much
more challenging than real-time tracking with a stationary
camera. In moving camera applications, the background is
not static and the appearance, pose, and scale of a human
vary significantly. To track humans in a moving environ-
ment, Jung and Sukhatme19 proposed a probabilistic
approach for moving object detection when using a single
camera on a mobile robot in outdoor environments. Klein
et al.7 proposed an object tracking method based on particle
filters by adapting new observation models for object and
background appearances changing over time in moving
camera. Leibe et al.20 integrated information over long time
periods to revise its decisions and recover from mistakes by
considering new evidence from different camera environ-
ments (such as static or moving cameras) and large-scale
background changes. Kalal et al.21 proposed a tracking
framework (TLD) that explicitly decomposes the long-term
tracking task into tracking, learning, and detection. The
detector localizes all appearances that have been observed
so far and corrects the tracker if necessary. The learning esti-
mates detector’s errors and updates it to avoid these errors
in the future.

However, since much of the human tracking research
based on CCD cameras has many limitations, especially
for dark indoor and outdoor environments owing to poor illu-
mination, a few algorithms for tracking humans in thermal
images have been tried.

Li and Gong4 constructed the regions-of-interest histo-
gram in an intensity-distance projection space model with
a particle filter to overcome the disadvantage of insufficient
intensity features in thermal infrared images. Padole and
Alexandre5 used two types of spatial and temporal data asso-
ciation to reduce false decisions for motion tracking with
thermal images alone. Xu et al.22 proposed a method for
pedestrian detection and tracking with a single night-vision
video camera installed on a vehicle. The tracking phase for
the heads and bodies of pedestrians is a combination of
Kalman filter prediction and mean shift.

Fernandez-Caballero et al.23 proposed an approach to
real-time human detection and tracking through the process-
ing of thermal images mounted on an autonomous mobile
platform. This method simply used static analysis for the
detection of humans through image normalization and opti-
cal flow for enhancing the human segmentation in moving
and still images.

However, there exist nonhuman target objects, such as
buildings, cars, animals, and light poles, which have
intensities similar to that of humans in thermal images.4
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Therefore, it is very difficult to maintain correct tracking
when humans overlap while crossing paths. To solve these
problems, some recent tracking systems use additional infor-
mation from color CCD cameras.24 Leykin and Hammoud1

proposed a system to track pedestrians by using the com-
bined input from RGB and thermal cameras. First, a back-
ground model is constructed with color and thermal images.
Then, a pedestrian tracker is designed using particle filters.
Han and Bhanu25 proposed an automatic hierarchical scheme
to find the correspondence between the preliminary human
silhouettes extracted from synchronous color and thermal
image sequences for image registration without tracking.
Cielniak et al.24 proposed a method for tracking multiple per-
sons with a combination of color and thermal vision sensors
on a mobile robot. To detect occlusion, they proposed
a machine learning classifier for a pairwise comparison of
persons using both the thermal and color features provided
by the tracker.

However, these human tracking methods based on ther-
mal sensors or thermal and color sensors have the following
typical disadvantages:

• A few algorithms5,23 use the conventional background
subtraction and intensity threshold to detect a candi-
date object for tracking.

• Many tracking methods1,4,5,22–24 assume that the back-
ground is static and the target appearance is fixed.

• Even though a combination of thermal and color
images aid human tracking in daylight, color images
are useless in darkness.

• Combinations of thermal and color sensors impose
additional costs for camera equipment and computa-
tion time.

To improve the human tracking performance for moving
cameras while minimizing the computation time for dark-
ness, this study proposes a novel human tracking approach
for thermal videos that are based on online RF learning and

combination of a local intensity distribution (LID) with ori-
ented center-symmetric local binary patterns (OCS-LBP).
As shown in Fig. 1, we design a real-time RF, which is the
ensemble of decision trees for confidence estimation, and
confidences of the RF are converted into a likelihood func-
tion of the target state. In the initial stage, the target model is
selected by the user and particles are sampled. In the second
and third stages, subblock-based RFs are generated using the
long-term positive and negative examples with LID and
OCS-LBP features by online learning. The learned RF clas-
sifiers are used to detect the most likely target position in
the subsequent frame in the fourth and fifth stages. Then, the
RFs are learned again by means of fast retraining with the
tracked object and background appearance in the new frame.

This human tracking method based on RF combined
with an LID and OCS-LBP allows human tracking to be per-
formed in near real-time with a mobile thermal camera.
Moreover, the tracking accuracy increases compared with
that of a conventional human tracking method for thermal
images.

The remainder of this paper is organized as follows.
Section 2 describes the target representation method using
LID and OCS-LBP features. Section 3 introduces the basic
human tracking method using particle filters. Section 4 intro-
duces the proposed human tracking method that incorporates
online RF learning to avoid tracking drift caused by pose
variations, illumination changes, and occlusion. Section 5
presents an experimental evaluation of the accuracy and
applicability of the proposed human tracking method.
Section 6 summarizes our conclusions and discusses the
scope for future work.

2 Target Representation Using LID and OCS-LBP
To track a human, a feature space should be chosen for the
target. Choosing an optimal feature of the target model is
a more critical step because a thermal image has different
characteristics than a color image. Therefore, we combine
two appearance features: LID and OCS-LBP.

Fig. 1 Block diagram of the human tracking procedure using thermal images.
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2.1 Local Intensity Distribution

A color histogram based on distance is a frequently used
feature for object tracking.4,10,14 However, the major charac-
teristic of a human body in a thermal image is high intensity
without color information, and individual humans exhibit
distinct temperatures. Therefore, intensity is a better feature
than color to distinguish humans from a background and
other objects. In this research, we divide the bounding
boxes of a target model and a target candidate into adjacent
3 × 2 subblocks to create a robust feature model for object
occlusion as shown in Fig. 2. Partitioned subblocks are ben-
eficial if the size of a box is relatively large. This was
justified by the experiment of Khan et al.,15 which revealed
that an object often contains multiple local modes and that
partitioned subblocks track objects more correctly than a
single box when occlusion occurs.

In accordance with the research of Deguchi et al.14 and
Comaniciu et al.,10 let fxijgj¼1: : : n

be the normalized pixel
locations in the i’th subblock defined as the target model.
The normalized LID is represented bym-component (m-bin)
histograms and the LID of the i’th subblock of the target
model is denoted by qi ¼ fqiugu¼1:::m, where qiu is the u’th
histogram component of i’th subblock. Since pixels will be
more in the peripheral region than in the center, a normal
histogram is affected by occlusions and interference from
the background. Therefore, we use the Epanechnikov kernel
kðxÞ, which is an isotropic kernel that assigns greater weights
to pixels at the central points of the subblocks as follows:13

KðxiÞ ¼ kðkxik2Þ ¼
�
1 − kxik2 kxik2 < 1

0 otherwise
; (1)

where the distance kxik2 is measured from the center point of
the i’th subblock, yi ¼ ðxic; yicÞ. Each point xi ¼ ðxij; yijÞ
included in the i’th subblock is given by

kxik2 ¼
���� y

i − xij
hi

����
2

¼
8<
:

��� xij−x
i
c

hx

���2��� yij−y
i
c

hy

���2 ; (2)

where the bandwidth hi means (hix; hiy), the x and y radii of
the subblock, respectively.

Finally, the probability of the features u ¼ 1; : : : ; m in the
target model of i’th subblock is estimated as

qiu ¼ C
X
xit∈R

kðkxik2Þδ½bðxitÞ − u�; (3)

where δ is the delta function, bðxitÞ is the intensity compo-
nent at xit, and R is the set of normalized coordinates within
the subblock. For details on the normalization parameter C,
refer to Ref. 10.

The LID of the i’th subblock of the target candidate
centered at y in the current frame is denoted by PiðyÞ ¼
fpi

uðyÞgu¼1: : : m, where pi
uðyÞ is the u’th histogram compo-

nent of the i’th subblock. Using the same Epanechnikov
kernel kðxÞ and different bandwidth, depending on the size
of the candidate box, the probability of the i’th subblock in
the target candidate is estimated as

pi
uðyÞ ¼ C

X
xit∈R

kðkxik2Þδ½bðxitÞ − u�: (4)

2.2 Oriented Center-Symmetric LBP

In human detection, texture features such as the histogram
of oriented gradient (HOG)26 and LBP (Ref. 27) are popular
features to discriminate humans from backgrounds.
Recently, the LBP texture operator has been successfully
used in various computer vision applications, such as face
recognition,28 human detection,29 and human tracking,30

because it is robust against illumination changes, very fast
to compute, and does not require many parameters.31 LBP
describes the gray-scale local texture of the image with
low computational complexity by using a simple method.
The original LBP descriptor forms different patterns based
on the number of pixels by thresholding a specific range
of neighboring sets with the central gray-scale intensity
value. Even though LBP are widely used as a texture oper-
ator, they produce rather long histograms. Ma et al.32 com-
bined HOG and LBP to compute oriented LBP feature. First,
they define the arch of a pixel as all continuous “1” bits of
its neighbors. Then, the orientation and magnitude of a pixel
is defined as its arch principle direction and the number of
“1” bits in its arch, respectively.

CS-LBP (Ref. 33) uses a modified scheme comparing the
neighboring pixels of the original LBP to simplify the com-
putation while keeping the characteristics such as tolerance
against illumination changes and robustness against mono-
tonic gray-level changes. CS-LBP is different from LBP
in that differences between pairs of opposite pixels in a

Fig. 2 Representation of oriented center-symmetric local binary patterns (OCS-LBP) histogram generation. Local OCS-LBP histograms generated
from each subblock and their gradient orientation histograms.
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neighborhood are calculated, rather than comparing each
pixel with the center. This halves the number of comparisons
for the same number of neighbors and produces only 16 (24)
different binary patterns. However, since the original CS-
LBP lose the orientation and magnitude information, we
introduce a new lower-dimensional feature-oriented CS-
LBP (OCS-LBP) using a different approach of oriented
LBP.32

In order to extract an oriented histogram of OCS-LBP
from a subblock, gradient orientations are estimated at
every pixel and a histogram of each k’th orientation in a
neighborhood is binned using Eqs. (5) and (6). Each pixel
influences the gradient magnitude for an orientation accord-
ing to the closest bin in the range from 0 to 360 deg at 45 deg
intervals. In Eq. (6), robustness is maintained in flat image
regions by thresholding the intensity-level differences using
a small value T in Eq. (5), as follows:

sðxÞ ¼ jxj if jxj > T; (5)

OCS − LBPkR;Nðx; yÞ ¼ sðni − niþðN∕2ÞÞ
½0 < i < ðN∕2Þ − 1; k ¼ 0: : : 7�;

(6)

where ni and niþðN∕2Þ correspond to the intensity values of
the center-symmetric pairs of pixels for N equally spaced
pixels in a circle with radius R. Further, k is the bin number
of the gradient orientation.

In Fig. 2, gradient orientation is confirmed when the
differences between pairs of opposite pixels in a neigh-
borhood are over the threshold. For example, the absolute
difference between the values of n0 (130) and n4 (80) is
over the threshold T and n0 is greater than n4, so the absolute
difference (magnitude) is assigned to the zero bin. The gra-
dient orientation histogram for each orientation k of a sub-
block is obtained by summing all the gradient magnitudes
whose orientations belong to bin k. After that, the final
set of kOCS-LBP features of a single subblock is normalized
by the min-max normalization.

Using the same method with the LID, the bounding box
of a target model and a candidate are divided into 3 × 2 adja-
cent subblocks and OCS-LBP histograms are extracted from
each subblock. The number of subblock is decided according
to the experiment results of Ref. 7. In Ref. 7, the target object
was divided by nonoverlap 2 × 2 subblocks to make a robust
target model about occlusion. However, we change the num-
ber of subblocks as 3 × 2 based on the human body ratio. All
local OCS-LBP histograms are then used for online learning
of the RF classifier.

3 Particle Filters
An object tracking algorithm based on particle filters13 has
drawn much interest over the last decade. This is a sequential
Monte Carlo method, which recursively approximates the
posterior distribution using a finite set of weighted samples.
In addition, it weights particles based on a likelihood score
and then propagates these particles according to a motion
model.

Originally, particle filters consisted of the following three
steps.34

Prediction Step

Given all available observations y1∶t−1 ¼ fy1; : : : ; yt−1g up
to time t–1, the prediction state uses the probabilistic system
transition model pðxtjxt−1Þ to make a posterior prediction at
time t.

pðxtjyt−1Þ ¼
Z

pðxtjxt−1Þpðxt−1jy1∶t−1Þdxt−1: (7)

Updating Step

At time t, the observation yt is available, so the state can be
updated using Bayes’ rule.

pðxtjy1∶tÞ ¼
pðytjxtÞpðxtjy1∶t−1Þ

pðytjy1∶t−1Þ
: (8)

The candidate samples x̃it are drawn from an importance
distribution qðx̃tjx1∶t−1; y1∶tÞ and the weights of the samples.

ωi
t ¼ ωi

t−1
pðytjx̃itÞpðx̃itjxit−1Þ
qðx̃tjx1∶t−1; y1∶tÞ

: (9)

In the case of bootstrap filters, particle weights are iter-
atively estimated from the observation likelihood.

ωi
t ¼ ωi

t−1 · pðytjxitÞ: (10)

Resampling Step

Since the probability of most samples is negligible, K par-
ticles having large weights are statistically selected more
often than others, and the posterior state vector x̂t is updated
as the weighted average over the states of the particles.

x̂t ¼
XK
j¼1

ωj
t · x

j
t : (11)

4 Human Tracking Based on Online RF Learning
To estimate the observation likelihood pðytjxitÞ for the
weighting of the particles, the Bhattacharyya distance is gen-
erally used by calculating the object appearance similarity.10

In this paper, we estimate the observation likelihood for each
particle by using an RF classifier instead of normal distance
measures. Even though Saffari et al.17 and Shi et al.18 proved
the robustness of object tracking by using online RF learn-
ing, two methods cannot avoid the template drift problem
when images are taken by a moving camera because they
only used the positive and negative samples from the current
frame. In addition, because two methods only train one RF
by considering full body region regardless of the extent of
occlusion, they cannot track an object correctly in the case
where an object has a severe occlusion.

Therefore, we design a new classifier with online RF
learning with long-term samples as well as subblock-based
RFs to avoid tracking drift caused by pose variation, illumi-
nation changes, and long-term occlusion.

4.1 Initialization of Target Model

Particle filters are sequential Monte Carlo methods that
recursively approximate the posterior distribution using a
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finite set of particles over time t. In this paper, we define the
set of particles as Ptt ¼ fptitgi¼1::N , where the i’th particle
ptit at time t consists of its weight ωi

t and state vector

ptit ¼ ½cxit; cyit; wi
t; hit;ωi

t�T

where (cxit,cyit) is the center position of the tracked object,
while wi

t and hit are the width and height of the bounding box
of a target.

In the initial stage, the position and bounding box are
manually selected and the state vector of the initial target
Tr1 ¼ ½cx1; cy1; w1; h1; RF1�T is then set automatically
according to the user selection. RFi

t is the classifier deter-
mined by online learning at time t.

4.2 State Prediction

In the prediction stage of the particle filters, N particles are
propagated through the second-order autoregressive motion
model35 to predict the particle positions. The center position
of the i’th particle is interpolated from the previous position
(cxt−1; cyt−1), the average velocities at times t–2 and t–1, and
white Gaussian noise [Gð0; σ2xÞ; Gð0; σ2yÞ].
vxt−2 ¼ cxt−2 − cxt−3; vyt−2 ¼ cyt−2 − cyt−3

vxt−1 ¼ cxt−1 − cxt−2; vyt−1 ¼ cyt−1 − cyt−2; (12)

cxit ¼ cxit−1 þ
�
vxt−2 þ vxt−1

2

�
þGð0; σ2xÞ

cyit ¼ cyit−1 þ
�
vyt−2 þ vyt−1

2

�
þGð0; σ2yÞ: (13)

In the case of the second frame, only the velocity is
linearly combined with the previous position and white
Gaussian noise.

The box size of the i’th particle is linearly interpolated
from the previous box size of the target object (wt−1; ht−1)
and white Gaussian noise [Gð0; σ2wÞ; Gð0; σ2hÞ].
wi
t ¼ wt−1 þGð0; σ2wÞ hit ¼ ht−1 þ Gð0; σ2hÞ; (14)

where σx ¼ σy ¼ 6.4 and σw ¼ σh ¼ 0.64 are used accord-
ing to experimental results.7

4.3 Subblock-Based Random Forest Learning

An RF proposed by Breiman36 is a decision tree ensemble
classifier, with each tree grown using some type of randomi-
zation. This RF has a capacity for processing vast amounts of
data, with high learning speeds, based on a decision tree.

For the learning of the initial RF, training data are con-
structed using a positive example that is selected by the
user and two negative examples that are randomly sampled
from the background of the first frame. In the second frame,
the training data are increased to two positive examples and
four negative examples. Negative samples are randomly
selected from outside of a tracked object regardless of back-
ground cluttering. Training data are increased in the ratio 1∶2
until 15 frames. The memory capacity is 15 for positive
examples and 30 for negative examples. Every new target
is added to positive memory and the RF is learned using
the limited number of positive examples until the 15th

frame. In contrast, negative examples are updated as the
background at each frame according to the increase in
frames. After the 15th frame, we always keep the five pos-
itive examples from the 1st through 15th frames in order to
avoid the template drift problem by modifying the idea of
Klein et al.7 Moreover, the reminder of the positive memory
is occupied by the new example and the oldest example is
discarded, like in a queue, because the more similar history
of the positive examples produces more confident classifiers.

In this research, each particle is divided into six subblocks
as mentioned in Sec. 2.2, and two types of RF classifiers for
the i’th subblock are learned using the LID and OCS-LBP
extracted from the corresponding blocks in the 45 training
examples.

Let F be the set of RFs fðrfiÞgi¼1: : : S, where S is the
number of subblocks. The i’th RF, rfi, is represented as
rfi ¼ ðsrflidi ; srfocsi Þ. Here, we construct two RFs, srflid and
srfocs, for each subblock: one uses only the LID feature
(srflid) and the other uses only the OCS-LBP feature (srfocs),
rather than combining these into one feature vector according
to the experiments of Ko et al.,37 because the basic character-
istics of the LID and OCS-LBP are different. Therefore, the
total number of RFs at time t is 12 (2 RFs × 6 subblocks).

The learning of the RFs in i’th subblock at time t is sum-
marized below.

1. Set the number of decision trees T for two RFs.
2. Choose the number of variables for srflid and srfocs.

These variables are used to split each node from eight
LID input variables and eight OCS-LBP input varia-
bles. By using different i’th variables, the split func-
tion fðviÞ iteratively splits training data into left and
right subsets.

3. Each tree for an individual RF is grown according to
the following steps:

a. Select n new bootstrap samples from training set
Bn and grow an unpruned tree using the n bootstrap
samples.

b. At each internal node, each node selects m varia-
bles randomly and determines the best split func-
tion using only these variables.

c. Grow the tree within the maximal tree depth.

When the class label set is denoted by C ¼
fPositive;Negativeg, a leaf node n has a posterior probabil-
ity, and the class distributions of l trees, pðCijlÞ, are esti-
mated empirically as a histogram of leaf nodes on a class
label, Ci.

The depth of the trees is set at 20 according to the results
of Ko et al.,31 and the number of trees is four each for srflid

and srfocs. The experimental results for deciding the appro-
priate number of trees are described in Sec. 5.3.

4.4 Likelihood Estimation Using RFs

After a set of RFs is learned on positive and negative training
examples of frame t, the observation likelihoods for each
particle of frame t are estimated using RF classifiers. The
reference feature histogram, the LID, and the OCS-LBP
of the i’th subblock of a test particle are applied to the cor-
responding rfi ¼ ðsrflidi ; srfocsi Þ. The likelihood of the i’th
subblock is estimated by combining the probabilities of
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srflidi and srfocsi . The test image is used as input to the learned
RF, and the probability distribution (likelihood) of the i’th
subblock in the positive class is generated by ensemble
(arithmetic) averaging of each distribution of all trees L ¼
ðl1; l2; : : : lTÞ using Eqs. (15) and (16).

Pi
lidðCPositivejLÞ ¼

1

T

XT
t¼1

PðCPositivejltÞ; (15)

Pi
ocsðCPositivejLÞ ¼

1

T

XT
t¼1

PðCPositivejltÞ: (16)

Hence, the final likelihood of a particle is estimated from
Eq. (17).

Pj ¼ 1

S

XS
i¼1

ðPi
lid þ Pi

ocsÞn; (17)

where S is the number of subblocks.
This process is continued iteratively until the likelihoods

of all particles are computed.
Once the final likelihood (Pj) of the j’th particle is esti-

mated, the weight (wj
t ) of the j’th particle at time t is replaced

by using the likelihood Pj obtained from the RF and each
weight is normalized.

ŵj
t ¼

wj
tP

J
j¼1 w

j
t

: (18)

The state of the current target is updated as the top
Jð¼ 15Þ particles having greater weight.

T̄r ¼ ½c̄x; c̄y; w̄; h̄�T ¼
XJ
j¼1

ŵj
t · sj: (19)

4.5 Online Relearning of RF Classifiers

When a tracking human target is detected in a current frame,
the RFs should be relearned using the updated history includ-
ing positive and negative examples. The purpose of online
RF learning is to avoid tracking drift caused by pose varia-
tion, illumination changes, and occlusion.

The basis of the proposed online RF learning is to com-
pute the difference in target state between the current and
previous targets and only relearn the RF for the current
frame if this difference and the probability of the target sat-
isfy the conditions. In this paper, the learning condition
is adaptively changed by using Eq. (21) according to the vari-
ance in thermal intensity of a target region.

Online RF learning consisted of the procedures
described below.

ckt : Center of a tracked target specified by the current state
vector T̄r at time t.

OC: Counter for duration check of full occlusion
(OC ¼ 0)

1. Compute the difference between centers of previous
and current target regions.

diff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðckt − ckt−1Þ2

q
: (20)

2. If diff < T1 // normal tracking.

2.1 Compute the probability Pt of current target
region by using RF.
Where threshold T1 is the half width of the cur-
rent target.

2.2 Compute learning condition Umax
t using intensity

variance σ2 of target region and Eq. (21).

Umax
t ¼ minf0.72; ½1∕ logðσ2Þ� · αg; (21)

Umin
t ¼ Umax

t − 0.4; (22)

where 0.72 and 0.4 is the minimum probability
for the learning condition. 0.4 is the control
parameter for occlusion and it gives even large
Umin

t values when it has a smaller value than
0.4. This value can be increased when camera
is moving or multiple persons are walking. It
gives even small Umin

t values when it has a larger
value than 0.4. This value can be decreased when
camera is static or only one person is walking. α
is a constant learning rate decided empirically
(α ¼ 5.4 in our tests).

2.3 If Pt > Umax
t

2.3.1 Update 15 positive data and 30 negative
training data.

2.3.2 Learn the RF using training data.
2.3.3 Resample particles using Eqs. (12), (13),

and (14), except for 15 particles having
high probability.

2.4 If Pt > Umin
t // full occlusion

2.4.1 Use previous RF without updating training
data and learning RF.

2.4.2 Replace current particles with previous
particles.

2.4.3 If full occlusion is continuous.
Increase the number of full occlusion
counter: OC ¼ OCþ 1;
Else OC ¼ 0;

2.5 If Umin
t < Pt < Umax

t // partial occlusion

2.5.1 Use previous RF without updating training
data and learning RF.

2.5.2 Resample particles using Eqs. (12), (13),
and (14), except for 15 particles having
high probability.

3. If diff ≥ T1 // abnormal tracking

3.1 Use previous RF without updating training data
and learning RF.

3.2 Replace current particles with previous particles.
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4. If OC ≥ T2 // tracking terminal condition

4.1 Tracking is terminated.

In procedure 2.2, we use the intensity variance of the tar-
get region to determine the learning condition. This condi-
tion is based on the fact that the probability of the RF on the
current target is low as the intensity variance of the target is
high. The test result for a minimum RF learning threshold of
0.72 is described in Sec. 5.1. In procedure 2.4.3, we check
the duration of full occlusion and occlusion counter (OC)
increases its number whenever continuous full occlusion
is occurring. Then, if the total number of OC is over the ter-
minal condition, tracking is terminated in procedure 4. The
terminal condition T2 is a changeable threshold according to
the application and we set it as 30 frames.

5 Experimental Results
To evaluate the performance of the proposed algorithm, we
used four types of LWIR thermal videos containing moving
object with background clutter, sudden shape deformation,
unexpected motion change, and long-term partial or full
occlusion between objects at night.

• Type I: Four thermal videos captured by a static camera
in a dynamic background (OTCBVS benchmark
dataset38).

• Type II: Four thermal videos captured by a static cam-
era in a dynamic background.

• Type III: Two thermal videos captured by a moving
camera.

• Type IV: Two thermal videos captured by moving and
static cameras.

The frame rates of the video data varied from 15 to 30 Hz,
while the size of the input images was 320 × 240 pixels. All
test videos were captured in outdoor environments. Table 1
lists the detailed descriptions of the 12 test videos.

To evaluate the performance of the proposed method, we
use the spatial overlap metric defined in Ref. 39. Let us
define the concepts of spatial and temporal overlap between
tracks as ground-truth (GT) tracks and system (ST) tracks in
both space and time. After the ground truth and the estimated
bounding box of the target in the i’th frame of a sequence are
determined, the spatial overlap is defined as the amount of
overlap AreaðGTi; STjÞ between GTi and STj tracks in
a specific frame k.

AðGTik; STjkÞ ¼
AreaðGTik ∩ STjkÞ
AreaðGTik ∪ STjkÞ

: (23)

The initialization of the rectangle including the tracking
object is manually selected by the user. The proposed human
tracking system has been implemented in Visual C++ and
tested using a PC with an Intel Core 2 Quad processor.

5.1 Tests on Minimum Threshold and Condition for
RF Learning

In our study, the most appropriate minimum threshold to use
in Eq. (21) for updating training data and RF learning was
found to be 0.72 on the basis of several experiments. To
determine the proper threshold for RF learning, four test
data were selected from the test dataset shown in Table 1,
namely, Videos 1 and 2 (OTCBVS data) and Videos 5
and 6 (our data). We selected the two videos from the
OTCBVS data (i.e., Videos 1 and 2) because in these videos

Table 1 Properties of 12 test videos (S, static camera; M, moving camera).

Video type Video sequence Total frames Description Season

Type I (OTCBVS) Video 1 300 Two persons walking in the woods (S) Unknown, outdoors

Video 2 274 Multiple persons walking in the street (S) Unknown, outdoors

Video 3 209 Multiple persons walking in the street (S) Unknown, outdoors

Video 4 733 One person walking in the yard (S) Unknown, outdoors

Type II (our data) Video 5 550 Two persons walking in the street (S) Winter night, outdoors

Video 6 400 Two persons walking in the yard (S) Summer night, outdoors

Video 7 197 Two persons walking in the street (S) Winter night, outdoors

Video 8 500 One person walking in the yard (S) Summer night, outdoors

Type III (our data) Video 9 338 Multiple persons walking in the yard (M) Summer night, outdoors

Video 10 880 Multiple persons walking in the yard (M) Summer night, outdoors

Type IV (YouTube data) Video 11 371 Multiple persons walking in the same direction (M) Unknown, outdoors

Video 12 196 One person walking in the cluttered background (S) Unknown, outdoors

Note: Video (MPEG, 16.2 MB) [URL: http://dx.doi.org/10.1117/1.OE.52.11.113105.1].
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two persons walk in a cluttered background and become
fully occluded by each other. We selected Videos 5 and 6
of our data because two persons walk in different directions
and become fully occluded by a tree and each other. In the
first experiment, the minimum threshold for RF learning
was estimated by changing the value of the static threshold.
As shown in Fig. 3, a minimum threshold of 0.72 for RF
learning exhibited the best performance, with an average
AðGTik; STjkÞ value of 80.3%. Therefore, 0.72 was adopted
in Eq. (21) as the minimum threshold for RF learning.

For RF learning, we imposed the learning condition
[Eq. (21)] using the minimum threshold. The purpose of
the condition [Eq. (21)] is to design an adaptive RF classifier
depending on the variation of intensity. To verify the perfor-
mance of the learning condition, we compared the average A
values of the static threshold determined in Fig. 3 with those
of the learning condition [Eq. (21)] for the same four test
data. As shown in Fig. 4, the adaptive learning condition
exhibited the better performance for all four videos, with
an average of 84.5 versus 80.3%.

5.2 Determination of Optimal Number of Particles

The main disadvantage of particle filters is the computational
cost of using a large number of particles, even though par-
ticle filters are known to be robust in visual tracking through
occlusions and cluttered backgrounds.15 Therefore, it is
essential to find the proper number of particles by consider-
ing the computational cost. Figure 5 shows the results of

experiments using five possible values for the number of
particles. As shown in Fig. 5, even though 40 particles
gave the shortest processing time, the tracking performance
was the worst. In contrast, 120 particles gave the best
tracking performance and relatively good processing time,
so 120 was adopted as the number of particle filters.

5.3 Determination of Optimal Number of Trees

The RF is known to be very fast in learning and testing as
compared to other classifiers, i.e., the multiclass support vec-
tor machines.31 The important parameters of the RF are the
depth of the trees and the number of trees, T. Although
increasing the depth of the trees and the number of trees
improves the performance, the runtime cost depends on
the depth of each tree and the number of trees. In our
study, we set the maximum depth of the trees at 20 according
to the experiments of Ref. 31.

To determine the proper number of trees for a local RF, we
used the same four test data and compared the tracking per-
formance by changing the number of trees. As shown in
Fig. 6, when the number of trees for a local RF was four,
the tracking performance was the best and the processing
time was relatively good. Therefore, we adopted four trees
for a local RF. In this study, we constructed two RFs per sub-
block: one uses only the LID feature and the other uses only
the OCS-LBP feature, so the total number of trees for a target
is 48 (2 × 4 × 6).

Fig. 3 Experimental results for five possible pairs to determine mini-
mum threshold for updating training data and random forest (RF)
learning.

Fig. 4 Verification of performance of learning condition by comparing
the values of the proposed updating condition and a static threshold.

Fig. 5 Five possible pairs of experimental results to determine num-
ber of particles.

Fig. 6 Five possible pairs of experimental results to determine num-
ber of trees per local RF.
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5.4 Performance Comparison for Online RF Learning
Versus Static RF

Online RF learning is the main technique to track occluded
humans and avoid tracking drift caused by pose variation,
illumination changes, and occlusion in a cluttered back-
ground captured by a moving camera. To evaluate the effec-
tiveness of the proposed online RF learning, we compared
the tracking performance with online learning to that without
online learning (static RF). A static RF is learned but once,
when the user selects the human rectangle, and human
tracking is performed by the static RF classifier without
relearning.

Figure 7 shows a performance comparison of human
tracking methods for the same four test data. As shown in
Fig. 7, the online RF learning produced a better tracking
performance with an average tracking success rate of
84.5% compared to 75.1%. The main reason for the higher
tracking success rate of the proposed online RF learning is
that the long-term full or partial occlusion between persons
and tree is reflected in the training history and the RF
learning.

5.5 Comparisons Between Different Algorithms

To evaluate the performance of the proposed algorithm,
the proposed method was compared with OCS-LBP with
RF (OCS-LBPþ RF) and LID with RF (LIDþ RF). In addi-
tion, we evaluate three different types of related works: (1)
LID with particle filters using thermal image4 (LIDþ
particle filters), (2) simple online RF learning using Haar-
like feature,17 (3) TLD tracker21 that is known as a robust
object tracking algorithm in a moving camera. The experi-
ments were performed using the same dataset as described
in Table 1. As shown in Fig. 8, the overall performance
of our proposed approach exceeded that of the other two
combinations, the particle filters,4 simple online RF,17 and
TLD tracker,21 based on the A percentages of 81.9, 69.6,
57.2, 69.9, 70.9, and 62.2%. From the results, we can infer
that an individual intensity feature is not a distinguishing
feature for human tracking in thermal images, particularly
for cases of human occlusion. In contrast, the OCS-LBP fea-
ture produced reasonable tracking results even in thermal
images. Even though simple online RF and particle filter pro-
duced the second and third best tracking performance of the
other three methods, they still showed a few missing or false
detection results when occlusions occurred. TLD tracker
showed the worst tracking results, showing that learning
and detection algorithm of TLD is not appropriate for
human tracking in thermal image. The test results showed
that for robust and practical tracking, the combination of
two features is superior to the individual feature-based
human representation model in thermal video.

For a more detailed evaluation of tracking performance,
Fig. 9 shows comparisons between the proposed method and
the two methods [particle filters4 with LID and simple online
RF (Ref. 17)] in terms of the A performance versus the frame
number for Videos 1, 5, and 9. The ground truth of the target
object is marked manually.

In Videos 5 and 9, the tracking method based on particle
filters4 and simple online RF (Ref. 17) lost the target object
when occlusions occurred or camera is moving. In case of

Fig. 7 Tracking performance using the proposedmethod improved by
9.4% when compared to that using the static RF method.

Fig. 8 Overall performance comparison of the proposed tracking algorithm with five other methods using the same dataset.
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Fig. 9 Results of tracking the target object with three different methods using A score for (a) Video 1, (b) Video 5, and (c) Video 9.
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Fig. 10 Comparison between computational speeds of five methods.

Fig. 11 Human tracking results obtained using the proposed method. Red boxes are regions tracked by online RF learning, and blue boxes are
regions tracked by the static RF due to the partial or full occlusion.
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simple online RF,17 it showed the worst performance in
Video 9 because it could not distinguish the real target
from background when occlusions occurred. However, for
all three videos, the proposed scheme had a significantly
smaller error and more robust results than the other methods,
regardless of the full or partial occlusion and the camera
movement.

Figure 10 shows the computational speeds of the six
methods. As shown in Fig. 10, the proposed method (at
10.2 fps) requires more computation time than the other
methods (at 14.8, 18.8, 15, 20.2, and 22 fps) because it
uses subblocks of particles, online RF learning, and two
types of RF. When the online learning was not applied (static
RF), the tracking speed was approximately the same as that
of the LIDþ RF (∼19 fps) and faster than that of the
CS-LBPþ LID using conventional particle filters. Simple
online RF (Ref. 17) showed highest computational speed
as 22 fps because it used simple learning RF with Haar-
feature. Because the main reason for computational delay
is the online RF learning for individual subblocks, optimiza-
tion of the real-time learning may be considered for the next
version.

Figure 11 shows the tracking results obtained for
Videos 4, 5, 9, 11, and 12 by using our proposed method.
From the results in Figs. 11(a) to 11(e), we deduce that
our proposed method accurately and robustly tracks moving
objects, despite background clutter with similar intensity dis-
tributions [(b), (c), and (e)], object intersections [(a) to (d)],
long-term full (or partial) occlusion [(a) to (d)], and camera
movement [(c) and (d)].

The complete video sequences can be viewed at the
following webpage: http://cvpr.kmu.ac.kr.

6 Conclusions
In this paper, we have demonstrated that the proposed online
RF learning method with particle filters improves human
tracking performance for thermal videos, especially in cases
of poor illumination, object occlusion, background clutter,
and moving cameras.

To track a human region, an RF is relearned using the
updated history, including positive and negative examples,
whenever a new target is detected. Once a set of RFs is
learned, the observation likelihood for each particle of frame
t is estimated using RF classifiers. The proposed online RF
learning computes the difference in target state between
the current and previous targets, and the RF for the current
frame is updated only if the difference and probability of the
target satisfy the conditions. In this study, the learning con-
dition was adaptively changed according to the variance of
the thermal intensity of a target region.

This paper also proposed a new lower-dimensional OCS-
LBP feature and proved that a combination of the OCS-LBP
feature with the LID produces robust and practical tracking
results from the individual feature-based human representa-
tion model, especially for thermal videos.

In the future, we plan to improve our human tracking
algorithm to track multiple persons in dynamic environments
by designing a faster learning algorithm with a small portion
of particles and a robust feature model appropriate to thermal
images.
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