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1 Introduction

Abstract. With the rapid development of information technology, natural
disaster prevention is growing as a new research field dealing with surveil-
lance systems. To forecast and prevent the damage caused by natural
disasters, the development of systems to analyze natural disasters
using remote sensing geographic information systems (GIS), and vision
sensors has been receiving widespread interest over the last decade.
This paper provides an up-to-date review of five different types of natural
disasters and their corresponding warning systems using computer vision
and pattern recognition techniques such as wildfire smoke and flame
detection, water level detection for flood prevention, coastal zone monitor-
ing, and landslide detection. Finally, we conclude with some thoughts
about future research directions. © 2012 Society of Photo-Optical Instrumentation
Engineers (SPIE). [DOI: 10.1117/1.0E.51.7.070901]

Subject terms: natural disaster; remote sensing; vision sensor; wildfire detection;
water level detection; coastal zone monitoring; landslide detection.
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e Smoke and flame detection: most sensor-based flame

Over the past few decades, global warming has become the
most pressing environmental problem the world is facing.
Although there are various causes of global warming, it is
an undeniable fact that the explosive growth in the use of
fossil fuels such as petroleum, coal, and natural gas is the
major cause of global warming. The world is currently
experiencing various natural disasters such as storms, wild-
fires, droughts, floods, landslides, and tsunamis due to the
effects of global warming. According to a report from the
Asian Disaster Reduction Center,! on average, more than
200 million people have been affected by natural disasters
every year for the past two decades. For example, a mudslide
triggered by heavy rains buried an entire village in the
Philippine province of Southern Leyte in February 2006.
More than 200 people were killed in the slide with about
1500 people missing. In addition, a strong undersea earth-
quake, which had a 7.7 magnitude, struck Java Island off
the southern coast of Indonesia in July 2006 which triggered
a tsunami that swept away wooden buildings and killed at
least 500 people. As we have seen from this report, natural
disasters have caused huge losses of both life and property.
Therefore, when disaster threatens, an early warning of dis-
aster is crucial to reduce the potentially extensive casualties
and property damage.

To forecast and prevent the damage caused by natural
disasters, the development of systems to analyze natural dis-
asters using remote sensing and geographic information
systems, GISs, has been receiving widespread interest over
the last decade.

Most current natural disaster warning systems are based
on remote sensors that depend on certain characteristics of
natural disasters. These systems can be categorized into
the following types:

0091-3286/2012/$25.00 © 2012 SPIE

Optical Engineering 070901-1

or smoke detection systems are based on infrared
sensors, optical sensors, or ion sensors that depend
on certain characteristics of flame and smoke. The
most commonly used is the infrared sensor which is
capable of detecting flame or heat sources at tempera-
tures of 200°C to 300°C above ambient background
temperature, typical of those heat sources that
originate from a fire, while rejecting solar radiation
reflections and fluctuations in ambient background
temperature.” An optical detector may be used as a
smoke detector. When smoke enters the optical cham-
ber and crosses the path of a light beam, some light
is scattered by the smoke particles toward the sensor,
thus triggering the alarm. In the absence of smoke,
the light passes in front of the detector in a straight
line.® Tonization smoke detectors use an ionization
chamber and a source of ionizing radiation to detect
smoke. This type of smoke detector is more common
because it is inexpensive and better at detecting the
smaller amounts of smoke produced by flaming
fires.*

Flood detection: the most popular method to detect
floods is to use water level sensors. Pressure sensors
detect force per unit area, represented by the product
of the mass of water and the acceleration due to gravity,
and can show the quantity of water per unit area. The
resulting pressure measurement can be directly trans-
formed to water level. Supersonic wave sensors mea-
sure the time of travel of a supersonic wave pulse from
emitter to receiver reflected by the water surface. Heat
based sensors measure the temperature difference
between sensor and water. Since the amount of tem-
perature drop of a sensor is proportional to its contact
area with water, in this case, the depth information of a
sensor in water can be calculated from its temperature
change.’
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¢ Tidal wave detection: the general method for detecting
tidal waves or tsunamis is to use a buoy system. The
tidal detection buoy system measures small changes in
the depth of the deep ocean caused by tidal waves as
they propagate past the sensor. This is accomplished by
using an extremely sensitive bottom pressure sensor/
recorder to measure very small changes in pressure
as the waves move past the buoy system.® Another
tidal wave early warning systems (TEWs), is equipped
with sensors capable of detecting sea-level oscillations
within the tidal frequency band by collecting some
measurements from bottom pressure recorders (BPRs),
or tsunamometers, tidal gauges (TGs), and wind-wave
gauges (WWGs), equipped with either pressure, acous-
tic, or optical sensors.

* Landslide detection: electrical sensors are commonly
used for monitoring devices of landslides, such as
extensometers, although they are easily damaged by
lightning and electromagnetic noise. In contrast, opti-
cal fibers are free from such flaws and devices using
optical fibers have been developed in recent years. The
sensors basically work by detecting changes in the
fiber’s transmission of light due to bending or warping
of the optical fiber when the ground moves.®

Howeyver, these conventional, remote sensor—based warn-
ing systems have the following common disadvantages:

¢ They are not triggered until particles or pressure waves
actually reach the sensors.

* Some sensors require expensive equipment.
* They need a high level of maintenance to check for
malfunctions.

¢ Some systems, such as tidal wave detection systems,
require multiple communication links between sensors.

* They are usually unable to provide any additional
information such as location, size, and level of disas-
ter.” Therefore, when the alarm is triggered, the system
manager still needs to confirm the existence of a dis-
aster by visiting the location.

To solve these problems, many current research projects
are trying to develop warning systems using vision sensors
such as CCD cameras, infrared cameras, and thermal cam-
eras. Unlike conventional remote sensors, vision sensor
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based disaster warning systems involve a lower equipment
cost as they use surveillance cameras that are already
installed in many public places. In addition, vision sensors
can monitor a larger area because the camera functions as a
volume sensor rather than as a traditional point sensor. More-
over, these cameras can easily be used to gather additional
information such as the location, size, and degree of disaster,
because the system manager can check the surveillance
monitor without visiting the location.'”

As shown in Fig. 1, vision sensors are installed at remote
sites and transfer image sequences to a monitoring server
using wired or wireless network. If an emergency situation
is detected, the warning system sounds an alarm and sends
image sequences of the remote site to the control center for a
visual check of whether it is an actual emergency or not.

Because natural disaster warnings are receiving more and
more attention in recent research, a comprehensive review of
various disaster warning techniques which have been devel-
oped in recent years is needed. This paper surveys recent stu-
dies on warning techniques for four types of natural disasters
including wildfire detection and smoke detection, water level
detection for flood warning, landslide detection, and coastal
zone monitoring for tidal wave alerts, using computer vision
and pattern recognition techniques. However, vision based
disaster detection is a new research field with relatively
few published reports, hence, we introduce a few represen-
tative works on the subject of disaster detection. Table 1
summarizes the representative categories of natural disaster
warning systems based on visual sensors and their main
algorithms.

In the following sections, we discuss each of the disaster
warning techniques listed in Table 1.

In our previous short survey,35 some representative studies
for detecting natural disasters using computer vision are
introduced. However, for a more in depth survey, we added
sensor based disaster detection methods and analyzed the
advantages and disadvantages between sensor and vision-
based disaster detection methods. Furthermore, we added
not only further current research on disaster detection, but
also addressed landslide detection based on computer vision,
which is another issue of interest.

The remainder of this paper is organized as follows.
Section 2 introduces vision based wildfire smoke and
flame detection techniques. The water level detection
method for preventing floods is then introduced in Sec. 3.

=
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Fig. 1 A general framework for vision-based natural disaster warning system.
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Table 1 Representative categories of natural disaster warning systems and their main algorithms.

Disaster category Visual features

Decision methods

11-14 11,12

Wildfire smoke detection color, wavelet coefficients,

10,17,18 10,17

Wildfire flame detection color, intensity,

spectrum of visible light image®

5,21

Water level detection horizontal edge,

optical flow,?® vertical edge®*

Coastal zone management & intensity difference,2>27 frequency,
forecasting tidal waves

active contour model®°

Landslide detection
color,3* shape®*

motion
orientation,'!'21® histogram of oriented gradients'’
intensity entropy,'? feature correlation'®

wavelet energy,
motion orientation,'® infrared signal,'®

pixel difference,?

scale,?*2° background subtraction,*

pixel difference,®!*? pixel histogram,®

random forest,"" support vector machine,''5
fuzzy finite automata,'? hidden Markov models
least mean square-based active learning'

14

fuzzy finite automata,'® linear combination of
decision functions,'” fuzzy inference system'®

rule-based classifier,> gap difference function,’
ratio maximization function,?' k-means clustering,®
linear regression®*

intensity difference function,?6?
boundary function®

logical intersection,®' point similarity function,®®
multilevel objective functions,®*
genetic programming®

Section 4 introduces representative methods for coastal zone
management as well as forecasting tidal waves. The land-
slide detection method is also introduced in Sec. 5. Finally,
some promising future research directions are outlined
in Sec. 6.

2 Wildfire Smoke and Flame Detection Techniques

Even though there are several optical-based sensors to detect
wildfire smoke, these optical-based systems often generate
many false alarms due to atmospheric conditions such as
clouds, shadows, dust particle formations, and light reflec-
tions. Additionally, they are expensive. In contrast, a CCD
camera delivers similar performance and is much cheaper
than IR cameras and other types of advanced sensors.

In general, a CCD camera for wildfire detection can be
installed atop a mountain to monitor a wide area, as shown
in Fig. 2. Wildfire detection can be divided into two research
categories, wildfire smoke detection and flame detection.
Smoke detection is particularly important for early warning

Wildfire

: ﬁ\\_smoke

o

Fig. 2 CCD camera mounted on a watchtower for wildfire detection,
taken from Ref. 11.
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systems because smoke usually occurs before the flames
arise.!!

Most current wildfire detection systems consist of four
steps. The steps include detection of candidate fire regions,
feature extraction, a learning classifier, and the classification
of fire regions, as shown in Fig. 3. In the first step, the
candidate flame or smoke regions are initially detected
using a background subtraction method, while nonflame or
nonsmoke colored blocks are filtered out using the color
probability models. These processes are essential steps for
reducing the computational time required for flame or
smoke verification. Next, various parameters can be used
to characterize the images for classification such as color,
texture, motion and shape. After feature extraction, pattern
classifier learning is performed based on the feature vectors
of the training data. Finally, the candidate flame or smoke
regions are classified into predefined classes using the
pattern classifiers.

2.1 Wildfire Smoke Detection

Despite the significance of smoke detection, there have only
been a few studies in this area. Wildfire smoke detection,
using video cameras, is challenging because the main char-
acteristics of smoke are constantly uncertain, vague patterns
of shape and color.

The main smoke detection methods can be summarized as
follows.

Gubbi et al.'” proposed an outdoor smoke detection
approach based on wavelets and support vector machines
(SVMs). Smoke characterization is carried out by extracting
wavelet features from approximate coefficients and three
levels of detailed coefficients. The SVM Light implementa-
tion for SVM was used in all the experiments. The radial
basis function (RBF) kernel is used to map the input vector
to a high-dimensional feature space because SVM Eq. (1):

=lx - yI?

oy ) for some o > 0, (D
o

k(x.y) = eXp<
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Fig. 3 Block diagram of the wildfire detection procedure.

where x is the input vector and y is the input pattern. The
symbol, o, represents a parameter, specified by the user,
which determines the width of the effective basis function.
Ham et al.'” proposed a new forest smoke detection
approach of analyzing temporal patterns of smoke and
fuzzy finite automata (FFA), as shown in Fig. 4. To consider
the smoke characteristics over time, the temporal patterns of
intensity entropy, wavelet energy, and motion orientation
have been used to generate multivariate probability density
functions which are applied to FFA for smoke verification.
The proposed FFA consists of a set of fuzzy states which are
VH = very high, H = high, L = low and VL = very low,
and a transition mapping that describes the events that can
occur in a specific state and the resulting new state.
Habiboglu et al."* proposed a method that uses back-
ground subtraction and color thresholds to find the smoke-
colored, slow-moving regions in the video. These regions are
divided into spatio-temporal blocks and correlation features
are extracted from the blocks. Sets of properties that repre-
sent both the spatial and the temporal characteristics of
smoke regions are used to form correlation descriptors.
An SVM classifier is trained and tested with descriptors
obtained from video data containing smoke and smoke-
colored objects. In the final step of this smoke detection pro-
cedure, a confidence value is determined according to the
number of positively classified video blocks and their

Fig. 4 FFA for forest fire smoke verification. The circular nodes repre-
sent a specific state, while the transition from the current state to the
next state is shown by an arrow with an input event, taken from
Ref. 12.
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positions. If no neighbor blocks can be classified as
smoke, the confidence level is set to 1. If a single neighbor
block is classified as smoke, the confidence level is set to 2.
If >2 neighbor blocks are classified as smoke, the confidence
level of that block is set to 3, which is the highest level of
confidence provided by the algorithm.

Ko et al.'! proposed a wildfire smoke detection algorithm
that uses temporal-spatial visual features and an ensemble of
decision trees called a random forest. In order to detect wild-
fire smoke using a video camera, temporal-spatial character-
istics such as color, wavelet coefficients, motion orientation,
and a histogram of oriented gradients are extracted from can-
didate smoke blocks and the corresponding sections of the
preceding 100 frames. After training two random forests,
the test candidate blocks are applied to the trained random
forests. The final distribution of the i’th class, P(c;), is gen-
erated by averaging each distribution of random forest 1
PT(c;|1,) and random forest 2 P5(c;|l,) using Eq. (2).

RS PTGl + L Pl
P(c;) = 3 . 2)

In Eq. (2), T is the number of trees, and /, is the distribution
of z-th tree. This system chooses c; as the final class of an
input block B,,, if P(c;) has the maximum value. According
to Eq. (2), the candidate block is declared as a real wildfire
smoke block if the maximum probability of the average
probability distribution in an input block belongs to the
class VH or H. Otherwise, a candidate block is declared
as a nonsmoke block.

Figure 5 shows nine examples of wildfire smoke detection
results on real wildfire smoke and smoke-colored clouds
and fog.

Toreyin et al.'* also proposed an automatic, video-based,
wildfire smoke detection algorithm containing the following
four sub-algorithms: (1) slow-moving video object detection,
(2) gray region detection, (3) rising object detection, and
(4) shadow elimination. Each sub-algorithm individually
detects the presence of smoke in the viewing range of the

July 2012/Vol. 51(7)
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Movie 1

Movie 3

Fig. 5 Wildfire smoke detection results on wildfire smoke (Movies 1-5), smoke-colored cloud (Movies 6, 7, and 9) and fog (Movie 8) test videos,

taken from Ref. 11.

camera before the decisions of the sub-algorithms are
combined by an adaptive weighted majority algorithm. The
weights of compound algorithms are re-estimated using an
error function in the least mean square algorithm, which is
based on the decision of an oracle “security guard” whenever
a false alarm occurs.

Guillemant and Vicente'® proposed smoke identification
method using a cumulative analysis of the instantaneous
motion data. They found that the most efficient data for
smoke identification are the velocity distribution in the
envelope, whose energy, or average number of instantaneous
motion diagnoses per embedded point, is higher than the
energy of most other landscape phenomena with the excep-
tion of clouds. But for clouds, the standard deviation of
velocity distribution is generally lower than for smoke.
Thus, their main criterion for smoke detection is based on the
analysis of the velocity distribution using a minimum energy
threshold and a minimum standard-deviation threshold.

2.2 Wildfire Flame Detection

Regions of flame indoors generally produce higher lumi-
nance and frequency than background regions, as well as
an upward motion with irregular fluctuation patterns in the
time domain.”'® In contrast, wildfire has different character-
istics from indoor and close-range fires.'*

* Flame regions, at distances far from the camera, seem
to move slower in comparison to nearby objects.

* Wildfire flames, at a large distance detected at night,
appear as bright regions and do not carry much color
information.

* Most wildfire flames exhibit a nonperiodic frequency
pattern, in contrast to artificial light sources such as
flashing lights on vehicles and building lights, which
exhibit a perfect periodic pattern.

* During the initial stages of a fire, the candidate wild-
fire flame regions should not move outside some

Optical Engineering
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predefined bounds within a limited time span, Due
to second characteristic, much research is focusing
on developing different algorithms for flame detection
at night and smoke detection during the day.

Similar to the method in Ref. 14, the algorithm proposed
by Gunay et al.'” was comprised of four sub-algorithms:
(1) slow-moving video object detection, (2) bright region
detection, (3) detection of objects exhibiting periodic
motion, and (4) a sub-algorithm interpreting the motion of
moving regions in video. Each of these sub-algorithms char-
acterizes an aspect of fire captured at night by a visible-range
PTZ camera. The decision functions of sub-algorithms yield
their own decisions as confidence values in the range
[-1,1] € R. Sub-algorithm weights are updated according
to the least mean square algorithm, which is the most widely
used adaptive filtering method. The final classification result,
y(x,n), is combined linearly with the decision values from
the four sub-algorithms and their weights in the following
manner.

Equation (3):

y(x.n) =D (x.n)w(n) = Y _wi(n)Di(x.n), 3)

where D(x, n) = [D;(x,n) ... Dy(x,n)]" is the vector of the
confidence values of the sub-algorithms for the pixel at loca-
tion x of the input image frame at time step n, and w(x, n) =
[wi(x,n)...wy(x,n)]" is the current weight vector.

Figure 6 shows three examples of wildfire flame detection
results at night.

Ko et al.'” proposed a flame detection method using FFA,
which was similar to the method in Ref. 11, with probability
density functions based on visual features, thereby providing
a systemic approach to handling irregularity in computa-
tional systems and the ability to handle continuous spaces
by combining the capabilities of automata with fuzzy

July 2012/Vol. 51(7)
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Fig. 6 Three examples of wildfire flame detection at night: (a) correct alarm for a fire at night, (b) elimination of fire-truck head lights (upper left)
and correct alarm for a fire (lower right), and (d) detection results on an actual forest fire at night, taken from Ref. 17.

logic. In general, flame regions have a continuous irregular
pattern, therefore, probability density functions are generated
for the variation in intensity, wavelet energy, and motion
orientation, as shown in Fig. 7, and applied to the FFA.
The proposed algorithm has been successfully applied to var-
ious fire/nonfire videos, including indoor fires and wildfires
taking place during both day and night.

Celik et al.'® used color features and fuzzy logic to detect
wildfire flame. Fuzzy logic was used to replace the heuristic
rules and make the classification more robust when effec-
tively discriminating fire and fire-like colored objects. To
detect the fire region, the proposed method, measured
Ps(x,y) to determine the likelihood that a pixel located at
a spatial location belonged to a fire pixel in the YCbCr
color image. To evaluate P ¢ (x,y), a combination of triangu-
lar and trapezoidal fuzzy logic membership functions were
used to represent the difference between Cr(x,y) and
Cb(x,y) and the difference between Y(x,y) and Cb(x,y).

In contrast to wildfire flame detection systems based on
CCD cameras, some researchers'**” have tried to analyze the
heat of wildfires using infrared images or visible light images
to compensate for the limitations of CCD cameras.

3 Water-Level Detection for Preventing Floods

As mentioned in the introduction, a lot of work using con-
ventional sensors has been conducted in an effort to forecast
the degree of flooding of rivers. Although a pressure sensor
is easy to use, it is limited because it must be calibrated and
replaced frequently due to possible breakdowns stemming
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from continuous water pressure. In addition, the sonar sensor
does not make contact with the water directly, its lifespan is
short, and the returning sonic values are sensitive to the tem-
perature, rain, and snow. Therefore, use of an image sensor to
measure the water level is the most recent approach.’

Initial research on water level detection®'>*** used spatial
information derived from image sensors, such as edge direc-
tion. Comparatively, new water level detection techniques™**
exploit the temporal motion information embedded in a
sequence to overcome the misdetection problem due to
wrong edge detection.

A simplified spatiotemporal water level detection system
is shown in Fig. 8. In the first step, the image noise produced
by dust on the camera lens, rain, or snow is removed by a
smoothing filter. After the spatiotemporal features have been
estimated, each spatiotemporal feature is projected onto the
y-axis to create a cumulative histogram. During the final
step, the water level decision is made using a decision
function and the projected features.

Udomsiri and Iwahashi*' proposed a new design of a
spatial finite impulse response (FIR), filter to automatically
detect the water level from a video signal of various river
surroundings. This approach employed the addition of
frames and a horizontal edge detector to distinguish water
regions and land regions. An example of a filtered signal
is shown in Fig. 9(c), which uses a three-tap bandpass filter
as an edge operator. In this case, the variance of each hor-
izontal line is used as the feature value shown in Fig. 9(d).
Thus, the variance of each line in a filtered video frame is
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Fig. 7 Two-dimensional probability density graph of the intensity, wavelet energy, and motion orientation. VH is very high, H is high, L is low and

VL is very low, taken from Ref. 10.
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Fig. 8 Block diagram of the water level detection procedure.
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Fig. 9 Water level detection procedure: (a) input frame, (b) average of frames, (c) filtered image using a three-tap bandpass filter, and (d) the

detected water level, taken from Ref. 21.

used as a feature value. The water level is recognized as the
horizontal boundary line between the land and water regions.
The feature values in the land region and those in the water
region are calculated by setting a temporary boundary. Simi-
larly, the mean values, m; and myy, are calculated for the land
region and water region, as well as their variances s; and sy, .
Based on these values, the ratio defined by Eq. (4),

PPy (my —my)*

4
PLS%+PWs%)‘/ (

~

is calculated to determine whether the boundary is correct.
P; and Py denote the probability that pixels belong to
the land class or water class, respectively. An appropriate
water boundary is considered to be the point that maximizes
the distance between the numerators and minimizes the
denominator. Figure 9 shows the water level detection
procedure using the spatial FIR filter.

i
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Fig. 10 Cumulative histograms and the corresponding pulse histo-
grams for three different situations: a: calm, b: night, c: day, taken
from Ref. 22.
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Park et al.”” introduced a cumulative histogram that
emphasized the change of the water surface in sequential
images. The histogram showed the cumulative differences
between previous images and the current image. However,
these differences also appeared in the land region, hence,
a bandpass filter was used to remove noise in the cumulative
histogram. Finally, this algorithm separated the water and
land regions using predefined rules. Figure 10 shows the
cumulative histograms and the corresponding pulse histo-
grams for three different situations: calm, night, and day.

In a similar method to Park et al.,”> Yu and Hahn®
measured the water level from images received by the master
system which may contain noise caused by various sources.
An averaging filter and Gaussian filter were used to reduce
the noise. The horizontal edge image was extracted using a
Sobel operator and the position of the longest horizontal line
in the bridge support column was found by projecting the
edge image onto the y-axis as shown in Fig. 11. The water
level is calculated by measuring the gap, D, between the
reference indicator, Y, and the water limit, Yyy.

Kwak et al.”® proposed a new automatic water-level detec-
tion algorithm for flood prevention with the use of a CCD
camera and K-means clustering. The captured input video
of the river displays the column of a bridge and flowing
water. In contrast to the static column region, the water
region exhibits slow and fast movement, according to the
speed of the water. Using this fact, optical flows are detected
using image sequences and a motion vector that is projected
onto the Y-axis to create an accumulated motion histogram.
From the accumulated motion histogram, a K-means cluster-
ing algorithm is executed to distinguish the real water region
from the concrete column region, as shown in Fig. 12.

July 2012/Vol. 51(7)
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Fig. 11 y-axis profile for detecting the water limit: (a) the input frame ‘T’ signboard is the reference indicator, (b) Gaussian filtered image,

(c) horizontal edge image, and (d) y-axis profile, taken from Ref. 5.
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Fig. 12 Examples of water-level detection: (a) detected optical flows
of flowing water, (b) K-means clustered result of accumulated motion
histogram, taken from Ref. 23.

Chapman®* proposed a line-based, edge detection algo-
rithm to find the water edge in a tube, as shown in Fig. 13.
A series of vertical lines were evaluated within the tube to
determine the position of the water's edge. The edge point
positions were defined by their pixel row and column posi-
tions within the image. The equation for the water line was
calculated by a linear regression fit to the edge points. The
final step in the process was to convert the position of the line
from the measurement system used in images, pixel units, to
real-world measurement units, feet/meters.

4 Coastal Zone Management and Detecting Tidal
Waves

Monitoring shorelines, or changes over time, and tidal waves
caused by earthquake or typhoon, are core tasks carried out
by coastal engineers for a wide range of research, monitor-
ing, and design applications such as identifying and

Fig. 13 Example of water level (blue line) detection at night under
infrared light, taken from Ref. 24.
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quantifying shoreline erosion and assessing the performance
of coastal protection structures.*® First, to monitor the coastal
zone, a conventional surveying method is the use of satellite
and aircraft-mounted remote sensing systems such as light
detection and ranging (LiDAR). However, these systems
are generally limited to use on clear water in order to obtain
improved spatial coverage, and the data that they obtain are
expensive to manage from the viewpoint of long-term
monitoring.”® Fixed video remote sensing systems provide
continuous daylight data for periods extending over decades
and they are relatively low-cost as compared to other air-
borne or satellite remote-sensing options.

Temporal pixel difference on the shoreline is one of the
most widely used shoreline detection techniques. As shown
in Fig. 14, a panoramic view of the entire coastal embayment
is acquired automatically from several cameras with repeated
mapping of shorelines from time exposure images of

(b) Multi-camera Merge(panorama)

Fig. 14 General procedure for shoreline detection.?-% Images
acquired from multiple cameras are used to obtain (a) a panoramic
view of the entire coastal embayment, (b) rectification of this merged
image to produce real-world coordinates allows the resulting aerial
view image to be processed using sophisticated image analysis tech-
nigues to determine the exact shoreline position on the shore, marked
with a black dashed line in (c).
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different, tidal, water levels. Image analysis techniques, such
as region grouping and morphological operation, and deci-
sion functions are then applied to the difference image to
determine the shoreline position along the shore.

The CoastView project,”” www.TheCoastViewProject
.net, aimed to develop coastal video monitoring systems
in support of coastal zone management. The project utilizes
Argus video systems that are capable of remotely sensing
waves, currents, and beach elevation at high frequency
over a scale of several kilometers. The CoastView project
is a €2M European project involving 12 partner institutions
from six countries, including four national-scale coastal
managers from Spain, Italy, the Netherlands, and the UK.

Turner and Anderson®® introduced experience from Aus-
tralia, using a network of Argus coastal imaging sites, to
illustrate and discuss the suite of image-derived, coastal
zone, management products, that is now available to the
coastal manager. Both qualitative and quantitative informa-
tion is routinely delivered, via the Internet, ranging from
hourly images of the monitored site to weekly summaries
of shoreline variability and longer-term beach-width trends.
All monitoring program results and data summaries are
accessed via a World Wide Web interface, providing real-
time delivery direct to the managers’ desktop computers.

Uunk et al.” presented a fully automated procedure to
derive the intertidal beach bathymetry on a daily basis, from
video images of low-sloping beaches that are characterized
by the intermittent emergence of intertidal bars. Bathymetry
data is obtained by automated and repeated mapping of
shorelines from time exposure images for different tidal
water levels. The developed procedure handles intelligent
selection of a shoreline search area and unsupervised quality
control of the obtained bathymetry data.

Second, unlike coastal zone management, detection of an
overtopping wave, or a high wave, caused by tidal waves or
tsunamis, is also an important issue to address in order to
prevent natural disaster damage.

Ishimoto et al.?® proposed an automated wave overtop-
ping detection system using image processing. This system
automatically detects the optional size of overtopping waves
in a video camera scene. One to four continuous, optional,
time-interval, still pictures are transmitted immediately after
capturing wave overtopping, including just before capture.
The optimal time interval after capturing wave overtopping
allows this system to detect the highest wave in still video
pictures. This system allows the frequency and scale of over-
topping waves to be monitored in real time, which can be
used to make a decision on traffic closure.

Seki et al.** proposed an algorithm that automatically
detects high waves from images captured by coastal surveil-
lance cameras. This detection is performed directly by back-
ground subtraction and measuring wave contour in each
image using active contour models from subtracted regions.
The wave contour is tracked and is declared an overtopping
wave if it exceeds the predefined boundary. This method
measures and tracks the wave contour, hence, it is robust
to other moving objects and it can be applied for the occur-
rence prediction of overtopping waves. In experiments using
real video sequences, including the approach of a typhoon
and tranquil scenes, this method was found to be 96 percent
correct with 114 high waves while no misdetections
occurred, even in tranquil conditions.
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Fig. 15 Outline of the overtopping wave monitoring system installed
on National Highway No. 42 in Japan, taken from Ref. 29.

The ITS Handbook of Japan®® contains detailed descrip-
tions of an overtopping wave monitoring system installed on
National Highway No. 42 in Japan. The accurate prediction
and swift detection of overtopping waves is essential to
ensure safe driving during the early stage of overtopping
waves and to allow traffic restrictions to be issued without
delay when overtopping becomes serious. Thus, a system
is used, in this district, to automatically detect overtopping
waves, similar to the method described in Ref. 28, where
images captured with CCTV cameras are processed while
step-type wave gauges along the highway help improve
the accuracy of overtopping detection. In addition, overtop-
ping waves are predicted using wave data obtained offshore
from Nishimukai so that traffic restrictions can be issued at
the proper time. An outline of the overtopping wave moni-
toring system installed on National Highway No. 42 in Japan
is shown in Fig. 15.

5 Landslide Detection

Traditionally landslide areas were manually measured
from aerial stereo pair photography, which is a very time-
consuming and tedious task. For this reason, a variety of
approaches have been proposed to detect landslides automa-
tically using LiDAR image and computer vision techniques.
The most common approaches are difference region detec-
tion,*'? comparing LiDAR images before the landslide and
after the landslide, based on pixel units or region units, as
shown in Fig. 16. The reference image is saved in the first
step and subsequent images from the same location are ob-
tained by automated and repeated mapping of topographical
features. The modified areas are represented by thresholding
based on local point similarity, while post-processing, such
as connected component labeling or morphological opera-
tions, is used to detect the large connected regions. A land-
slide decision function is applied during the final step, along
with some feature descriptors of candidate regions.

Rau et al.*' proposed a pixel-based image difference
method, using a logical intersection operation, to detect
the main changed area based on spectral and surface char-
acteristics, such as the terrain slope, surface texture, and
greenness. Among these, greenness is an important index
to discriminate the bare soil from vegetation since the green-
ness value changes from high to low in the landslide region.
They compare the greenness index map, before and after the
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Fig. 16 Block diagram of the landslide detection procedure.

landslide, using a logical intersection operation to identify
the change as a landslide region. Figure 17(a) shows the
color ortho-images with landslide and the greenness index
map as shown in Fig. 17(b).

S. K. Bejo et al.*’ used a point similarity measure based
on mutual information to detect the most significant changed
regions. The point similarities,S),, ., are defined for each
pixel at coordinate c:

Pap(pt. pB)
tog [PA@A)PB(pB)]’

where P, (p*) is the normalized histogram of gray values in
the reference image, Py (p?) is the normalized histogram of
the sensed image, and P,g(p?, p?) is the normalized joint
histogram of the gray values, p? and p%, that correspond
to the same pixel i. The changed areas are represented by
thresholding local point similarities. Then, connected com-
ponent labeling is used to detect the large connected regions,
which are likely to be landslide regions. It is a very simple
and fast method to detect landslides, but it cannot allow the
distinction between a landslide and any other change on the
surface of the earth that causes changes in the appearance of
the image.

Martha and Kerle* proposed an object segmentation
method to detect the difference region using multiple seg-
mentation strategies. The segmentation method, with a single

Su AB

Fig. 17 Examples of landslides detection: (a) color ortho-images with
landslide ground truth, (b) greenness index map, taken from Ref. 31.
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set of parameters, is not able to detect the landslide regions
due to the complex shape and size of landslides. Instead of
one object level pertaining to a single parameter, multiple
object levels, with a set of optimum parameters, are used
to detect landslides of variable sizes with high-resolution
satellite images. The proposed method does not require
a priori knowledge to optimize segmentation, which makes
it typically suitable for a rapid response to a disastrous
landslide.

However, difference region detection is very sensitive to
small illumination changes. In order to solve this problem,
Hervas and Rosin®” combine the image differencing method
and a genetic programming algorithm for landslide detec-
tion. To extract the features from the changed pixels, the
difference image is computed, before and after the landslide
reactivation, and mathematical morphology operations are
applied. Then, genetic programming is used to distinguish
the “change” and “no-change” classes in changed pixels
from optical remote sensing data.

6 Conclusions and Future Directions

The world is currently experiencing various natural disasters
such as storms, wildfires, droughts, floods, landslides, and
tsunamis due to the effects of global warming. As natural
disasters caused huge losses of both life and property, early
warnings of disasters are crucial to reduce the potentially
extensive casualties and property damage when disaster
threatens. In this paper, we introduced recent developments
in research on natural disaster detection with a focus on var-
ious computer vision techniques. The existing approaches
were summarized for wildfire detection, water level detec-
tion, coastal zone management, and landslide detection.
Despite the fact that research related to vision-based natural
disaster detection is still in its preliminary stages, there has
been remarkable progress. The advantages of vision-based
disaster warning systems are they have a lower equipment
cost, have the capacity to monitor a larger area, and provide
additional information such as the location, size, and degree
of disaster, without the need for visiting the location.

However, there are still a few problems in the detection
and accurate forecasting of natural disasters, due to the
limitation of gathering information from a CCD camera.
The details of these problems are as follows:

July 2012/Vol. 51(7)



Ko and Kwak: Survey of computer vision—-based natural disaster warning systems

¢ CCD cameras cannot capture heat or humidity infor-
mation which can provide reliable clues that distin-
guish real wildfires from false positives such as light,
clouds, and fog.

¢ CCD cameras cannot acquire a clear image at night
without special equipment.

¢ Computer vision has limitations in terms of the
removal of severe noise caused by heavy rain or snow.

¢ Computer vision is limited in terms of camera shake
compensation.

To overcome the shortcomings in related research, it is

clear that further research in the areas of pre-processing

fo

r removing noises and ego-motion compensation, feature

extraction, ensemble methods with other conventional sen-
sors, classification methods, and warning representation
methods are required to complete the final goal of natural

di

saster detection and forecasting.
This review clearly shows that great advances have been

made in vision-based disaster warning techniques, but many
challenges still remain in achieving more accurate disaster
warning techniques in diverse environments.
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